
Performance Analysis Framework for
GASNet Middleware, Tools, and Applications

Prashanth Prakash Max Billingsley III Alan D. George Vikas Aggarwal
High-performance Computing and Simulation (HCS) Research Lab

Dept. of Electrical and Computer Engineering
University of Florida, Gainesville, Florida 32611-6200
{prakash,billingsley,george,aggarwal}@hcs.ufl.edu

Abstract
Design of efficient communication libraries and languages
for high-performance, parallel computer systems is diffi-
cult, requiring rigorous performance analysis and optimiza-
tion to yield acceptable performance. Developers of such li-
braries and languages often rely upon various lower-level
communication APIs. The GASNet communications mid-
dleware from UC Berkeley and LBNL, which provides a set
of primitives for partitioned global-address-space program-
ming models, has grown to become the underlying founda-
tion for a variety of languages and libraries such as Berke-
ley UPC, Titanium, Chapel, and some implementations of
SHMEM (e.g. GSHMEM). Despite the increased popular-
ity and usage of GASNet, tools for analyzing its perfor-
mance are lagging. An efficient framework for performance
analysis of GASNet can be beneficial to tools developers,
as well as advanced applications developers. In this paper,
we present our research investigation and the challenges in-
volved in design of a performance-analysis infrastructure for
GASNet, leveraging the PPW performance tool and GASP
interface developed at Florida. The proposed framework en-
ables a comprehensive view of various performance-related
events from different layers within a user application (e.g.
GASNet, UPC, or SHMEM, as well as the application it-
self). Our framework for GASNet-related performance anal-
ysis is highly modular, allowing seamless integration with
different tools built atop GASNet. We evaluate our approach
for instrumentation of GASNet and illustrate the benefits of
our approach through two case studies representing different
usage scenarios involving Berkeley UPC and GSHMEM.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PGAS ’11 Galveston, Texas.
Copyright c© 2011 ACM [to be supplied]. . . $10.00

Keywords GASNet, partitioned global-address space, UPC,
OpenSHMEM, GASP, PPW, performance tools

1. Introduction
Due to the complexity involved in design of efficient,
high-performance parallel applications, tools for perfor-
mance analysis have become a critical component in the
application-development process. A variety of performance-
analysis tools are currently available that assist developers
with identifying performance bottlenecks in their applica-
tions. While there are a plethora of tools [1] [2] that support
performance analysis of applications, support for languages
and libraries based upon partitioned global address space
(PGAS) has been very limited. Parallel Performance Wizard
(PPW) [3] developed at Florida pioneered research in explor-
ing and resolving challenges involved in performance analy-
sis of PGAS-based languages and libraries such as UPC [4]
and SHMEM [5].

The design and implementation of a language or a com-
munication library based upon PGAS is difficult, requiring
performance analysis, bottleneck detection, and optimiza-
tion on a target platform to yield an acceptable level of per-
formance. System developers often rely on various lower-
level, network-independent communication APIs for imple-
menting such libraries and languages. GASNet (Global Ad-
dress Space NETworking) [6] is one such communications
middleware from UC Berkeley and LBNL, which provides
a set of primitives for building PGAS programming models.
Due to its support for a large variety of systems and intercon-
nect technologies, GASNet has become a popular building
block for implementing a number of PGAS-based languages
and libraries such as Berkeley UPC (BUPC) [7], Chapel [8],
Titanium [9], Co-Array Fortran [10], and some implementa-
tions of SHMEM (e.g. GSHMEM from Florida).

Data from performance analysis of GASNet behavior
could be useful in numerous scenarios, since it would pro-
vide details about a variety of performance-related GASNet
events. Consider an example of a shmem barrier routine in
a SHMEM library designed atop GASNet. As shown in Fig-

ure 1, with the support of performance analysis of GASNet,
performance data can be captured about different GASNet
events triggered by the shmem barrier function.

Figure 1. Example showing the availability of additional
details, while using SHMEM with GASNet instrumentation.

