
UPC Required Library Specifications
Version 1.3

A publication of the UPC Consortium

November 16, 2013

UPC Required Library Specifications Version 1.3

Contents

Contents 2

7 Library 3
7.4 UPC Collective Utilities <upc_collective.h> 3

7.4.1 Standard headers . 3
7.4.2 Relocalization Operations 4
7.4.3 Computational Operations 13

7.5 High-Performance Wall-Clock Timers <upc_tick.h> 17
7.5.1 Standard header . 17
7.5.2 upc_tick_t functions 18

Index 20

2 Contents

UPC Required Library Specifications Version 1.3

7 Library

1 This section provides UPC parallel extensions of [ISO/IEC00 Sec 7.1.2]. Also
see the UPC Optional Library Specifications.

2 The libraries specified in this document are required and shall be provided
by all conforming implementations of the UPC language.

7.4 UPC Collective Utilities <upc_collective.h>

1 Implementations that support this interface shall predefine the feature macro
__UPC_COLLECTIVE__ to the value 1.

2 The following requirements apply to all of the functions defined in Section 7.4.

3 All of the functions are collective. 1

4 All collective function arguments are single-valued.

5 Collective functions may not be called between upc_notify and the corre-
sponding upc_wait.

7.4.1 Standard headers

1 The standard header is

<upc_collective.h>

2 Unless otherwise noted, all of the functions, types and macros specified in
Section 7.4 are declared by the header <upc_collective.h>.

3 Every inclusion of <upc_collective.h> has the effect of including <upc_types.h>.

1Note that collective does not necessarily imply barrier synchronization. The synchro-
nization behavior of the library functions is explicitly controlled by using the upc_flag_t
flags argument. See UPC Language Specification, Section 7.3.3 for details.

§7 Library 3

UPC Required Library Specifications Version 1.3

7.4.2 Relocalization Operations

7.4.2.1 The upc_all_broadcast function

Synopsis

1 #include <upc_collective.h>
void upc_all_broadcast(shared void * restrict dst,

shared const void * restrict src, size_t nbytes,
upc_flag_t flags);

Description

2 The upc_all_broadcast function copies a block of memory with affinity to
a single thread to a block of shared memory on each thread. The number of
bytes in each block is nbytes.

3 nbytes must be strictly greater than 0.

4 The upc_all_broadcast function treats the src pointer as if it pointed to
a shared memory area with the type:

shared [] char[nbytes]

5 The effect is equivalent to copying the entire array pointed to by src to each
block of nbytes bytes of a shared array dst with the type:

shared [nbytes] char[nbytes * THREADS]

6 The target of the dst pointer must have affinity to thread 0.

7 The dst pointer is treated as if it has phase 0.

8 If copying takes place between objects that overlap, the behavior is unde-
fined.

9 EXAMPLE 1 shows upc_all_broadcast

#include <upc_collective.h>
shared int A[THREADS];
shared int B[THREADS];
// Initialize A.
upc_barrier;
upc_all_broadcast(B, &A[1], sizeof(int),

UPC_IN_NOSYNC | UPC_OUT_NOSYNC);

4 Relocalization Operations §7.4.2

UPC Required Library Specifications Version 1.3

upc_barrier;

10 EXAMPLE 2:

#include <upc_collective.h>
#define NELEMS 10
shared [] int A[NELEMS];
shared [NELEMS] int B[NELEMS*THREADS];
// Initialize A.
upc_all_broadcast(B, A, sizeof(int)*NELEMS,

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

11 EXAMPLE 3 shows (A[3],A[4]) is broadcast to (B[0],B[1]), (B[10],B[11]),
(B[20],B[21]), ..., (B[NELEMS*(THREADS-1)],B[NELEMS*(THREADS-1)+1]).

