
A Distributed, Programming Model-Independent Automatic Analysis System
for Parallel Applications

Hung-Hsun Su, Max Billingsley III, Alan D. George

{su, billingsley, george}@hcs.ufl.edu

High-performance Computing and Simulation (HCS) Research Lab
Dept. of Electrical and Computer Engineering

University of Florida, Gainesville, Florida 32611-6200

Abstract
Developing a high performance parallel application is difficult.
An application must often be analyzed and optimized by the pro-
grammer before reaching an acceptable level of performance.
Performance tools that collect and visualize performance data can
reduce the effort needed by the user in the non-trivial optimization
process. However, as the size of the performance dataset grows,
it becomes nearly impossible for the user to manually examine the
data and find performance issues. To address this problem, we
have developed a new analysis system to automatically detect,
diagnose, and possibly resolve bottlenecks. In this paper, we
present the architecture and the distributed, peer-to-peer analysis
process of a programming model-independent analysis system,
which includes a range of useful analyses such as scalability
analysis and known-bottleneck detection. We then describe the
details of an initial sequential implementation of the system that
has been integrated into our Parallel Performance Wizard (PPW)
tool. Finally, we provide correctness and performance results for
this initial version and demonstrate the effectiveness of the system
through two case studies.

Keywords: Parallel Performance Wizard, automatic analysis
system, Unified Parallel C, SHMEM, MPI.

1. Introduction

Researchers from many scientific fields have turned to parallel
computing in pursuit of the highest possible application perform-
ance. Due to the combined complexity of parallel execution
environments and programming models, however, achieving good
application performance is not always guaranteed. Developers
often must pursue an iterative analysis and optimization process
before their application reaches an acceptable level of perform-
ance. To facilitate this process, many performance analysis tools
have been created over the years. Unfortunately, these existing
tools were often developed to specifically target a small set of
programming models, generally MPI and OpenMP, and are not
easily extensible to support other models. As a result, program-
mers using newer models, such as those in the partitioned
global-address-space (PGAS) family, have been forced to analyze
their applications manually.

To facilitate tool support for newer parallel programming models,
we devised the Parallel Performance Wizard (PPW) event-based
performance tool framework previously introduced in [1]. Our
design makes use of a generic-operation-type abstraction and a
data collection process facilitated by a standardized global address
space performance (GASP) interface [2]. The combination of

these two techniques significantly lowers the dependency of the
tool on its supported programming models and as a result mini-
mizes the effort needed to include addition model support. Us-
ing the design, we successfully created the PPW performance tool
that currently supports Unified Parallel C (UPC), SHMEM and
MPI [3].

The original version of the PPW tool collects and manages per-
formance data for applications under analysis and presents the
data to the user via a set of intuitive visualizations. While we
have previously demonstrated how the tool can be useful to users,
a nontrivial amount of effort and expertise is still required of the
user to successfully analyze and optimize an application. This
situation arises in particular when evaluating the performance of
an application that generates a very large amount of data (i.e. a
long-running program or a program run on a large system), where
it becomes nearly impossible to manually analyze the data even
with the help of the tool. This problem exposes the need for an
automatic analysis system that can detect bottlenecks, determine
their causes, and possibly provide resolution strategies for the
user.

In this paper, we present a new automatic analysis system that
extends the capabilities of our PPW tool. The proposed system
supports a range of analyses that no single existing system pro-
vides and uses novel techniques such as baseline filtering and a
distributed analysis process requiring minimal raw data exchange.
In addition, because it is based on the generic-operation-type ab-
straction introduced in [1], the analysis framework is applicable to
any parallel programming model with constructs that can be
mapped to the supported operation types.

The rest of the paper is organized as follows. In Section 2, we
define common terms used throughout the paper. In Section 3,
we provide an overview of automatic analysis and existing analy-
sis systems. In Section 4, we present the architecture of our
automatic analysis system and describe how to undertake the
analysis process in an efficient manner. Next in Section 5, we
describe the initial sequential implementation of this system and
demonstrate the effectiveness of the system through correctness
and performance tests and application studies. Finally, we con-
clude the paper and give directions for future research in Section
6.