Data related to the performance of GASNet routines and
its underlying mechanisms can be very useful for a vari-
ety of users and purposes. For example, performance data
can provide developers of programming languages such as
UPC or SHMEM a top-level view of the way an applica-
tion is using the library or runtime. Additionally, when per-
formance data from GASNet is provided within the con-
text of parallel-programming constructs (such as barriers
or collectives), it can provide a comprehensive view of the
events that occur in different layers of software (on top of
which a particular application is built), as well as provide
information about interaction between these different lay-
ers. Without such a comprehensive view, application de-
velopers have to typically employ different analysis tools
to retrieve performance-related information from different
software layers. Performance data related to GASNet can
also be useful for developers of GASNet itself in identify-
ing future enhancements by understanding the way different
PGAS programming languages stress different features of
GASNet.

The approach presented in this paper to support per-
formance analysis of GASNet is by augmenting the PPW
framework to support multiple programming models simul-
taneously. Additionally, we identify important performance-
related events in GASNet and extend it to include GASP
event notification mechanism. This approach enables us to
present performance data to users by taking advantage of
existing PPW visualizations. The main goal of our research
and design is to provide a unified view of various events from
a programming model (UPC or SHMEM in our prototype),
GASNet, and an user application, such that an application
developer can understand the relationship between events
from different layers. Since GASNet is employed by a vari-
ety of languages and libraries, our framework is modular to
allow seamless integration with any parallel-programming
language. Our approach presented in this paper incurs min-
imal overhead while extracting valuable performance data
from GASNet as well as other software layers present in an

application. We illustrate the merits and utility of our ap-
proach using two case studies, one each with BUPC and
GSHMEM. We also present different visualizations avail-
able in our framework for analyzing data and determining
potential performance bottlenecks.

The remainder of the paper is organized as follows. Sec-
tion 2 provides background on the different components
involved in our framework. Section 3 is an overview of
our framework with emphasis on its support for BUPC and
GSHMEM. In Section 4, we provide two case studies to
demonstrate our approach and illustrate the benefits of per-
formance analysis by instrumentation of GASNet. Finally,
Section 5 summarizes the work with conclusions and direc-
tions for future work.

2. Background and Related Research
In this section, a brief overview is provided for various tools
related to our performance-analysis framework for GASNet.
These tools include GASNet, BUPC, GSHMEM, GASP, and
PPW.

2.1 Berkeley UPC and GASNet
Berkeley Unified Parallel C (BUPC) is a portable, high-
performance implementation of UPC for multiprocessors
and clusters, developed at the Lawrence Berkeley National
Laboratory (LBNL) and the University of California (UC)
at Berkeley. The UPC runtime system is a lightweight layer
that implements language-specific features, such as shared-
memory allocation and shared-pointer manipulations. The
BUPC runtime runs atop GASNet, so we use it to demon-
strate the capabilities of our performance-analysis frame-
work.

The GASNet [11] middleware provides a set of lower
level, high-performance communication primitives specif-
ically designed to implement PGAS libraries or runtime.
GASNet supports a large number of conduits over UDP,
Quadrics, InfiniBand, Myrinet GM, MPI (Message Passing
Interface), SHMEM, Cray XT and IBM BG/P among others.
Table 1 shows the classification of APIs provided by GAS-
Net. At a high level, it consists of two sets of APIs, namely
the core API and the extended API.

Table 1. Organization of GASNet APIs
GASNet API

Core API Extended API
Job-control interface Memory-memory operations
Active-message interface Register-memory operations
Atomicity interface Barriers

The GASNet core API is based upon active messages
(AM) [12] and implemented directly on top of each network
architecture also known as conduit. The core API mainly
consist of (a) a job-control interface for bootstrapping, job
termination, and job environment queries, (b) an active-
messaging interface for implementing requests, replies, and

their handlers, and (c) an interface for handler signal safety
and atomicity locks.