#include <upc_collective.h>
#define NELEMS 10
shared [NELEMS] int A[NELEMS*THREADS];
shared [NELEMS] int B[NELEMS*THREADS];
// Initialize A.
upc_barrier;
upc_all_broadcast(B, &A[3], sizeof(int)*2,

UPC_IN_NOSYNC | UPC_OUT_NOSYNC);
upc_barrier;

7.4.2.2 The upc_all_scatter function

Synopsis

1 #include <upc_collective.h>
void upc_all_scatter(shared void * restrict dst,

shared const void * restrict src, size_t nbytes,
upc_flag_t flags);

Description

2 The upc_all_scatter function copies the 𝑖th block of an area of shared
memory with affinity to a single thread to a block of shared memory with
affinity to the 𝑖th thread. The number of bytes in each block is nbytes.

3 nbytes must be strictly greater than 0.

4 The upc_all_scatter function treats the src pointer as if it pointed to a

§7.4.2.2 The upc_all_scatter function 5

UPC Required Library Specifications Version 1.3

shared memory area with the type:

shared [] char[nbytes * THREADS]

5 and it treats the dst pointer as if it pointed to a shared memory area with
the type:

shared [nbytes] char[nbytes * THREADS]

6 The target of the dst pointer must have affinity to thread 0.

7 The dst pointer is treated as if it has phase 0.

8 For each thread 𝑖, the effect is equivalent to copying the 𝑖th block of nbytes
bytes pointed to by src to the block of nbytes bytes pointed to by dst that
has affinity to thread 𝑖.

9 If copying takes place between objects that overlap, the behavior is unde-
fined.

10 EXAMPLE 1 upc_all_scatter for the dynamic THREADS translation en-
vironment.

#include <upc_collective.h>
#define NUMELEMS 10
#define SRC_THREAD 1
shared int *A;
shared [] int *myA, *srcA;
shared [NUMELEMS] int B[NUMELEMS*THREADS];

// allocate and initialize an array distributed across all threads
A = upc_all_alloc(THREADS, THREADS*NUMELEMS*sizeof(int));
myA = (shared [] int *) &A[MYTHREAD];
for (i=0; i<NUMELEMS*THREADS; i++)

myA[i] = i + NUMELEMS*THREADS*MYTHREAD; // (for example)
// scatter the SRC_THREAD’s row of the array
srcA = (shared [] int *) &A[SRC_THREAD];
upc_barrier;
upc_all_scatter(B, srcA, sizeof(int)*NUMELEMS,

UPC_IN_NOSYNC | UPC_OUT_NOSYNC);
upc_barrier;

11 EXAMPLE 2 upc_all_scatter for the static THREADS translation envi-

6 The upc_all_scatter function §7.4.2.2

UPC Required Library Specifications Version 1.3

ronment.

#include <upc_collective.h>
#define NELEMS 10
shared [] int A[NELEMS*THREADS];
shared [NELEMS] int B[NELEMS*THREADS];
// Initialize A.
upc_all_scatter(B, A, sizeof(int)*NELEMS,

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

7.4.2.3 The upc_all_gather function

Synopsis

1 #include <upc_collective.h>
void upc_all_gather(shared void * restrict dst,

shared const void * restrict src, size_t nbytes,
upc_flag_t flags);

Description

2 The upc_all_gather function copies a block of shared memory that has
affinity to the 𝑖th thread to the 𝑖th block of a shared memory area that has
affinity to a single thread. The number of bytes in each block is nbytes.

3 nbytes must be strictly greater than 0.

4 The upc_all_gather function treats the src pointer as if it pointed to a
shared memory area of nbytes bytes on each thread and therefore had type:

shared [nbytes] char[nbytes * THREADS]

5 and it treats the dst pointer as if it pointed to a shared memory area with
the type:

shared [] char[nbytes * THREADS]

6 The target of the src pointer must have affinity to thread 0.

7 The src pointer is treated as if it has phase 0.

8 For each thread 𝑖, the effect is equivalent to copying the block of nbytes bytes
pointed to by src that has affinity to thread 𝑖 to the 𝑖th block of nbytes
bytes pointed to by dst.