2. Terminology

In this section, we define some important terms used in the re-
mainder of the paper. A performance property (or pattern) de-
fines an execution behavior of interest within an application. A
performance bottleneck is a performance property with
non-optimal behavior. Bottleneck detection (or identification,

discovery) is the process of finding the locations (system node,
line of code, etc.) of performance bottlenecks. Cause analysis is
the process of discovering the root causes of performance bottle-
necks1 (e.g., late barrier entrance caused by uneven work distri-
bution). Bottleneck resolution is the process of identifying po-
tential strategies that may be applied to remove the bottlenecks.
Automatic optimization refers to source code transformation
and/or changes in the execution environment made by the tool to
improve application performance. Finally, a hotspot is a portion
of the application that took a significant percentage of time to
execute and thus is a good candidate for optimization.

3. Overview of Automatic Analysis and Systems

Automatic (or automated) analysis is a tool-initiated process to
facilitate the finding and ultimately the removal of performance
bottlenecks within an application. The entire process may in-
volve the tool, with or without user interaction, performing some
or all of the tasks illustrated in Figure 1 on the application under
investigation. Note that in the figure, performance data collec-
tion refers to the gathering of additional data on top of what the
tool collects by default.

Figure 1 – Tool-assisted automatic performance analysis process

In the remainder of this section, we provide an overview of exist-
ing work relating to automatic analysis.

The APART Specification Language (ASL) [4] is a formal speci-
fication model introduced by the APART [5] working group to
describe performance properties via three components: a set of
conditions to identify the existence of the property, a confidence
value to quantify the certainty that the property holds, and a se-
verity measure to describe the impact of the property on perform-
ance. The group used this language to provide a list of perform-
ance properties for the MPI, OpenMP, and HPF programming
models and noted the possibility of defining a set of base
(model-independent) performance property classes.

HPCToolkit and TAU are examples of tools providing features to
evaluate the scalability of an application using profiling data.
HPCToolkit uses the timing information from two experiments to
identify regions of code with scalability behavior that deviates
from the weak or strong scaling expectation [6]. PerfExplorer is
an extension of TAU that generates several types of visualizations
that compare the execution time, relative efficiency, or relative
speedup of multiple experiments [7]. In addition, PerfExplorer
includes techniques such as clustering, dimension reduction, and
correlation analysis to reduce the amount of performance data the
user must examine.

1 Because bottleneck detection and cause analysis are closely tied
to each other, in some literature they are together referred to as the
bottleneck detection process.

Periscope, KappaPI-2, and KOJAK are knowledge-based tools
that support the detection of well-known performance bottlenecks
defined with respect to the programming model. The advantage
of a knowledge-based system is that little or no expertise is re-
quired of the user to successfully analyze the program. Peri-
scope supports online detection of MPI, OpenMP, and memory
system related bottlenecks (specified using ASL) through a dis-
tributed hierarchy of agents that evaluate the profiling data [8].
KappaPI-2 is a post-mortem, centralized, tree-based analysis sys-
tem that supports bottleneck detection, cause analysis, and bottle-
neck resolution (via static source code analysis) using tracing data
[9]. Finally, EXPERT is a part of KOJAK that supports
post-mortem bottleneck detection and cause analysis of MPI,
OpenMP, and SHMEM bottlenecks (specified using ASL). The
developers recently introduced an event-reply strategy to allow
parallel, localized analysis processing which has been successfully
applied to MPI [10], but it remains questionable whether such a
strategy works well for other programming models.

Hercules [11] is a prototype knowledge-based extension of TAU
that detects and analyzes causes of performance bottlenecks with
respect to the programming paradigm (such as master-worker,
pipeline, etc.) rather than the programming model. An advan-
tage of this system is that it can be used to analyze applications
written in any programming model. Unfortunately, the system
cannot handle applications developed using a mixture of para-
digms or that do not follow any known paradigm at all, making it
somewhat limited in applicability.

