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1 Introduction

1.1 Scope

Due to the wide range of compilers and the lack of a standardized performance tool interface, writers of performance
tools face many challenges when incorporating support for global address space languages such as Unified Parallel
C (UPC), Titanium, and Co-Array Fortran (CAF). This document presents a Global Address Space Performance
tool interface (GASP) that is flexible enough to be adapted into current global address space compiler and runtime
infrastructures with little effort, while allowing performance analysis tools to gather much information about the
performance of global address space programs.

1.2 Organization

Section 2 gives a high-level overview of the GASP interface. As GASP can be used to support many languages, the
interface has been broken down into language-independent and language-specific sections. Section 3 presents the
language-independent portions of the GASP interface, and Sections 4 through 9 detail the language-specific parts of
the interface. Finally, the appendices present the motivations behind the creation of GASP and give a review of the
versions of this document.

1.3 Definitions

� Users– individuals using a parallel language such as UPC

� Developers– individuals who write parallel software infrastructure such as UPC, CAF, or Titanium compilers

� Tools– performance analysis tools such as Vampir, TAU, or KOJAK

� Tool developers– individuals who develop performance analysis tools

� Tool code– code or library implementing the tool developer’s portion of the GASP interface

� Thread – a thread of control in a GAS program, maps directly to UPC’s concept of threads or CAF’s concept
of images
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2 GASP overview

The GASP interface controls the interaction between a user’s code, a performance tool, and GAS language compiler
and/or runtime system. This interaction is event-based and comes in the form of callbacks to thegasp_event_notify
function at runtime. The callbacks may come from instrumentation code placed directly in an executable, from an in-
strumented runtime library, or any other method; the interface only requires thatgasp_event_notify is called at
appropriate times in the manner described in the rest of this document.

The GASP interface allows tool developers to support GAS languages on all platforms and languages supporting the
interface. The interface is used in the following 3 steps:

1. Users compile their GAS code using compiler wrapper scripts provided by tool developers. Users may specify
which analysis they wish the tool to perform on their code through either command-line arguments, environment
variables or through other tool-specific methods.

2. The compiler wrapper scripts pass appropriate flags to the compiler indicating which callbacks the tool wishes
to receive. During the linking phase, the scripts link in appropriate code from the performance tool that handles
the callbacks at runtime. This tool-provided code shall be written in C.

3. When a user runs their program, the tool-provided code receives callbacks at runtime and may perform some
action such as storing all events in a trace file or performing basic statistical profiling.

The specifics of each step will be discussed in Section 3. The language-specific interface parts of the GASP interface
will be discussed in Sections 4 to 9.

A GAS implementation may exclude any system-level event defined for each language in Sections 4 to 9 if an appli-
cation cannot be instrumented for that event.

Any action resulting in a violation of this specification shall result in undefined behavior. Tool and language imple-
mentors are strongly encouraged not to deviate from these specifications.

3 Language-independent interface

3.1 Instrumentation control

Instrumentation control is accomplished through either compilation arguments or compiler pragmas. Developers may
use alternative names for the command-line arguments if the names specified below do not fit the conventions already
used by the compiler.

3.1.1 User-visible instrumentation control

If a user wishes to instrument their code for use with a tool using the GASP interface, they shall pass either the
--profile or --profile-local command-line arguments to the compiler wrapper scripts.

The --profile argument specifies that the user’s code shall be instrumented for all events supported by the GAS
language implementation, except for events resulting from access to objects or variables contained in the portion of
the global address space local to each thread.

For languages that do not have any concept of local or remote memory accesses, this argument shall have the same
semantics as the--profile-local argument, which specifies that the user’s code shall be instrumented for all
events support by the GAS language implementation.
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3.1.2 Tool-visible instrumentation control

Compilers supporting the GASP interface shall provide three command-line arguments which may be used by the
tool-provided compiler wrapper scripts.

The first two arguments--profile and--profile-local have the same semantics as the user-visible instru-
mentation flags specified in Section 3.1.1.

The third argument--profile-only takes a single argumentfilename which is a file containing a list of
symbolic event names (as defined in Sections 4 to 9) separated by newlines. The file’s contents indicate the events
for which the performance tool wishes to receive callbacks. Events in this file may be ignored by the compiler if the
events are not supported by the GAS language implementation.