Active messages are implemented by matching requests
and reply operations. When a request is received, based on
the handler ID argument, a request handler is invoked. Sim-
ilarly, when a reply is received, a reply handler is invoked.
The handlers may run asynchronously or concurrently with
respect to main computation thread. AM handlers are not in-
terruptible, in other words a thread running a handler will
not be interrupted to run another handler. The only excep-
tion is in the case of gasnet AMreply call made at the end
of a request handler, which can run AM reply handlers syn-
chronously. GASNet provides special locks called Handler
Safety Locks (HSL) to protect the objects shared between
handlers and main thread. Once a thread acquires HSL it
cannot be interrupted to run a handler till the HSL is re-
leased.

The GASNet extended API provides high-level function-
ality, such as memory-to-memory data transfers, register-to-
memory data transfer, and notify and wait for split-phase
barriers. Whenever possible, functions in the extended API
are implemented on top of network hardware in order to ex-
ploit available features such as RDMA to achieve higher per-
formance. There is also a generic implementation of the ex-
tended API that uses only the core API.

2.2 GSHMEM
SHMEM is a lightweight, shared-memory programming
model and belongs to PGAS family. SHMEM is known for
its simplicity, performance, and support for features such
as one-sided communication, various collective operations,
among others. GSHMEM [13] (a.k.a. GatorSHMEM) is ref-
erence design of a portable OpenSHMEM library, which
leverages GASNet communication libraries and is being de-
veloped at the University of Florida. Similar to MPI [14],
GSHMEM also provides a name-shifted version of the API,
which can be used by performance tools to assist developers
in performance analysis of their applications. We employ
GSHMEM as a tool that will benefit from our performance-
analysis framework for GASNet as shown in the case stud-
ies.

2.3 GASP and PPW
The Global-Address-Space Performance (GASP) interface
[15] allows Global-Address-Space (GAS) compiler and
runtime developers to add performance-analysis support
quickly, while requiring fewer modifications in performance-
analysis tools to support newer GAS models. When a user
executes an application, the GAS runtime makes callbacks
to the performance tool, which in turn stores the details of
the specified event. In this work, the GASP interface is used
to notify necessary events from GASNet to our performance
tool. The GASP interface callback structure mainly involves
two functions:

• gasp init - This function is provided by the performance
tool and is collectively called by all threads.

• gasp event notify - This function is called by runtime
code to notify an event to the performance tool. The main
parameters include event-tag, which identifies the event
as described specifically in each programming model,
and event-type, which indicates whether the event is a be-
gin event (GASP START), an end event (GASP END),
or an atomic event (GASP ATOMIC).

The Parallel Performance Wizard (PPW) [16] is a perfor-
mance-analysis tool designed specifically for PGAS lan-
guages. The current version of the tool supports the GASP
instrumentation for several languages such as UPC, SHMEM,
and MPI. We use PPW to provide us with the tool-side
framework, so that we can add support and any additional
features required to support GASNet instrumentation. The
design of PPW provides us with the flexibility to introduce
new operation types and extend the measurement module in
PPW for new operation types. This flexibility is necessary
for modeling active messaging, which is a major component
of the core API of GASNet.

2.4 Related Research
HPCToolkit [17] is an integrated suite for measurement and
analysis of program performance. It uses call-stack sam-
pling to collect performance data, which makes it possi-
ble to provide visualizations that shows the interaction be-
tween GASNet and programming model running on top of
it. While HPCToolkit extracts the data by sampling the call
stack, our approach involves classifying the GASNet opera-
tions into different categories and collecting data related to
them through the GASP interface. With call-stack sampling
it is possible to extract the call-stack information from an
application without instrumentation, our approach requires
instrumentation but makes it possible to get operation counts
and provides the option to identify the communication end-
points. Other tools that implement call-stack sampling (such
as TAU) will be able to present the interaction between the
GASNet other components in the form of call-stack, but sup-
port for performance analysis of GASNet using instrumen-
tation is nonexistent to the best of our knowledge.

GASNet has an inbuilt tracing and statistical collection
utility [18] for monitoring communication events in GASNet
applications. When tracing is enabled, trace data from each
thread is written to a unique text file, which can be used with
the help of a text (terminal) based, trace summarization tool
called upc trace [19], which is provided by Berkeley UPC.