Paradyn’s online W3 search model was designed to answer three
questions through iterative refinement: why is it performing poorly,
where are the bottlenecks, and when did the problems occur [12].
The W3 search system analyzes instances of performance data at
runtime, testing a hypothesis which is continually refined along
one of the three question dimensions. The W3 system considers
hotspots to be bottlenecks, and since not all hotspots contribute to
performance degradation (they could simply be performing useful
work), the usefulness of this system is somewhat limited.

The main idea behind the design of NoiseMiner, a component of
the Projections tool, is that events of similar type should have
similar performance under ideal circumstances [13]. Utilizing
this assumption, the system makes a pass through the trace log,
assigns an expected performance value to each event type, and
then identifies specific trace events with performance that do not
meet the expectations (i.e. noisy events).

Performance Assertions (PA) is a prototype source code annota-
tion system for the specification of performance expectations [14].
Once performance assertions are explicitly added by the user, the
PA runtime collects data needed to evaluate these expectations and
selects the appropriate action (e.g. alert the user, save/discard data,
call a specific function, etc.) during runtime. IBM has also de-
veloped an automated bottleneck detection system enabling the
detection of arbitrary performance properties within an applica-
tion [15]. The system supplies users with an interface to add
new performance properties using pre-existing metrics and to add
new metrics needed to formulate the new properties. With both
of the above systems, a certain degree of expertise is required of
the user to formulate meaningful assertions/properties.

Each of the above approaches has made a contribution to the field
of automatic performance analysis. Each also has particular
drawbacks that limit its effectiveness or applicability. In light of

ongoing progress in and the ever-increasing complexity of parallel
programming models and environments, we have sought to make
corresponding progress in effective analysis functionality for a
variety of modern programming models.

4. PPW Automatic Analysis System Design

We present a new automatic analysis system that is novel in sev-
eral aspects. First, our system performs a range of analyses in-
cluding scalability analysis, load-balance analysis, common bot-
tleneck detection, and cause analysis, whereas other systems sup-
port a small set of analyses. Second, we introduce a new base-
line filtering technique2 to identify performance bottlenecks via
comparison to expected performance values. Our technique is
more accurate compared to that used in NoiseMiner. Third, we
have developed a scalable, distributed analysis processing tech-
nique that can be accomplished by multiple agents in parallel to
reduce the analysis processing time. The process is also de-
signed such that raw data transfers between agents are minimized.
In most cases, our system can identify bottlenecks using only
local data and requires only a small amount of remote data to
diagnose the causes of bottlenecks.

Our analysis system is also based on the same
(model-independent) generic-operation-type abstraction underly-
ing our PPW tool. As a result, the system can be easily adapted
to support any parallel programming model and naturally supports
the analysis of mixed-model applications (i.e., programs written
using two or more models). Furthermore, the use of this abstrac-
tion improves the system’s capabilities by allowing in-depth
analysis of some user-defined functions. For example, by simply
telling the system to treat a user-defined upc_user_wait_until
function in a UPC program as a wait-on-value-change operation
(adding one line in the event type mapping), the system is able to
determine the cause of any delays associated with this function.

Figure 2 – PPW automatic analysis system architecture

2 The technique is new for automatic analysis but readily used in
system performance evaluation.

4.1. Design Overview

The high-level architecture of the PPW automatic analysis system
is depicted in Figure 2. The analyses supported by the system
are categorized into two groups: application analyses (common
bottleneck detection, cause analysis, and high-level analysis)
which deal with performance evaluation of a single run; and ex-
periment set analyses (scalability and revision analysis) to com-
pare the performance of related runs. The design focuses on
providing analyses to help both novice and expert users in opti-
mizing their application via source code modification.