3.1.3 Interaction with instrumentation, measurement, and user events

When code is compiled without either the--profile or the--profile-local flags, all instrumentation con-
trol shall be ignored and all user event callbacks shall be compiled away. Systems may link “dummy” versions of
gasp_control andgasp_create_event (described in Sections 3.3 and 3.4) for applications that have no code
compiled with--profile or --profile-local .

Systems may support compiling parts of an application using one of the--profile flags and compiling other
parts of an application normally; for systems where this is not possible, this behavior may be prohibited. Applica-
tions compiled with--profile or --profile-local on at least one translation unit shall also pass either the
--profile or --profile-local during the linking phase to the compiler wrapper scripts.

Any language-specific instrumentation control shall not have any effect on user events or on the state of measurement
control. As a result, any language-specific instrumentation controls shall not prevent user events from being instru-
mented during compilation (e.g.,#pragma pupc shall not change the behavior of thepupc_create_event and
pupc_event_start functions in UPC programs).

3.2 Callback structure

During runtime, an instrumented executable shall call thegasp_init C function at the beginning of program exe-
cution after the language runtime has finished initialization but before executing the entry point in a user’s code (e.g.,
main in UPC). Thegasp_init function shall have the following signature:

typedef enum {
GASP_LANG_UPC,
GASP_LANG_TITANIUM,
GASP_LANG_CAF,
GASP_LANG_MPI,
GASP_LANG_SHMEM

} gasp_lang_t;

struct _gasp_context_S;
typedef struct _gasp_context_S *gasp_context_t;

gasp_context_t gasp_init(gasp_lang_t srclanguage,
int *argc, char ***argv);

Thegasp_init function and an implementation of the_gasp_context_S struct shall be provided by tool devel-
opers. A single running instance of an executable may callgasp_init one or more times if the executable contains
code written in multiple languages (such as a hybrid UPC and CAF program).

The gasp_init function returns a pointer to a tool-implemented struct that shall be passed in for all subsequent
callbacks to the tool developer’s code. This pointer shall only be used with events for the language indicated by the
srclanguage argument.
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Tool code may modify the contents of theargc and argv pointers to support the processing of command-line
arguments.

After the gasp_init function has been called by each thread of execution, the tool code shall receive all other
callbacks through the two functions whose signatures are shown below:

typedef enum {
GASP_START,
GASP_END,
GASP_ATOMIC,

} gasp_evttype_t;

void gasp_event_notify(gasp_context_t context, unsigned int evttag,
gasp_evttype_t evttype, const char *filename,
int linenum, int colnum, ...);

void gasp_event_notifyVA(gasp_context_t context, unsigned int evttag,
gasp_evttype_t evttype, const char *filename,
int linenum, int colnum, va_list varargs);

Both functions may be used interchangeably; theVAvariant is provided as a convenience to developers.

The gasp_event_notify shall be written in C, but may make upcalls to code written in the language speci-
fied by thesrclanguage argument passed to thegasp_init function on the thread that received the callback.
If upcalls are used, thegasp_event_notify function shall also be re-entrant. Additionally, code that is used
in upcalls shall be compiled using the same environmental specifications as the code in a user’s application (e.g.,
gasp_event_notify shall only perform upcalls to UPC code compiled under a static threads environment when
used with a UPC program compiled under the static threads environment).

Any data referenced by pointers passed togasp_event_notify shall not be changed by tool code.

For the first argument togasp_event_notify , tool code shall receive the same pointer to agasp_context_t
that was returned from thegasp_init function. Tool developers may use this struct to store thread-local information
for each thread. Thegasp_event_notify function shall be thread-safe for languages that make use ofpthreads
or other thread libraries.

Theevttag argument shall specify the event identifier as specified in Sections 4 to 9. Theevttype argument shall
be of typegasp_evttype_t and shall indicate whether the eventevttag is a begin event, end event, or atomic
event.

The filename , linenum , andcolnum arguments shall indicate the source code line and column number that
spawned the eventevttag . GAS language implementations that do not retain column information during compilation
may pass 0 in place of thecolnum parameter.

The contents of thevarargs argument shall be specific to each event identifier and type and will be discussed in
Sections 4 to 9.

3.3 Measurement control

Tool developers shall provide an implementation for the following function:

int gasp_control(gasp_context_t context, int on);

The gasp_control function takes thecontext argument in the same manner as thegasp_event_notify
function.