3. Performance-Analysis Framework for
GASNet

In order to collect performance data from GASNet, we ex-
panded the PPW framework to support GASNet, and we ex-
tended GASNet to include GASP event-notification func-

Figure 2. PPW framework to support GASNet instrumentation

tionality. In the following section, we describe the exten-
sions required in the PPW framework in order to support
GASNet instrumentation and provide a comprehensive view
of the performance data collected from various parts of an
application. Next, we present and discuss a list of impor-
tant performance-related events in GASNet and their support
in our framework. Finally, we describe the effort required
to support a new parallel-programming model, using GSH-
MEM as an example.

3.1 PPW Support for GASNet
To enable collection of performance data from GASNet,
PPW’s support for performance analysis must be extended
to include GASNet, in addition to existing support of UPC
and SHMEM. Figure 2 illustrates at a high level the mod-
ified framework of PPW. The shaded modules are the new
modules (not a part of the original PPW framework) added
to support collection of performance data from GASNet.

The instrumentation unit is responsible for recording of
data related to each model supported (e.g. UPC or SHMEM
or GASNet). The techniques used for instrumentation in
each model can be different, but they should provide a way
to make GASP callbacks on specific events. Consider the
examples of BUPC and GSHMEM. In BUPC, the GASP
callbacks are added to the runtime, and same approach is
followed for GASNet. GSHMEM provides a name-shifted
version of all APIs, which can be wrapped by performance
tools to form a different library. When an application devel-
oper requests profiling, the application can be linked with
this wrapper library.

The instrumentation-measurement interface in our case
is a GASP interface that provides a communication channel
through which instrumentation code from runtime or GAS-
Net can relay data to the measurement unit in an efficient
manner. Runtime context and GASNet context are software
abstractions that collectively represent the structures and in-
terfaces in the instrumentation-measurement interface. The
measurement unit records the data of interest with every
event reported. Data collection is based upon the generic
operation types, and thus it is independent of the parallel-
programming model. The performance data manager is re-
sponsible for access, storage, and merging of data, and it also
performs some post-processing of data. The analysis and
presentation unit is responsible for providing tools for anal-
ysis and visualizations of the collected performance data.
The data-format converter is solely responsible for con-
verting the PPW performance data into other established
performance-data formats such as TAU profile, CUBE pro-
file, OTF and SLOG2.

As can be seen from Figure 2, the system uses a common
measurement unit for recording all the events from both UPC
(or SHMEM) and GASNet. This method is required to have
a unified view of the events. Consider an example, where
we have upc memget using gasnet get bulk, and we want
our performance data to show this relationship and all other
related data. By contrast, a different approach would be to
have two different measurement units, one for GASNet and
the other for UPC (or SHMEM), but this separation results in
the loss of data representing the relationship between UPC
(or SHMEM) events and GASNet events.

One of the novel aspects of PPW is its use of generic oper-
ation types instead of language-specific constructs. The use
of these generic operation types makes it very easy to extend
PPW to support new parallel-programming languages and
libraries. For example, instead of having a model-specific
construct such as shmem barrier, PPW uses a generic opera-
tion type named PPW TYPE BARRIER. When a component
requires information about a model-specific construct, it ob-
tains this data from the event-type mapper (shown in Figure
2). The measurement unit and the analysis and presentation
unit are designed using these generic operation types, so they
are easily extensible and language-independent.