9 If copying takes place between objects that overlap, the behavior is unde-

§7.4.2.3 The upc_all_gather function 7

UPC Required Library Specifications Version 1.3

fined.

10 EXAMPLE 1 upc_all_gather for the static THREADS translation environ-
ment.

#include <upc_collective.h>
#define NELEMS 10
shared [NELEMS] int A[NELEMS*THREADS];
shared [] int B[NELEMS*THREADS];
// Initialize A.
upc_all_gather(B, A, sizeof(int)*NELEMS,

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

11 EXAMPLE 2 upc_all_gather for the dynamic THREADS translation en-
vironment.

#include <upc.h>
#include <upc_collective.h>
#define NELEMS 10
shared [NELEMS] int A[NELEMS*THREADS];
shared [] int *B;
B = (shared [] int *) upc_all_alloc(1,NELEMS*THREADS*sizeof(int));
// Initialize A.
upc_barrier;
upc_all_gather(B, A, sizeof(int)*NELEMS,

UPC_IN_NOSYNC | UPC_OUT_NOSYNC);
upc_barrier;

7.4.2.4 The upc_all_gather_all function

Synopsis

1 #include <upc_collective.h>
void upc_all_gather_all(shared void * restrict dst,

shared const void * restrict src, size_t nbytes,
upc_flag_t flags);

Description

2 The upc_all_gather_all function copies a block of memory from one shared
memory area with affinity to the 𝑖th thread to the 𝑖th block of a shared
memory area on each thread. The number of bytes in each block is nbytes.

8 The upc_all_gather_all function §7.4.2.4

UPC Required Library Specifications Version 1.3

3 nbytes must be strictly greater than 0.

4 The upc_all_gather_all function treats the src pointer as if it pointed
to a shared memory area of nbytes bytes on each thread and therefore had
type:

shared [nbytes] char[nbytes * THREADS]

5 and it treats the dst pointer as if it pointed to a shared memory area with
the type:

shared [nbytes * THREADS] char[nbytes * THREADS * THREADS]

6 The targets of the src and dst pointers must have affinity to thread 0.

7 The src and dst pointers are treated as if they have phase 0.

8 The effect is equivalent to copying the 𝑖th block of nbytes bytes pointed to
by src to the 𝑖th block of nbytes bytes pointed to by dst that has affinity
to each thread.

9 If copying takes place between objects that overlap, the behavior is unde-
fined.

10 EXAMPLE 1 upc_all_gather_all for the static THREADS translation en-
vironment.

#include <upc_collective.h>
#define NELEMS 10
shared [NELEMS] int A[NELEMS*THREADS];
shared [NELEMS*THREADS] int B[THREADS][NELEMS*THREADS];
// Initialize A.
upc_barrier;
upc_all_gather_all(B, A, sizeof(int)*NELEMS,

UPC_IN_NOSYNC | UPC_OUT_NOSYNC);
upc_barrier;

11 EXAMPLE 2 upc_all_gather_all for the dynamic THREADS translation
environment.

#include <upc.h>
#include <upc_collective.h>
#define NELEMS 10
shared [NELEMS] int A[NELEMS*THREADS];

§7.4.2.4 The upc_all_gather_all function 9

UPC Required Library Specifications Version 1.3

shared int *Bdata;
shared [] int *myB;

Bdata = upc_all_alloc(THREADS*THREADS, NELEMS*sizeof(int));
myB = (shared [] int *)&Bdata[MYTHREAD];

// Bdata contains THREADS*THREADS*NELEMS elements.
// myB is MYTHREAD’s row of Bdata.
// Initialize A.
upc_all_gather_all(Bdata, A, NELEMS*sizeof(int),

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

7.4.2.5 The upc_all_exchange function

Synopsis

1 #include <upc_collective.h>
void upc_all_exchange(shared void * restrict dst,

shared const void * restrict src, size_t nbytes,
upc_flag_t flags);

Description

2 The upc_all_exchange function copies the 𝑖th block of memory from a
shared memory area that has affinity to thread 𝑗 to the 𝑗th block of a shared
memory area that has affinity to thread 𝑖. The number of bytes in each block
is nbytes.