We now present the distributed, localized analysis processing
mechanism, which is peer-to-peer based and consists of up to N
agents (where N is the application system size): 0 to N–1
non-head agents, each of which has (local) access to raw data
from a set of nodes, and one head agent that also performs global
analyses, which require access to (profiling) data from all nodes.
This inherently parallel design is intended to support analysis of
large-scale applications in a reasonable amount of time. In Fig-
ure 3, we illustrate the types of analyses conducted and the raw
data exchange needed for all agents in an example 3-agent system.

Our analysis process can be broken down into several distinct
phases. Figure 4 depicts the analysis workflow for an agent in
the system, separated into the following four phases: the global
analysis phase, detection phase, cause analysis phase, and resolu-
tion phase. Each of these phases is described in more detail in
the following subsections.

Figure 3 – Example analysis processing system with 3 agents
showing the analyses each agent performs and raw data ex-

changed needed between agents

4.2. Global Analysis Phase

In the global analysis phase, each agent sends its portion of the
profiling data to the head agent where one or more analyses are
independently conducted. Analyses performed during this phase
include scalability analysis, revision analysis, and high-level ap-
plication analysis.

Figure 4 – Analysis process flowchart for an agent in the system

Scalability analysis and revision analysis are used to compare the
performance of multiple related experiments. Scalability analy-
sis is used to evaluate an application’s scalability using two or
more experiments on different system sizes. Using the experi-
ment with the smallest number of nodes, the head agent calculates
the scaling factor (a.k.a. relative speedup, the ratio of performance
improvement over the size increase) for all other experiments. A
scaling factor of 1 indicates that the application exhibits perfect
scalability, while a value approaching 0 suggests very poor scal-
ability. On the other hand, revision analysis is used to evaluate
the performance of various versions of an application. In par-
ticular, it can be used to determine whether or not code changes in
a particular version improved the program’s performance.

High-level analysis is mainly used to detect bottleneck nodes that,
when optimized, could improve the application performance for a
single experiment. To do this, the head agent first calculates the
computation, communication, and synchronization time for all
nodes in the system and selects the nodes with largest % computa-
tion as the bottleneck nodes.

4.3. Detection Phase

The next analysis phase is the detection phase, during which each
agent examines its portion of the (local) profiling data and identi-
fies bottleneck profiling entries. For each of the profiling entries,
the agent first checks whether or not that entry’s total execution
time exceeds a preset percentage of the total application time.
The purpose of this filtering step is to focus the analysis effort on
portions of program that would noticeably improve the perform-
ance of the application when optimized.

Next, the agent decides if the identified hotspot entry is a bottle-
neck by applying one of the following two expected value com-
parison methods. With the baseline comparison method, the

agent marks the entry as a bottleneck if the ratio of its average
execution time to its baseline execution time – the minimal
amount of time needed by a given operation to complete its exe-
cution under ideal circumstances – exceeds a preset threshold.

If the baseline comparison method is not applicable (e.g., because
the entry is a user function or no baseline value has been collected
for the entry), the agent uses the alternative deviation evaluation
method. With this method we make use of the following as-
sumption: under ideal circumstances, when an event is executed
multiple times, the performance of each instance should be similar
to that of other instances (the same assumption is used in
NoiseMiner). Thus for each hotspot entry, the agent calculates
the ratio of its minimal execution time and of its maximum execu-
tion time to its average execution time. If one or both of the
ratios exceeds a preset threshold, the agent marks the entry as a
bottleneck.

4.4. Cause Analysis Phase

If tracing data is available, the agent next enters the cause analysis
phase, which assigns names to bottlenecks and finds local and
remote events that caused them. The agent carries out several
activities using local tracing data in a two pass scheme. In the
first trace-log pass, the agent identifies trace events with source
location matching any of the profiling entries discovered in the
detection phase3. For each matching trace event, the agent gen-
erates a request entry containing its name, start time, and end time
along with the event's operation type (supplied by the event-type
mapper in PPW) which is sent to other agents to retrieve appro-
priate trace data (Table I).

3 Agents can choose to apply the filtering techniques on each
trace event during this pass to further reduce the amount of data
exchange needed between agents.