Performance-analysis tools use a number of features of
parallel languages or libraries for their operations, such as
data transfer, synchronization, among others. This set of fea-
tures is usually referred to as upcalls in PPW. Consider an
example, where PPW is used with UPC. A particular com-
ponent within PPW can use the barrier operation by us-
ing ppw upcall barrier which internally uses upc barrier.
When a new programming language is to be supported, the
upcalls are mapped as required and thus components of
PPW that use these upcalls need not be modified. In the
case of GASNet, all upcalls cannot be implemented in a
simple manner as with other parallel languages using their
language constructs (For example, shmem get, upc memget,
among others). If we are to design a set of GASNet upcalls,
then the internals of UPC (or SHMEM) and GASNet must
be taken into consideration. Consider an example of imple-
menting send or receive upcalls using gasnet get. In order to
use gasnet get, we require a memory region in the shared-
memory space registered by UPC (or SHMEM) runtime. As
a result, performance tools should be aware of memory man-
agement of shared-memory region or request memory from
UPC (or SHMEM) runtime, which makes the implementa-
tion of upcalls complex and runtime dependent. Therefore,
we follow a very simple approach, which involves using the
upcalls from UPC (or SHMEM) and avoiding GASNet up-
calls. In this way, the selection of a proper set of upcalls is
performed by having a predefined variable that gives infor-
mation about the specific parallel-programming language in
use.

3.2 Extensions to GASNet
The collection of performance data from the GASNet layer
requires identification of important performance-related
events within GASNet. Once these events are identified,
event-notification functionality is required to record infor-
mation about each event. We provide such functionality by
adding appropriate GASP callbacks in GASNet for various
events of interest.

GASNet supports several network architectures, with its
core API implemented directly on top of network-specific
functionality. As a result, instrumentation of the core API
is performed on a case-by-case basis for each conduit using
appropriate GASP callbacks. By contrast, the extended API

can be implemented directly on top of hardware-specific
functionality or over GASNet’s core API. Instrumentation
of the extended API depends upon how the extended API is
implemented.

Most of the performance-related events map directly
to routines in the corresponding GASNet APIs except for
the handler events. Table 2 lists the different categories
of GASNet events that we monitor, with few examples
for each category. The core-API events include start-up
and exit events, active-messaging events, and atomicity
events. Active-message events include distinct events for
short, medium, and long messages for requests, replies, and
their corresponding handlers. The extended API includes
events for blocking memory operations, non-blocking mem-
ory operations (with explicit and implicit handles), register-
memory operations, and split-phase barriers.

We can model handlers in a manner similar to other
events with well-defined start and end events. Similarly,
holding a handler safety lock (HSL) results in an implicit
no-interrupt section, such that no other asynchronous events
can occur while holding the lock. This property of HSLs
allows us to model them in a manner similar to handlers.
However, such an approach for active-message handlers and
HSLs may lead to a problem during presentation of per-
formance data (through existing visualization techniques in
PPW), as these events can be nested between other syn-
chronous events, leading to a representation that may not be
desirable to some users. Consequently, our design provides
an option to skip the profiling of active-message handlers
and HSLs or treat them as atomic events.

Table 2. GASNet events by category
Category Example Events

CORE API EVENTS
Start-up and exit events ATTACH

Active Messaging Events

AM REQ SHORT
AM REQ SHORT HANDLER
AM REPLY SHORT
AM REPLY SHORT HANDLER

Atomicity Events HSL TRYLOCK
INTERRUPT HOLD

EXTENDED API EVENTS

Blocking get and put GET
GET BULK

Non-blocking get and put (ex-
plicit handle)

GET NB INIT
GET NB DATA
WAIT SYNCNB
TRY SYNCNB

Non-blocking get and put (im-
plicit handle)

GET NBI INIT
GET NBI DATA
WAIT SYNCNBI GETS
TRY SYNCNBI ALL

Register put and get
PUT VAL
PUT NBI VAL
WAIT SYNCNB VALGET

Barrier
BARRIER NOTIFY
BARRIER WAIT
BARRIER TRY

Events are notified to PPW by using the gasp event notify
callback function. Before any notify callbacks can be in-
voked, the GASP interface must be initialized by using the
gasp init callback, which returns GASP context (of type
gasp context t). This GASP context contains information
specific to GASNet and is used by the subsequent invoca-
tion of notify callbacks. The GASP context allows a per-
formance tool to differentiate between events from different
parts (software layers) of an application. The extension in-
volving additions of event notification is a non-recurring ef-
fort, since all of these modifications can be reused by differ-
ent programming tools built over GASNet. The semantics of
the gasp event notify callback requires us to define a number
of specific events, which can be atomic or have well-defined
start and end events. Blocking operations such as get and
barrier are modeled to have specific start and end events,
whereas events such as interrupt-hold can be modeled as an
atomic event.