When the value 0 is sent for theon parameter, the tool shall not measure any performance data (including both system
and user events) until the tool code receives anothergasp_control call with a nonzero value for theon parameter.

Thegasp_control shall have a nonzero value for theon parameter. The function shall return the last value for the
on parameter the function received, or a nonzero value ifgasp_control has not been called.
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3.4 User events

Tool developers shall provide an implementation for the following function:

unsigned int gasp_create_event(gasp_context_t context,
const char *name, const char *desc);

Thegasp_create_event shall return a tool-generated event identifier.

Compilers shall translate the corresponding language-specific_create_event functions listed in Sections 4 to 9
into correspondinggasp_create_event calls. The semantics of thegasp_create_event shall be the same
as the corresponding_create_event functions listed in Sections 4 to 9.

3.5 Header files

Developers shall distribute agasp.h C header file with their GAS language implementations that contains the fol-
lowing definitions:

� Function prototypes for thegasp_init , gasp_event_notify , gasp_control , gasp_control_query ,
andgasp_create_event functions and associated typedefs, enums, and structs.

� A GASP_VERSIONmacro that shall be defined to the GASP version supported by this GAS implementation1.

� Definitions for theGASP_USEREVT_STARTandGASP_USEREVT_ENDmacros.

� Macro definitions that map the symbolic event names listed in Section 4 to 9 to 32-bit unsigned integers.

Thegasp.h file shall be installed in a directory that is included in the GAS compiler’s default search path.

4 C interface2

4.1 Instrumentation control

Instrumentation for the events defined in this section shall be controlled by using the corresponding instrumentation
control mechanisms for UPC code defined in Section 5.1.

4.2 Measurement control

Measurement for the events defined in this section shall be controlled by using the corresponding measurement control
mechanisms for UPC code defined in Section 5.2.

4.3 User events

4.3.1 Function events

Table 1 shows system events related to executing user functions.

1We need to come up with some numbering scheme. Perhaps a date-based one like theSTDC VERSION macro?
2Might want to put this in the UPC section?
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Symbolic name Event type vararg arguments
GASP_C_FUNC Start, End const char* funcsig

Table 1: User function events

These events occur when a user function starts and finishes executing. Thefuncsig argument specifies the character
string representing the full signature of the function that is executing.

4.4 System events

4.4.1 Memory allocation events

Table 2 shows system events related to the standard memory allocation functions.

Symbolic name Event type vararg arguments
GASP_C_MALLOC Start size_t nbytes
GASP_C_MALLOC End size_t nbytes, void * returnptr
GASP_C_REALLOC Start void * ptr, size_t size
GASP_C_REALLOC End void * ptr, size_t size, void * returnptr
GASP_C_FREE Start, End void * ptr

Table 2: Memory allocation events

TheGASP_C_MALLOC, GASP_C_REALLOC, andGASP_C_FREEstem directly from the standard C definitions of
malloc , realloc , andfree .

5 UPC interface

5.1 Instrumentation control

Users may insert#pragma pupc on or #pragma pupc off in their code to instruct the compiler to avoid
instrumenting lexically-scoped regions of a user’s UPC code. These pragmas may be ignored by the compiler if the
compiler cannot control instrumentation for arbitrary regions of code.

When a--profile or --profile-local argument is given to a compiler or compiler wrapper script, the
#pragma pupc shall default toon .

5.2 Measurement control

At runtime, users may call the following functions below to control the measurement of performance data:

int pupc_control( int on);

Thepupc_control function shall behave in the same manner as thegasp_control function defined in Section
3.3.
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5.3 User events

unsigned int pupc_create_event( const char *name, const char *desc);
void pupc_event_start( unsigned int evttag, ...);
void pupc_event_end( unsigned int evttag, ...);
void pupc_event_atomic( unsigned int evttag, ...);

Thepupc_create_event function shall be translated at compile time into a correspondinggasp_create_event
call defined in Section 3.4. Thename argument shall be used to associate a user-specified name with the event, and
thedesc argument may contain eitherNULLor aprintf -style format string.

The event identifier returned bypupc_create_event shall be in the range fromGASP_UPC_USEREVT_START
toGASP_UPC_USEREVT_END, inclusive. TheGASP_UPC_USEREVTmacros shall be provided in thegasp_upc.h
header file described in Section 5.5.