3 nbytes must be strictly greater than 0.

4 The upc_all_exchange function treats the src pointer and the dst pointer
as if each pointed to a shared memory area of nbytes*THREADS bytes on each
thread and therefore had type:

shared [nbytes * THREADS] char[nbytes * THREADS * THREADS]

5 The targets of the src and dst pointers must have affinity to thread 0.

6 The src and dst pointers are treated as if they have phase 0.

7 For each pair of threads 𝑖 and 𝑗, the effect is equivalent to copying the 𝑖th
block of nbytes bytes that has affinity to thread 𝑗 pointed to by src to the
𝑗th block of nbytes bytes that has affinity to thread 𝑖 pointed to by dst.

10 The upc_all_exchange function §7.4.2.5

UPC Required Library Specifications Version 1.3

8 If copying takes place between objects that overlap, the behavior is unde-
fined.

9 EXAMPLE 1 upc_all_exchange for the static THREADS translation envi-
ronment.

#include <upc_collective.h>
#define NELEMS 10
shared [NELEMS*THREADS] int A[THREADS][NELEMS*THREADS];
shared [NELEMS*THREADS] int B[THREADS][NELEMS*THREADS];
// Initialize A.
upc_barrier;
upc_all_exchange(B, A, NELEMS*sizeof(int),

UPC_IN_NOSYNC | UPC_OUT_NOSYNC);
upc_barrier;

10 EXAMPLE 2 upc_all_exchange for the dynamic THREADS translation
environment.

#include <upc.h>
#include <upc_collective.h>
#define NELEMS 10
shared int *Adata, *Bdata;
shared [] int *myA, *myB;
int i;

Adata = upc_all_alloc(THREADS*THREADS, NELEMS*sizeof(int));
myA = (shared [] int *)&Adata[MYTHREAD];
Bdata = upc_all_alloc(THREADS*THREADS, NELEMS*sizeof(int));
myB = (shared [] int *)&Bdata[MYTHREAD];

// Adata and Bdata contain THREADS*THREADS*NELEMS elements.
// myA and myB are MYTHREAD’s rows of Adata and Bdata, resp.

// Initialize MYTHREAD’s row of A. For example,
for (i=0; i<NELEMS*THREADS; i++)

myA[i] = MYTHREAD*10 + i;

upc_all_exchange(Bdata, Adata, NELEMS*sizeof(int),
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

§7.4.2.5 The upc_all_exchange function 11

UPC Required Library Specifications Version 1.3

7.4.2.6 The upc_all_permute function

Synopsis

1 #include <upc_collective.h>
void upc_all_permute(shared void * restrict dst,

shared const void * restrict src,
shared const int * restrict perm,
size_t nbytes, upc_flag_t flags);

Description

2 The upc_all_permute function copies a block of memory from a shared
memory area that has affinity to the 𝑖th thread to a block of a shared memory
that has affinity to thread perm[i]. The number of bytes in each block is
nbytes.

3 nbytes must be strictly greater than 0.

4 perm[0..THREADS-1] must contain THREADS distinct values: 0, 1, ...,
THREADS-1.

5 The upc_all_permute function treats the src pointer and the dst pointer
as if each pointed to a shared memory area of nbytes bytes on each thread
and therefore had type:

shared [nbytes] char[nbytes * THREADS]

6 The targets of the src, perm, and dst pointers must have affinity to thread
0.

7 The src and dst pointers are treated as if they have phase 0.

8 The effect is equivalent to copying the block of nbytes bytes that has affinity
to thread i pointed to by src to the block of nbytes bytes that has affinity
to thread perm[𝑖] pointed to by dst.

9 If any of the elements referenced by dst overlap any of the elements referenced
by src or perm, the behavior is undefined.