To support active messages, we need to associate generic
operation types with different active-messaging operations.
Since active messages do not map to any of the existing
types of generic operations, we introduce some new generic
operation types for requests, replies, and their correspond-
ing handlers. Table 3 lists the generic operation types used in
GASNet. Operation types PPW TYPE AM REQUEST and
PPW TYPE AM REPLY map directly to the active message
request and reply function calls of the core API, whereas op-
eration types PPW TYPE AM REQUEST HANDLER and
PPW TYPE AM REPLY HANDLER map to the events
corresponding to invocation of handlers.

Table 3. Generic operation types for GASNet
Operation Type Description
PPW TYPE AM REQUEST Active message request
PPW TYPE AM REPLY Active message reply
PPW TYPE AM REQUEST HANDLER Active message request

handler
PPW TYPE AM REPLY HANDLER Active message reply han-

dler
PPW TYPE LOCK Handler safety lock
PPW TYPE GET Blocking get operation
PPW TYPE NBGET Non-blocking get opera-

tion
PPW TYPE PUT Blocking put operation
PPW TYPE NBPUT Non-blocking put opera-

tion
PPW TYPE BARRIER Barrier

To have a comprehensive view of performance-related
events (from application, UPC/SHMEM, and GASNet), we
need to have event callbacks from BUPC and GSHMEM as
well. In the case of GSHMEM, we can use the name-shifted
API routines to provide a PPW-specific wrapper library
that includes the necessary GASP callbacks for SHMEM-
specific events. In the case of BUPC, GASP callbacks were
added by the Berkeley UPC group for versions 2.4 and above
of their tool. User application events are received as a part of
BUPC’s (or GSHMEM’s) GASP context as per the GASP

specification, whereas GASNet will have only GASNet-
specific events. With all the callbacks in place, the modi-
fied PPW framework records these events in a way that can
be presented in a comprehensive manner. Since the perfor-
mance data is collected based upon generic operation types,
the existing graphical user interface and other visualizations
can be used with the new performance data.

3.3 Supporting GASNet Instrumentation for a New
Programming Model

In addition to UPC and SHMEM, many different program-
ming models and tools are available on top of GASNet.
Thus, one of the goals of our design is to keep the effort
required to support a new programming tool fairly small. In
this section, we provide a brief account of the source-code
modifications that were required in order to support GSH-
MEM running on GASNet, after first supporting BUPC. The
modifications for the GASNet and PPW measurement unit
can be reused, since they are not dependent upon a parallel-
programming model. The only work required is to modify
the GASP callbacks provided by the performance tool in or-
der to have two different models and provide a set of upcalls.
PPW had support for GSHMEM, so we could utilize the
upcall routines from the same. The total amount of source
code modified to add support for GSHMEM/GASNet was
less than 300 lines.

In a scenario where a particular programming model is
not supported by PPW, even so our performance tool can ob-
tain GASNet performance data by providing additional up-
call routines for sending and receiving data and an upcall
routine for barrier. If the programming model under consid-
eration does not have performance-analysis support, then by
reviewing performance data from GASNet a user can get a
top-level view of their application behavior. This flexibility
is possible because there is a one-to-one mapping between a
significant number of constructs of the programming model
(such as UPC or SHMEM) to the constructs in GASNet. For
example, remote-memory access usually maps to one of the
gasnet get functions, barriers map to gasnet barrier wait,
and so on.

4. Results
In this section, we analyze and experiment with the capabil-
ities of our framework. We present case studies with both
BUPC and GSHMEM. Additionally, we provide a quantita-
tive measure of overhead involved for performance profiling.
Results presented are obtained from experiments on a cluster
of 16 Linux servers connected by DDR (20 Gb/s) InfiniBand
(IB), where each server is equipped with a quad-core Xeon
E5520 running at 2.26 GHz with 6 GB of memory.