For example, for a upc_lock event on node 0 with start time of 2
ms and end time of 5 ms, the request entry {source node 0, 2ms, 5
ms, P2P unlock} would be issued to all agents. The logic behind
this is the following: if at the time of the lock request, another
node holds the lock, the P2P lock operation issued by node 0 will
block until it is released by the lock holder. To find out which
node(s) held the lock that caused the delay in P2P lock operation,
we simply look at the P2P unlock operations issued between the
start and end time of the lock operation. If no P2P unlocked
operation was issued by any other nodes, we conclude that the
delay was caused by uncontrollable factors that cannot be re-
solved by the user, such as network congestion due to concurrent
execution of other applications. At the end of the first pass, the
agent sends the requests out to all other agents and waits for the
arrival of requests from all other agents.

Next, the agent makes a second pass through its trace log and
generates the correct replies – consisting of {event name, time-
stamp} tuples – and sends them back to the requesting agents.
Finally, the agent waits for the arrival of replies and completes the
cause analysis by assigning a bottleneck pattern name to each
matching trace event, along with the remote operations that con-
tributed to the delay.

Table I – Generic-operation-type specific bottleneck pattern, re-
quest targets, and remote data type needed for cause analysis

Local data

type Bottleneck patterns Request
targets

Remote
data type

Global sync.
/ comm.

Wait on group sync. /
comm.

(load-imbalance)
All other Global sync.

/ comm.

P2P lock Wait on lock availabil-
ity All other P2P unlock

P2P wait on
value Wait on value change All other One-sided

data xfer
One-sided
put / get Competing put / get All other One-sided

Put / get
Two-sided

send Late sender Receiver
node

Two-sided
receive

Two-sided
receive Late receiver Sender

node
Two-sided

send

4.5. Resolution Phase

In the final step of the analysis process, the resolution phase, the
agent aims at identifying hints useful to the user in removing the
bottlenecks identified in the other phases. This process is the
only part of the system that may need to be model-dependent, as a
given resolution strategy may not always work for all program-
ming models. For example, a technique to fix the performance
degradation stemming from upc_memget, versus from
shmem_get, could be different even though they are both classi-
fied as one-sided get operations.

One example of this is to automatically identify the best blocking
factor to use in the definition of a UPC shared array. When the
system detects an excessive communication issue associated with
a shared array, the agent would try to find an alternative blocking
factor that would yield the maximum local-to-remote memory
access ratio for all nodes in the system.

5. System Evaluation and Results

We have implemented an initial sequential version of our analysis
system (supporting UPC, SHMEM, and MPI) which has been
integrated into the latest version of the PPW tool. The system
adds to PPW a number of analysis components, corresponding to
those shown in Figure 2, to perform the necessary processing,
management of analysis data, and presentation of analysis results
to the tool user. To perform any of the analyses, the user brings
up the analysis user interface (Figure 5), selects the desired analy-
sis type, and adjusts any parameter values (such as percentage
program threshold that defines the minimum hotspot percentage)
if desired.

Figure 5 – PPW analysis user interface

The initial version of the system then employs a single agent to
complete the selected analyses in the order depicted in Figure 6.
To acquire the appropriate baseline values needed for the baseline
filtering technique, we created a set of bottleneck-free benchmark
programs for each of the supported models. These benchmarks
are then executed on the target system, and the generated data
files are processed to extract the baseline value for each model
construct. Once all the analyses are completed, the results are
sent to an analysis visualization manager which generates the
appropriate visualizations.

Figure 6 – Sequential implementation workflow

Our extended PPW tool provides several analysis visualizations,
including the following: a scalability-analysis visualization that
plots the scaling factor values against the ideal scaling value (Fig-
ure 7), a revision-comparison visualization that facilitates
side-by-side comparison of observed execution times for regions

within separate versions of an application (Figure 8), a high-level
analysis visualization displaying the breakdown of computation,
communication, and synchronization time for each node executing
an application (Figure 9), and a multi-table analysis visualization
which lists all the results from the detection and cause-analysis
phases along with source code correlation (Figure 9 left).