Thepupc_event_start , pupc_event_end , andpupc_event_atomic functions may be called by a user’s
UPC program during runtime. Theevttag argument shall be any value returned by thepupc_create_event
function. Users may pass in any list of values for the... arguments as long as the types passed in match theprintf -
style format string used in the correspondingpupc_create_event . A performance tool may use these values to
display performance information alongside application-specific data captured during runtime to a user. A compiler
shall translate thepupc_event_start , pupc_event_end , and pupc_event_atomic function calls into
correspondinggasp_event_notify function calls during compilation.

When a compiler does not receive any--profile or --profile-local arguments, thepupc_event function
calls shall be excluded from the executable.

Users may not pass in UPC-specific variables as arguments to thepupc_event functions

5.4 System events

For the event arguments below, the UPC-specific typesupc_flag_t andupc_op_t shall be converted to Cint s.

Pointers to shared data shall be passed with an extra level of indirection, and may only be dereferenced through
UPC upcalls. UPC implementations shall provide two opaque types,gasp_upc_PTS_t andgasp_upc_lock_t ,
which shall represent pointer-to-shared andupc_lock_t , respectively. These opaque types shall betypedef ’ed
to void to prevent C code from attempting to dereference them without using a cast in a UPC upcall.

5.4.1 Exit events

Table 3 shows system events related to the end of a program’s execution.

Symbolic name Event type vararg arguments
GASP_UPC_COLLECTIVE_EXIT Start, End int status
GASP_UPC_NONCOLLECTIVE_EXIT Atomic int status

Table 3: Exit events

TheGASP_UPC_COLLECTIVE_EXITevents shall occur at the end of a program’s execution on each thread when a
collective exit occurs. These events correspond to the execution of the final implicit barrier for UPC programs.

TheGASP_UPC_NONCOLLECTIVE_EXITevent shall occur at the end of a program’s execution on a single thread
when a non-collective exit occurs.
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5.4.2 Synchronization events

Table 4 shows events related to synchronization constructs.

Symbolic name Event type vararg arguments
GASP_UPC_NOTIFY Start, End int named, int expr
GASP_UPC_WAIT Start, End int named, int expr
GASP_UPC_BARRIER Start, End int named, int expr
GASP_UPC_FENCE Start, End (none)

Table 4: Synchronization events

These events shall occur before and after execution of the notify, wait, barrier, and fence synchronization statements.
Thenamed argument to the notify, wait, and barrier start events shall be nonzero if the user has provided an integer
expression for the corresponding notify, wait, and barrier statements. In this case, theexpr variable shall be set to the
result of evaluating that integer expression. If the user has not provided an integer expression for the corresponding
notify, wait, or barrier statements, thenamed argument shall be zero and the value ofexpr shall be undefined.

5.4.3 Work-sharing events

Table 5 shows events related to work-sharing constructs.

Symbolic name Event type vararg arguments
GASP_UPC_FORALL Start, End (none)

Table 5: Work-sharing events

These events shall occur on each thread before and afterupc_forall constructs are executed.

5.4.4 Library-related events

Table 6 shows events related to library functions.

Symbolic name Event type vararg arguments
GASP_UPC_GLOBAL_ALLOC Start size_t nblocks, size_t nbytes

GASP_UPC_GLOBAL_ALLOC End
size_t nblocks, size_t nbytes,
gasp_upc_PTS_t* newshrd_ptr

GASP_UPC_ALL_ALLOC Start size_t nblocks, size_t nbytes

GASP_UPC_ALL_ALLOC End
size_t nblocks, size_t nbytes,
gasp_upc_PTS_t* newshrd_ptr

GASP_UPC_ALLOC Start size_t nbytes

GASP_UPC_ALLOC End
size_t nbytes,
gasp_upc_PTS_t* newshrd_ptr

GASP_UPC_FREE Start, End gasp_upc_PTS_t* shrd_ptr
GASP_UPC_GLOBAL_LOCK_ALLOCStart (none)

Continued on next page
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Symbolic name Event type vararg arguments
GASP_UPC_GLOBAL_LOCK_ALLOCEnd gasp_upc_lock_t* lck
GASP_UPC_ALL_LOCK_ALLOC Start (none)
GASP_UPC_ALL_LOCK_ALLOC End gasp_upc_lock_t* lck
GASP_UPC_LOCK_FREE Start, End gasp_upc_lock_t* lck
GASP_UPC_LOCK Start, End gasp_upc_lock_t* lck
GASP_UPC_LOCK_ATTEMPT Start gasp_upc_lock_t* lck