4.1 Case Study 1: BUPC/GASNet
In this section, we demonstrate a use case of performance
analysis of GASNet with a number of existing visualizations

Figure 3. Tree-table visualization for FT benchmark of NPB2.4

of PPW. The performance data presented in this section
is obtained by running the FT benchmark from the NAS
parallel benchmark suite [20].

Figure 4. PPW profile metrics pie chart - self time, for FT
benchmark of NPB2.4

Figure 3 shows a tree-table visualization with annotations
identifying some performance-related events from BUPC,
GASNet, and function-call invocations from the user ap-
plication. Even though this visualization looks similar to a
call-stack, it includes only the performance related events
that are of interest to the programmer and not all the func-
tion calls within the application. The user main in the tree-
table is the main function in the source code of the ap-
plication. With the help of tree-table view, we clearly see
the relationship between different events. For example, we
can see the different events starting from user main un-
til the application invokes transpose2 global, which trig-
gers UPC events when it uses upc memget and upc barrier.
These calls are handled by the BUPC runtime by using GAS-
Net APIs. To handle upc memget, the BUPC runtime uses

gasnet get bulk, whereas upc barrier is split into upc notify
and upc wait, which internally uses the GASNet extended
API namely, gasnet barrier wait and gasnet barrier notify.
For IB, the implementation of gasnet barrier wait and gas-
net barrier notify is based on the generic implementation of
the extended API (built on top of the core API), which can
be seen by the active-message request calls. The application
was executed with four threads running across four differ-
ent nodes, so as a result we see the calls to upc memget
invokes gasnet get bulk. If all the threads were running on
the same server, we would not have seen the invocation of
gasnet get bulk, since the intra-node transfer is handled by
UPC runtime itself. In addition to providing a unified view
of different events from application, the tree table includes
other useful information, which includes call-site informa-
tion (particular line of code in the application that triggered
the event), total time and self time for events, and the number
of invocations.

Many other visualizations are available within the PPW
user interface, which can be used with performance data col-
lected with our modified framework for GASNet. For ex-
ample, Figure 4 shows the profile metrics pie chart, which
provides information about total application time split as
per the self time of different functions and system-related
events and thus providing a top-level view of how time is
split between computing, synchronization, and I/O. For ex-
ample, the fft init is a user-defined function, whereas the gas-
net get bulk event corresponds to a blocking data transfer to
read data from a different node, and the gasnet barrier wait
event corresponds to synchronization with all other threads.

Another useful visualization in PPW shows the average
amount of time spent by each thread on a particular event.
For example, Figure 5 shows the amount of time spent by
each thread waiting on gasnet barrier wait triggered at the
end of function transpose2 global in the FT benchmark of

Figure 5. Visualization showing the time spent waiting on
gasnet barrier wait by different threads

the NAS suite. This type of visualization is useful when there
is a difference in the execution path (or computation load)
among different threads.

The collection of performance data typically comes with
additional cost (in terms of execution time), which is mainly
due to operations such as event notification, aggregation,
and basic processing of performance data. The additional
overhead observed due to instrumentation, during the exe-
cution of application should be significantly small. To mea-
sure the additional overhead due to GASNet instrumenta-
tion, we executed a number of benchmark applications from
the NAS suite. The measured execution time was from the
first call of gasnet init until the last call of gasnet exit. Fig-
ure 6 shows the overhead observed for some of the NAS
benchmark applications (compilation parameters CLASS=C
and NP=8). The average execution overhead observed by in-
cluding GASNet instrumentation compared to UPC-only in-
strumentation was approximately 2%, whereas the overall
execution overhead for profiling compared to baseline be-
havior of the program was under 5%. The additional over-
head incurred is quite small, considering the additional in-
formation we obtain by enabling performance analysis of
GASNet.