10 EXAMPLE 1 upc_all_permute.

#include <upc_collective.h>
#define NELEMS 10
shared [NELEMS] int A[NELEMS*THREADS], B[NELEMS*THREADS];

12 The upc_all_permute function §7.4.2.6

UPC Required Library Specifications Version 1.3

shared int P[THREADS];
// Initialize A and P.
upc_barrier;
upc_all_permute(B, A, P, sizeof(int)*NELEMS,

UPC_IN_NOSYNC | UPC_OUT_NOSYNC);
upc_barrier;

7.4.3 Computational Operations

1 Computational operations are specified using a value of type upc_op_t, which
is specified in UPC Language Specification, Section 7.3.1. All of the opera-
tions defined in that section are supported for computational collectives.

In addition, the following upc_op_t value macros are defined in <upc_collective.h>:

UPC_FUNC Use the specified commutative function func to operate on the
data in the src array at each step.

UPC_NONCOMM_FUNC Use the specified non-commutative function func to op-
erate on the data in the src array at each step.

2 Bitwise operations shall not be specified for collective operations on floating-
point types.

3 The operations represented by a variable of type upc_op_t (including user-
provided operators) are assumed to be associative. A reduction or a prefix
reduction whose result is dependent on the order of operator evaluation will
have undefined results.2

4 The operations represented by a variable of type upc_op_t (except those
provided using UPC_NONCOMM_FUNC) are assumed to be commutative. A re-
duction or a prefix reduction (using operators other than UPC_NONCOMM_FUNC)
whose result is dependent on the order of the operands will have undefined
results.

Forward references: reduction, prefix reduction (7.4.3.1).

2 Implementations are not obligated to prevent failures that might arise because of a
lack of associativity of built-in functions due to floating-point roundoff or overflow.

§7.4.3 Computational Operations 13

UPC Required Library Specifications Version 1.3

7.4.3.1 The upc_all_reduce and upc_all_prefix_reduce functions

Synopsis

1

#include <upc_collective.h>
void upc_all_reduce<<T>>(

shared void * restrict dst,
shared const void * restrict src,
upc_op_t op,
size_t nelems,
size_t blk_size,
<<TYPE>>(*func)(<<TYPE>>, <<TYPE>>),
upc_flag_t flags);

void upc_all_prefix_reduce<<T>>(
shared void * restrict dst,
shared const void * restrict src,
upc_op_t op,
size_t nelems,
size_t blk_size,
<<TYPE>>(*func)(<<TYPE>>, <<TYPE>>),
upc_flag_t flags);

Description

2 The function prototypes above represents the 22 variations of the upc_all_reduceT
and upc_all_prefix_reduceT functions where T and TYPE have the follow-
ing correspondences: 3

T TYPE T TYPE
C signed char L signed long
UC unsigned char UL unsigned long
S signed short F float
US unsigned short D double
I signed int LD long double
UI unsigned int

3 On completion of the upc_all_reduce variants, the value of the TYPE shared
object referenced by dst is src[0] ⊕ src[1] ⊕ · · · ⊕ src[nelems-1] where

3For example, if T is C, then TYPE must be signed char.

14 The upc_all_reduce and upc_all_prefix_reduce
functions §7.4.3.1

UPC Required Library Specifications Version 1.3

“⊕” is the operator specified by the variable op.

4 On completion of the upc_all_prefix_reduce variants, the value of the
TYPE shared object referenced by dst[i] is src[0] ⊕ src[1] ⊕ · · · ⊕ src[i]
for 0 ≤ i ≤ nelems-1 and where “⊕” is the operator specified by the variable
op.

5 If a floating-point variant of either function encounters an operand with a
NaN value (as defined in [ISO/IEC00 Sec 5.2.4.2.2]), behavior is implementation-
defined.