GASP_UPC_LOCK_ATTEMPT End
gasp_upc_lock_t* lck,
int result

GASP_UPC_UNLOCK Start, End gasp_upc_lock_t* lck

GASP_UPC_MEMCPY Start, End
gasp_upc_PTS_t* dst,
gasp_upc_PTS_t* src,
size_t n

GASP_UPC_MEMGET Start, End
void * dst,
gasp_upc_PTS_t* src,
size_t n

GASP_UPC_MEMPUT Start, End
gasp_upc_PTS_t* dst,
void * src,
size_t n

GASP_UPC_MEMSET Start, End
gasp_upc_PTS_t* dst,
int c,
size_t n

Table 6: Library-related events

These events stem directly from the UPC library functions defined in the UPC specification. Thevararg arguments
for each event callback mirror those defined in the UPC language specification.

5.4.5 Blocking shared variable access events

Table 7 shows events related to blocking shared variable accesses.

Symbolic name Event type vararg arguments

GASP_UPC_GET Start, End

int is_relaxed,
void * dst,
gasp_upc_PTS_t* src,
size_t n

GASP_UPC_PUT Start, End

int is_relaxed,
gasp_upc_PTS_t* dst,
void * src,
size_t n

Table 7: Blocking shared variable access events

These events shall occur whenever shared variables are assigned to or read from using the direct syntax (not using the
upc.h library functions). The arguments to these events mimic those of theupc_memget andupc_memput event
callback arguments, but differ from the ones presented in the previous section because they only arise from accessing
shared variables directly. If the memory access occurs under the relaxed memory model, theis_relaxed parameter
shall be nonzero; otherwise theis_relaxed parameter shall be zero.
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5.4.6 Nonblocking shared variable access events

Table 8 shows events related to direct shared variable accesses implemented through nonblocking communication.

Symbolic name Event type vararg arguments

GASP_UPC_NB_GET_INIT Start

int is_relaxed,
void * dst,
gasp_upc_PTS_t* src,
size_t n

GASP_UPC_NB_GET_INIT End

int is_relaxed,
void * dst,
gasp_upc_PTS_t* src,
size_t n,
gasp_upc_nb_handle_t handle

GASP_UPC_NB_GET_DATAStart, End gasp_upc_nb_handle_t handle

GASP_UPC_NB_PUT_INIT Start

int is_relaxed,
gasp_upc_PTS_t* dst,
void * src,
size_t n

GASP_UPC_NB_PUT_INIT End

int is_relaxed,
gasp_upc_PTS_t* dst,
void * src,
size_t n,
gasp_upc_nb_handle_t handle

GASP_UPC_NB_PUT_DATAStart, End gasp_upc_nb_handle_t handle
GASP_UPC_NB_SYNC Start, End gasp_upc_nb_handle_t handle

Table 8: Nonblocking shared variable access events

These nonblocking direct shared variable access events are similar to the regular direct shared variable access events
in Section 5.4.5. TheINIT events shall correspond to the nonblocking communication initiation, theDATAevents
shall correspond to when the data starts to arrive and completely arrives on the destination node (these events may
be excluded for most implementations that use hardware-supported DMA), and theGASP_UPC_NB_SYNCfunction
shall correspond to the final synchronization call that blocks until the corresponding data of the nonblocking operation
is no longer in flight.

Thegasp_upc_nb_handle_t shall be an opaque type to tool developers defined by a UPC implementation. Sev-
eral outstanding nonblocking get or put operations may be attached to a singlegasp_upc_nb_handle_t instance.
When a sync callback is received, the tool code shall assume all get and put operations for the correspondinghandle
in the sync callback have been retired.

The implementation may pass the handleGASP_NB_TRIVIAL to GASP_UPC_NB_{PUT,GET}_INIT to indicate
the operation was completed synchronously in the initiation interval. The tool should ignore anyDATAor SYNCevent
callbacks with the handleGASP_NB_TRIVIAL.

5.4.7 Shared variable cache events

Table 9 shows events related to shared variable cache events3.