Figure 7 – PPW scalability-analysis visualization
 (blue line = expected scaling, red line =observed scaling)

Figure 8 – PPW revision-comparison visualization

5.1. Correctness and Performance Testing

We created a set of test programs written in UPC, SHMEM, and
MPI to verify the correctness of the sequential version of our
analysis system. This analysis test suite consists of control pro-
grams with no bottlenecks and test programs which each contain a
bottleneck pattern listed in Table I. We applied the analysis
process on these programs and verified that the system is able to
detect bottlenecks correctly.

To measure the speed of analysis, we applied the analysis process
on the FT, CG, and IS NAS 2.4 benchmarks on a Pentium 4, 2.8
GHz processor workstation with 3 GB of RAM. The results are
given in Table II, showing the analysis speed to be linearly pro-
portional to the number of events in the raw data file (on average,
the system processes 4-5 million trace events per minute).

These initial performance results are encouraging, especially since
future, parallel implementations of the system should execute
substantially faster on multi-core workstations or other parallel
systems.

Table II – Analysis speed for NPB 2.4 FT, CG, and IS benchmarks

 FT CG CG IS

System size 32 4 8 16

Raw data file size (GB) 0.14 0.57 1.14 4.25

of trace events (million) 8 34 68 268

Execution time (min.) 1.5 7 14 65

5.2. Fourier Transform Case Study

For this case study, we performed automatic analysis on the Fou-
rier Transform (FT) benchmark (which implements a Fast Fourier
Transform algorithm) from the NAS benchmark suite version 2.4.
The performance data used in the analysis was collected on an
Opteron cluster with a Quadrics QsNetII high-speed interconnect
executed with 16 nodes using GASP-enabled Berkeley UPC ver-
sion 2.6.

In an earlier experiment presented in [1], we manually analyzed
the FT benchmark using the visualizations provided by PPW and
identified a significant bottleneck associated with upc_barrier
inside the main fft function. A more in-depth investigation led us
to conclude that the cause of the bottleneck is the serialization of
multiple unrelated upc_memget operations called immediately
before the barrier. We replaced this blocking upc_memget with
a non-blocking bupc_memget_async and were able to improve
the performance of the program by 14%.

In this experiment, we applied the automatic analysis process to
the same FT data file to check whether or not the system could
find the bottlenecks that we identified earlier in [1]. Looking at
the multi-table analysis visualization, we saw that the system
found 4 bottlenecks, including the most significant upc_barrier
bottleneck. In addition, the system was able to determine the
cause of delay for each occurrence of the barrier operation that
took longer than expected. For example, the system found that
the barrier called by thread 7 with a starting time of 2.6s took
longer than expected to execute because threads 8 and 15 entered
the barrier later than thread 7 (Figure 9, left). As we observed in
the annotated Jumpshot view (Figure 9, right), this was indeed the
case. Switching to the high-level analysis visualization, we saw
that each node spent 5-15 % of the total execution time inside the
barrier call, further validating the existence of a barrier-related
bottleneck. This percentage drops to 1-2 % of the total execution
time for the revised version using the non-blocking get operation.

In this brief case study, we were able to show that our automatic
analysis system was able to correctly identify and determine the
cause of significant bottlenecks in the FT benchmark within a
short period of time (less than 5 minutes). The results match the
findings from our earlier manual analysis effort, which took us a
few hours to identify using the PPW tool (along with our own
expertise).