6 If the value of blk_size passed to these functions is greater than 0 then
they treat the src pointer as if it pointed to a shared memory area of nelems
elements of type TYPE and blocking factor blk_size, and therefore had type:

shared [blk_size] TYPE [nelems]

7 If the value of blk_size passed to these functions is 0 then they treat the
src pointer as if it pointed to a shared memory area of nelems elements of
type TYPE with an indefinite layout qualifier, and therefore had type4:

shared [] TYPE[nelems]

8 The phase of the src pointer is respected when referencing array elements,
as specified above.

9 upc_all_prefix_reduceT treats the dst pointer equivalently to the src
pointer as described in the past 3 paragraphs.

10 upc_all_prefix_reduceT requires the affinity and phase of the src and
dst pointers to match – ie. upc_threadof(src) == upc_threadof(dst)
&& upc_phaseof(src) == upc_phaseof(dst).

11 upc_all_reduceT treats the dst pointer as having type:

shared TYPE *

12 If any of the elements referenced by src and dst overlap, the behavior is
undefined.

13 EXAMPLE 1 upc_all_reduce of type long UPC_ADD.

#include <upc_collective.h>

4Note that upc_blocksize(src) == 0 if src has this type, so the argument value 0
has a natural connection to the block size of src.

§7.4.3.1 The upc_all_reduce and upc_all_prefix_reduce
functions 15

UPC Required Library Specifications Version 1.3

#define BLK_SIZE 3
#define NELEMS 10
shared [BLK_SIZE] long A[NELEMS*THREADS];
shared long *B;
long result;
// Initialize A. The result below is defined only on thread 0.
upc_barrier;
upc_all_reduceL(B, A, UPC_ADD, NELEMS*THREADS, BLK_SIZE,

NULL, UPC_IN_NOSYNC | UPC_OUT_NOSYNC);
upc_barrier;

14 EXAMPLE 2 upc_all_prefix_reduce of type long UPC_ADD.

#include <upc_collective.h>
#define BLK_SIZE 3
#define NELEMS 10
shared [BLK_SIZE] long A[NELEMS*THREADS];
shared [BLK_SIZE] long B[NELEMS*THREADS];
// Initialize A.
upc_all_prefix_reduceL(B, A, UPC_ADD, NELEMS*THREADS, BLK_SIZE,

NULL, UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

16 The upc_all_reduce and upc_all_prefix_reduce
functions §7.4.3.1

UPC Required Library Specifications Version 1.3

7.5 High-Performance Wall-Clock Timers <upc_tick.h>

1 This subsection provides extensions of [ISO/IEC00 Sec 7.23]. All the char-
acteristics of library functions described in [ISO/IEC00 Sec 7.1.4] apply to
these as well. Implementations that support this interface shall predefine the
feature macro __UPC_TICK__ to the value 1.

Rationale

2 The upc_tick_t type and associated functions provide convenient and portable
support for querying high-precision system timers for obtaining high-precision
wall-clock timings of sections of code. Many hardware implementations offer
access to high-performance timers with a handful of instructions, providing
timer precision and overhead that can be several orders of magnitude better
than can be obtained through the use of existing interfaces in [ISO/IEC00]
or POSIX (e.g. the gettimeofday() system call).

7.5.1 Standard header

1 The standard header is

<upc_tick.h>

2 Unless otherwise noted, all of the functions, types and macros specified in
Section 7.5 are declared by the header <upc_tick.h>.

7.5.1.1 upc_tick_t Type

1 The following type is defined in upc_tick.h:

upc_tick_t

2 upc_tick_t is an unsigned integral type representing a quantity of abstract
timer ticks, whose ratio to wall-clock time is implementation-dependent and
thread-dependent.

3 upc_tick_t values are thread-specific quantities with a thread-specific inter-
pretation (e.g. they might represent a hardware cycle count on a particular
processor, starting at some arbitrary time in the past). More specifically,
upc_tick_t values do not provide a globally-synchronized timer (i.e. the si-
multaneous absolute tick values may differ across threads), and furthermore

§7.5 High-Performance Wall-Clock Timers <upc_tick.h> 17

UPC Required Library Specifications Version 1.3

the tick-to-wall-clock conversion ratio might also differ across UPC threads
(e.g. on a system with heterogenerous processor clock rates, the tick values
may advance at different rates for different UPC threads).