3These need to be expanded upon. Also, can shared variable accesses through library calls be cached in some systems?
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Symbolic name Event type vararg arguments
GASP_UPC_CACHE_MISSAtomic size_t n
GASP_UPC_CACHE_HIT Atomic size_t n

Table 9: Shared variable cache events

The GASP_UPC_CACHEevents may be sent for UPC runtime systems containing a software cache after a corre-
sponding get or put start event but before a corresponding get or put end event (including nonblocking communication
events). UPC runtimes using write-through cache systems may sendGASP_UPC_CACHE_MISSevents for each
corresponding put event.

The size_t n argument shall indicate the amount of data read from the cache line for the particular cache hit or
cache miss.

5.4.8 Collective communication events

Table 10 shows events related to collective communication.

Symbolic name Event type vararg arguments

GASP_UPC_ALL_BROADCAST Start, End

gasp_upc_PTS_t* dst,
gasp_upc_PTS_t* src,
size_t nbytes,
int upc_flags

GASP_UPC_ALL_SCATTER Start, End

gasp_upc_PTS_t* dst,
gasp_upc_PTS_t* src,
size_t nbytes,
int upc_flags

GASP_UPC_ALL_GATHER Start, End

gasp_upc_PTS_t* dst,
gasp_upc_PTS_t* src,
size_t nbytes,
int upc_flags

GASP_UPC_ALL_GATHER_ALL Start, End

gasp_upc_PTS_t* dst,
gasp_upc_PTS_t* src,
size_t nbytes,
int upc_flags

GASP_UPC_ALL_EXCHANGE Start, End

gasp_upc_PTS_t* dst,
gasp_upc_PTS_t* src,
size_t nbytes,
int upc_flags

GASP_UPC_ALL_PERMUTE Start, End

gasp_upc_PTS_t* dst,
gasp_upc_PTS_t* src,
gasp_upc_PTS_t* perm,
size_t nbytes,
int upc_flags

GASP_UPC_ALL_REDUCE Start, End

gasp_upc_PTS_t* dst,
gasp_upc_PTS_t* src,
int upc_op,
size_t nelems,
size_t blk_size,
void * func,
int upc_flags,
gasp_upc_reduction_t type

Continued on next page
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Symbolic name Event type vararg arguments

GASP_UPC_ALL_PREFIX_REDUCEStart, End

gasp_upc_PTS_t* dst,
gasp_upc_PTS_t* src,
int upc_op,
size_t nelems,
size_t blk_size,
void * func,
int upc_flags,
gasp_upc_reduction_t type

Table 10: Collective communication events

The events in Table 10 stem directly from the UPC collective library functions defined in the UPC specification. The
vararg arguments for each event callback mirror those defined in the UPC language specification.

For the reduction functions, thegasp_upc_reduction_t enum shall be provided by a UPC implementation and
shall be defined as follows:

typedef enum {
GASP_UPC_REDUCTION_C,
GASP_UPC_REDUCTION_UC,
GASP_UPC_REDUCTION_S,
GASP_UPC_REDUCTION_US,
GASP_UPC_REDUCTION_I,
GASP_UPC_REDUCTION_UI,
GASP_UPC_REDUCTION_L,
GASP_UPC_REDUCTION_UL,
GASP_UPC_REDUCTION_F,
GASP_UPC_REDUCTION_D,
GASP_UPC_REDUCTION_LD

} gasp_upc_reduction_t;

where the suffix toGASP_UPC_REDUCTIONdenotes the same type as specified in the UPC specification.

5.5 Header files

UPC compilers shall distribute apupc.h C header file with their GAS language implementations that contains func-
tion prototypes for the function defined in Sections 5.2 and 5.3. Thepupc.h file shall be installed in a directory that
is included in the UPC compiler’s default search path.

All supported system events shall be defined in agasp_upc.h file located in the same directory as thegasp.h file.
System events not supported by an implementation shall not be included in thegasp_upc.h file. Thegasp_upc.h
header file may include definitions for implementation-specific events, along with brief documentation embedded in
source code comments.

Compilers shall define a compiler-specificGASP_UPC_VERSIONversion number ingasp_upc.h that may be
incremented when new implementation-specific events are added. Compiler developers are encouraged to use the
GASP_X_Ynaming convention for all implementation-specific events, whereX is an abbreviation for their compilation
system (such asBUPC) andY is a short, descriptive name for each event.