Figure 9 – Multi-table analysis visualization for FT benchmark showing bottlenecks (top), causes (middle), and location (bottom) with
annotated Jumpshot visualization that verifies the cause analysis results

5.3. Synthetic Aperture Radar Case Study

For a second case study, we performed automatic analysis on an
in-house SHMEM implementation of the Synthetic Aperture Ra-
dar (SAR) algorithm. The performance data for the analysis was
collected on an Opteron cluster with a Quadrics QsNetII
high-speed interconnect executed with 12 processing nodes using
GASP-enabled Quadrics SHMEM.
SAR is a high-resolution, broad-area imaging process algorithm
used for reconnaissance, surveillance, targeting, navigation, and
other operations requiring highly detailed, terrain-structural in-
formation. The raw image gathered from the downward-facing
radar is first divided into patches with overlapping boundaries so
they can be processed independently from each other. Each
patch undergoes a two-dimensional, space-variant filtering that
can be decomposed into two domains of processing, the range and
azimuth, to produce the result for a segment of the final image.

Figure 10 – High-level analysis visualization for the original ver-
sion (v1) of SAR application with load-imbalance issue

Based on the sequential version of SAR from the Scripps Institu-
tion of Oceanography and MPI versions provided by two fellow
researchers in our lab [16], we developed an initial SHMEM ver-

sion of this application (denoted v1, it uses a single master node to
handle all the I/O operations and also perform processing of
patches). We collected performance data for version v1 using
PPW and applied the automatic analysis process. From the
high-level analysis visualization (Figure 10), we observed that a
significant amount of time is lost doing global synchronization.
This is reconfirmed by looking at the multi-table analysis visuali-
zation which lists two shmem_barrier_all bottlenecks.

We came up with two optimization strategies to improve the per-
formance. The first strategy was the use of a dedicated master
node (performing no patch processing) to ensure that I/O opera-
tions could complete as soon as possible. The second strategy
was to replace the all-to-all barrier synchronization with
point-to-point flag synchronization (which implements a
wait-until-value-changes operation) so processing nodes could
work on the patches as early as possible. We systematically
applied one or both of these strategies to the application and after
each revision, the program was executed and analyzed again.
We were finally able to successfully remove all bottlenecks from
the application in version 5, which uses 2 master nodes and the
flag synchronization together (Figure 11; note that the analysis
system did not find any bottlenecks). This was verified when we
looked at the high-level analysis visualization and saw that all
nodes spent the majority of their time performing computation.

Figure 11 – Multi-table analysis visualization for the optimized
version of SAR application without any bottlenecks

In this second case study, we have demonstrated how we used the
automatic analysis system in the optimization of a SHMEM SAR
application. The analysis system was able to detect significant
bottlenecks in earlier program versions and, for the last version,
provide results to verify the lack of bottlenecks. With the help of
the analysis system, we were able to produce an optimized version
that is 18% faster than the first version.

6. Conclusions and Future Directions

Parallel applications have the potential to achieve very high per-
formance – but this potential is often not realized. In pursuit of
better performance, programmers often use special-purpose tools
that collect and visualize performance data to aid them in under-
standing and hopefully improving the performance of their appli-
cations. However, the sheer amount of data may make it impos-
sible for the user to diagnose performance programs in such a way.
To combat this problem and further facilitate the optimization
process, a number of tools have added the capability to automati-
cally identify performance issues within an application.

We originally created the Parallel Performance Wizard (PPW)
framework and tool to facilitate performance tool support of par-
allel programming models. Earlier versions of our tool provided
features to collect and visualize performance data for applications
written in UPC, SHMEM, and MPI. In this paper, we presented
a substantial enhancement to the PPW tool: a novel automatic
analysis system to detect, diagnose, and resolve bottlenecks. We
presented the architecture of this model-independent system and
discussed how the system carries out all the analyses in a distrib-
uted fashion. We then showed correctness and performance
results for a sequential implementation of the system that has been
integrated into our PPW tool and demonstrated its effectiveness
through two case studies.

Future work for this system includes development and evaluation
of a parallel implementation of the system, enhancements to the
existing analyses, support for additional analyses such as fre-
quency analysis and bottleneck resolution, expansion of the num-
ber of common bottleneck patterns the system detects, and devel-
opment of functionality to allow users to define new bottlenecks
themselves.

Acknowledgements

This work was supported in part by the U.S. Department of De-
fense. We would like to acknowledge members of the UPC
group at UF, Armando Santos and Balaji Subramanian, for their
involvement in the development of this system.