4 As a rule of thumb, upc_tick_t values and intervals obtained by different
threads should never be directly compared or arithmetically combined, with-
out first converting the relevant tick intervals to wall time intervals (using
upc_ticks_to_ns).

7.5.1.2 UPC_TICK_MAX and UPC_TICK_MIN

1 The following macro values are defined in upc_tick.h:

UPC_TICK_MAX
UPC_TICK_MIN

2 UPC_TICK_MAX and UPC_TICK_MIN are constants of type upc_tick_t. They
respectively provide the minimal and maximal values representable in a vari-
able of type upc_tick_t.

7.5.2 upc_tick_t functions

7.5.2.1 The upc_ticks_now function

Synopsis

1 #include <upc_tick.h>

upc_tick_t upc_ticks_now(void);

Description

2 upc_ticks_now returns the current value of the tick timer for the calling
thread, as measured from an arbitrary, thread-specific point of time in the
past (which is fixed during any given program execution).

3 The function always succeeds.

18 UPC_TICK_MAX and UPC_TICK_MIN §7.5.1.2

UPC Required Library Specifications Version 1.3

7.5.2.2 The upc_ticks_to_ns function

Synopsis

1 #include <upc_tick.h>

uint64_t upc_ticks_to_ns(upc_tick_t ticks);

Description

2 upc_ticks_to_ns converts a quantity of ticks obtained by the calling thread
into wall-clock nanoseconds.

3 The function always succeeds.

4 EXAMPLE 1: an example of the upc_tick interface in use:

#include <upc_tick.h>
#include <stdio.h>

upc_tick_t start = upc_ticks_now();
compute_foo(); /* do something that needs to be timed */

upc_tick_t end = upc_ticks_now();

printf("Time was: %f seconds\n", upc_ticks_to_ns(end-start)/1.0E-9);

§7.5.2.2 The upc_ticks_to_ns function 19

UPC Required Library Specifications Version 1.3

Index

__UPC_COLLECTIVE__, 3
__UPC_TICK__, 17

broadcast, 4

collective libarary, 3
cycle counter, 17

exchange, 10

gather, 7
gather, to all, 8

permute, 12
prefix reduction, 14

reduction, 14

scatter, 5

tick counter, 17
timer, 17

upc_all_broadcast, 4
upc_all_exchange, 10
upc_all_gather, 7
upc_all_gather_all, 8
upc_all_permute, 12
upc_all_reduce, 14
upc_all_reduce_prefix, 14
upc_all_scatter, 5
upc_collective.h, 3
UPC_FUNC, 13
UPC_NONCOMM_FUNC, 13
upc_tick.h, 17
UPC_TICK_MAX, 18
UPC_TICK_MIN, 18

upc_tick_t, 17
upc_ticks_now, 18
upc_ticks_to_ns, 19

wall-clock, 17

20 Index

	Contents
	7 Library
	7.4 UPC Collective Utilities <upc_collective.h>
	7.4.1 Standard headers
	7.4.2 Relocalization Operations
	7.4.2.1 The upc_all_broadcast function
	7.4.2.2 The upc_all_scatter function
	7.4.2.3 The upc_all_gather function
	7.4.2.4 The upc_all_gather_all function
	7.4.2.5 The upc_all_exchange function
	7.4.2.6 The upc_all_permute function

	7.4.3 Computational Operations
	7.4.3.1 The upc_all_reduce and upc_all_prefix_reduce functions

	7.5 High-Performance Wall-Clock Timers <upc_tick.h>
	7.5.1 Standard header
	7.5.1.1 upc_tick_t Type
	7.5.1.2 UPC_TICK_MAX and UPC_TICK_MIN

	7.5.2 upc_tick_t functions
	7.5.2.1 The upc_ticks_now function
	7.5.2.2 The upc_ticks_to_ns function

	Index

		2013-11-16T19:01:03-0500
	UPC Specification Working Group