6 Titanium interface

TBD
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7 CAF interface

TBD

8 MPI interface

TBD

9 SHMEM interface

TBD
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A Motivation for GASP

Global address space (GAS) languages such as Titanium [1], Unified Parallel C (UPC) [2], and Co-Array Fortran
(CAF) [3] offer parallel programmers several advantages over languages that require programmers to manually specify
communication between nodes. The global address space provides a convenient environment similar to threaded
programming on serial machines, but comes at the cost of increased complexity in GAS compiler and runtime systems.
This gives parallel programmers a much-needed increase in productivity; however, since GAS compilers handle low-
level communication and work distribution, it can be difficult or impossible for programmers to determine how a given
program will perform at runtime.

Recent research has indicated that performance tuning is critical for achieving optimal performance in GAS languages
such as UPC, especially on cluster architectures [4]. Although recent work has produced several techniques to improve
the performance of compilers by taking advantage of specific architectures [5], employing TLB-like lookup tables for
remote pointers [6], and applying optimizations like message aggregation [7], the programmer’s ability to exploit
locality remains the most influential factor on overall GAS program performance.

The importance of performance analysis for GAS programs has also been aggravated by the lack of performance
analysis tools supporting GAS languages. The relative newness of GAS languages compared with other programming
models such as MPI is partly responsible for the lack of tool support, but tool developers face a major roadblock even
if they wish to add GAS support in their tools: there is no standard performance tool interface that can be used to
portably gather performance information from GAS programs at runtime. The extensive and almost exclusive use of
the MPI profiling interface [8] by MPI performance tools illustrates the usefulness of a common performance tool
interface.

To rectify this situation, we developed GASP (Global Address Space Performance tool interface), a performance tool
interface for GAS languages. In a nutshell, we are trying to help programmers answer the question “Why does my GAS
program have bad performance?” by providing tool developers with a consistent interface so that their performance
tools can help users identify and fix performance bottlenecks. We have incorporated many ideas used for the POMP
OpenMP profiling interface [9] in our proposal.

A.1 Current challenges for tool developers

MPI and other library-based parallel language extensions generally use a technique called interposition, which make
developing “wrapper” libraries very straightforward. In the interposition technique, all library functions are available
under two different names, usually through weak bindings. When a tool developer wants to gather information about
how much time is spent in a particular library call, they create their own version of the library that invokes the original
function by using its alternate name and record how much time is taken for that function call. For example, Figure 1
illustrates a typical wrapper that can be used to record information about calls toMPI_Send for MPI programs. MPI
tool developers can rely on the existence of aPMPI_Send binding in every MPI implementation which has the same
functionality as the originalMPI_Send function. Tool developers may place any code they wish in their wrapper
library, which allows them to support both tracing and profiling. In addition, users of MPI tools need only to relink
against a profiled MPI library in order to collect information about the behavior of MPI functions in their code.

Tool developers wishing to support GAS languages are not as fortunate. Since the GAS programming model does not
merely use library functions, the wrapper approach mentioned above does not present a valid strategy for recording
the behavior of GAS programs. Even for GAS language implementations that encapsulate much behavior in library
functions (such as Berkeley UPC [10] with GASNET [11]), no standardized form of weak binding or interposition
support is currently available in these libraries that could be used to write wrappers. In addition, GAS compilers can
use vastly different techniques to translate source code into executables, ranging from source-to-source transformations
to more direct compilation techniques. Tool developers are left with two options for collecting information about a
GAS program: binary instrumentation and source instrumentation.

At first glance, binary instrumentation seems like a feasible instrumentation strategy. Libraries like DynInst [12] make
it relatively easy to instrument a user’s program at runtime; since the user’s source code needs no modification this
reduces the overhead imposed upon users. However, in order to insert instrumentation code, binary instrumentation
requires tool developers to explicitly stateexactlywhere they wish to insert their code in an executable. Since existing
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int MPI_Send( void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

{
int val;
Record_message(comm, dest, count, buf);
Timer_start("MPI_Send");
val = PMPI_Send(buf, count, datatype, dest, tag, comm);
Timer_end("MPI_Send");
return val;

}

Figure 1: Example wrapper function

GAS compilers use both source-to-source transformations and direct compilation, binary instrumentation will have to
be added on a compiler-by-compiler basis after an extensive analysis of how that particular compiler translates source
code into executable code. This presents a severe maintenance problem for tool developers: what happens when
developers change their implementation internals between versions?