References

[1] H. Su, M. Billingsley, and A. George, "Parallel Perform-

ance Wizard: A Performance Analysis Tool for Partitioned
Global-Address-Space Programming," 9th IEEE Interna-
tional Workshop on Parallel & Distributed Scientific and
Engineering Computing (PDSEC) of IPDPS 2008, Miami,
FL, Apr. 14-15, 2008.

[2] H. Su, D. Bonachea, A. Leko, H. Sherburne, M. Billingsley
III, and A. George, "GASP! A Standardized Performance
Analysis Tool Interface for Global Address Space Pro-
gramming Models," Workshop on State-of-the-Art in Sci-
entific and Parallel Computing (PARA06), Umeå, Sweden,
June 18-21, 2006.

[3] Parallel Performance Wizard tool project website,
http://ppw.hcs.ufl.edu/

[4] T. Fahringer, M. Gerndt, B. Mohr, F. Wolf, G. Riley, and J.L.
Traff, “Knowledge Specification for Automatic Perform-
ance Analysis”, APART Technical Report Revised Version,
August 2001.

[5] Automatic Performance Analysis: Real Tools (APART) IST
Working Group website, http://www.fz-juelich.de/apart/

[6] C. Coarfa, J. Mellor-Crummey, N. Froyd, and Y. Dotsenko,
“Scalable Analysis of SPMD Codes Using Expectations,”
ICS 07, Seattle, Washington, June 16-20, 2007.

[7] K.A. Huck and A.D. Malony, “PerfExplorer: A Perform-
ance Data Mining Framework For Large-Scale Parallel
Computing,” Supercomputing 05, Seattle, Washington, Nov.
12-18, 2005.

[8] K. Furlinger and M. Gerndt, “Automated Performance
Analysis using ASL Performance Properties,” Workshop on
State-of-the-Art in Scientific and Parallel Computing
(PARA06), Umeå, Sweden, June 18-21, 2006.

[9] J. Jorba, T. Margalef, and E. Luque, “Search of Perform-
ance Inefficiencies in Message Passing Applications with
KappaPI-2 Tool,” Lecture Notes in Computer Science,
number 4699, Pages 409-419, 2007.

[10] M. Geimer, F. Wolf, B.J.N. Wylie, and B. Mohr, “Scalable
Parallel Trace-Based Performance Analysis,” Pages
303-312, PVM/MPI 2006, LNCS 4192, 2006.

[11] L. Li and A.D. Malony, “Model-Based Performance Diag-
nosis of Master-Worker Parallel Computations,” Lecture
Notes in Computer Science, Number 4128, Pages 35-46,
2006.

[12] J.K. Hollingsworth, “Finding Bottlenecks in Large Scale
Parallel Programs,” Ph.D. Dissertation, University of Wis-
consin-Madison, 1994.

[13] I. Dooley, C. Mei, and L. Kale, “NOISEMINER: An Algo-
rithm for Scalable Automatic Computational Noise and
Software Interference Detection,” 13th International
Workshop on High-Level Parallel Programming Models
and Supportive Environments (HIPS), Miami, Florida,
April 14-18, 2008.

[14] J.S. Vetter and P.H. Worley, “Asserting Performance Ex-
pectations,” Conference on High-Performance Networking
and Computing, Baltimore, Maryland, 2002.

[15] I. Chung, G. Cong, and D. Klepacki, “A Framework for
Automated Performance Bottleneck Detection,” 13th In-
ternational Workshop on High-Level Parallel Programming
Models and Supportive Environments (HIPS), Miami, Flor-
ida, April 14-18, 2008.

[16] A. Jacobs, G. Cieslewski, C. Reardon, and A. George,
"Multiparadigm Computing for Space-Based Synthetic Ap-
erture Radar," Proc. of 2008 International Conference on
Engineering of Reconfigurable Systems and Algorithms
(ERSA), Las Vegas, NV, July 14-17, 2008, to appear.