In short, tool developers adopting a binary instrumentation strategy will have to spend a large portion of their time
keeping up with the internal workings of each compiler they wish to support. In addition, binary instrumentation
makes it very difficult to relate performance information back to actual lines in source code in a platform-independent
way. Another drawback to binary instrumentation is the possibility that choosing instrumentation points in binaries
may be impossible without proprietary information from developers of commercial compilers. Finally, while DynInst
provides great functionality for tool developers wishing to use binary instrumentation, there are no plans to port it to
Cray architectures that are not based on Linux, such as the Cray X1. The X1 and X1E provide excellent vehicles for
running UPC code [5], so excluding tool support for these architectures would be disappointing.

Source instrumentation affords the most flexibility to the tool developer. With source instrumentation, a tool developer
can record any data they wish, provided that the information can be extrapolated from a user’s code. However, with
the increasing complexity of GAS runtime systems and the use of techniques such as remote reference caching, using
source instrumentation alone limits a tool developer’s ability to find out when certain eventsactually occur instead
of when the tool developerthinksthey might occur. For example, UPC’s relaxed memory model blurs the distinction
between the sequence of actions specified in the UPC source code and what actually happens at runtime.

Source instrumentation also places a higher technical burden on the tool writer. Since most GAS languages allow users
to treat remote variables in the exact manner as built-in variables, source code instrumentation systems must be able to
perform afull parse of a user’s source code so that remote variable accesses can be differentiated from local variable
accesses. Even parsing straight ANSI C, a subset of the current C language specification, becomes difficult due to a
few grammatical ambiguities, such as the “declaration/expression” problem [13]. In addition, most “real-world” code
also uses compiler-specific extensions such as those supported by the GCC and Microsoft C and Fortran compilers.
Creating a parser that supports these extensions has been found to be very time-consuming and error-prone [14].

To give a concrete example of the possible difficulties in parsing a complicated expression, consider the UPC code in
Figure 2. Depending on the algorithms used to translate the UPC code into machine code, several different sequences
of remote read and write operations are possible. In addition, compilers which can do complicated strength reductions
may be able to reduce the first line ofmain to f = 0; c = 0; , which drastically reduces the number of remote
memory references.

Neither source nor binary instrumentation represents an optimal path for tool developers wishing to add support for
GAS languages to their tools. The availability of a standard performance tool interface for GAS languages would
allow tool developers to easily add support for any compiler that implements the interface.

A.2 Design goals

In order for a performance tool interface to be effective, it must meet several criteria and strike a balance between
functionality for tool developers and ease of implementation for compiler developers. This specification outlines a
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#include "upc.h"

shared int c = 44;
shared int f = 2;

int main() {
f = ((2*c + 3) - (c + 2) == c) ? 4 : (c = 0);
return 0;

}

Figure 2: UPC code with a complicated expression

performance tool interface for UPC programs that tries to follow these design guidelines:

� Flexibility – For the interface to be useful, it must be flexible enough to support several different performance
analysis methods. For example, some tools rely on capturing full traces of a program’s behavior, while others
calculate statistical information at runtime and display it immediately after a program finishes executing. Our
performance tool interface should support these two main modes of operation, and should not overly restrict the
tool developer’s analysis options.

� Ease of implementation– It is imperative to have the full support of compiler developers for the performance
tool interface. There are many existing compilers that translate code into executables using a wide variety of
methods. We do not wish to alienate compiler writers by making our performance tool interface difficult to
implement for a small group of unlucky compilers. In addition, many compilers are proprietary, which limits
the amount of help we can give in implementing the performance tool interface. Therefore, our interface should
be as implementation-neutral as possible.

� Low overhead– Our performance tool interface should not drastically affect overall runtime of profiled pro-
grams. Performance data collected for programs that do not exhibit similar behavior as their unprofiled coun-
terparts is not very useful to users. Due to the fine-grained nature of most GAS programs, we do expect some
perturbation of overall execution time for profiled programs. However, at every opportunity we wish to engineer
solutions that minimize the effect instrumentation has on a user’s program.

� Usefulness– Performance tools need enough information to analyze so they can present the user with potential
problem areas in their application codes. Specifically, we feel it is absolutely necessary to incorporate source
code correlation for data reported to the user down to the source line level.
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