4.2 Case Study 2: GSHMEM/GASNet
In this section, we present a case study for a 2D-FFT applica-
tion written using GSHMEM. We experiment with two im-
plementations of this application, one with shmem fcollect
and the other shmem get. Collectives such as shmem fcollect
in GSHMEM are implemented on top of GASNet’s collec-
tive functions [21] [22]. Our experiments involved 4 process-
ing elements of SHMEM mapped onto different server nodes
with active-message handler profiling enabled.

Figure 7 shows the tree-table views for the implementa-
tion of 2D-FFT using shmem fcollect1 and shmem get, for

1 concatenates block of data from multiple threads to an array in every
thread

Figure 6. Overhead observed for different applications in
NAS benchmark

(a)

(b)

Figure 7. Tree-table view for 2D-FFT for thread 0 using (a)
shmem get or (b) shmem fcollect

thread 0. As in the previous case study with UPC, we can
observe various events from different layers, but in addi-
tion we also notice the active message handler invocations.
The events triggered by shmem fcollect include a large num-
ber of active-message requests and these requests are sym-
metric across the different threads. The number of these
active-message requests and handlers can be mapped to the
communication geometry used by the collective. Our results
indicate that the 2D-FFT application based on shmem get
performs better, as there is an implicit entry and exit bar-
rier for every shmem fcollect call. Additionally, we observe

that a large number of active-message calls are triggered by
shmem fcollect, in order to communicate the data between
different threads, which can be seen from Figure 7(b).

Figure 8. Snapshot showing time spent on different events
in 2 different implementations of 2D-FFT

Another useful visualization within PPW is provided
in Figure 8, which shows a comparison between the two
different implementations (collect vs. get) and the time
spent in user-defined function or events. In terms of per-
formance, the 2D-FFT based on shmem get is faster com-
pared to the one based on shmem fcollect. The application
with shmem fcollect spends a significant portion of time
in the collective and active-message requests triggered by
shmem fcollect, which is comparatively higher compared
to the time spent on gasnet get bulk, which is used by
shmem get. We can also observe that the time spent in com-
putation by both implementations is almost identical. Simi-
larly, there are a number of other useful visualizations for the
performance data within PPW that can be used for perfor-
mance analysis of applications developed using languages
and libraries running atop GASNet.

5. Conclusions and Future Work
In this paper, we presented research and results with a
performance-analysis framework to obtain the performance
data from multiple layers, namely UPC or SHMEM, GAS-
Net, and user applications. The addition of GASNet support
enables collection of performance data with rich information
to analyze the performance of the overall system. We illus-
trated the merits of our approach using two case studies and
by showing various performance-related data from different
layers in a comprehensive manner. Even though multiple
layers were instrumented and measured, we observed a low
overall execution overhead of under 5%. We also showed
that our approach is modular and can be simply and easily

integrated with other programming models by providing an
account of changes made for supporting GSHMEM.

Future work on GASNet instrumentation will expand be-
yond profiling and focus on support for tracing, which will
enable users to see the sequence of events that took place
during the execution of a program and provide data on a
specific instance of an event. We also plan to focus on fur-
ther exploration in handling asynchronous events like active-
message handlers, so that the user can see the relationship
between the original request that triggered the handler and
the invocation of handler itself.

Acknowledgments
This work was supported in part by the U.S. Department of
Defense and the Lawrence Berkeley National Laboratory.

References
[1] S. Shende and A. Malony, The Tau Parallel Performance

System, International Journal of High-Performance Computing
Applications (HPCA), vol. 20, no. 2, pp. 297–311, 2006.

[2] Vampir tool website. http://www.vampir-ng.de/

[3] H. Su, M. Billingsley III, and A. George, Parallel Performance
Wizard: A Performance System for the Analysis of Partitioned
Global Address Space Applications, International Journal of
High-Performance Computing and Applications, Vol.24, No.4,
Nov 2010, pp 485-510.

[4] The UPC Consortium, UPC Language Specification
v1.2,http://www.gwu.edu/~upc/docs/upc specs 1.2.pdf, 2005.

[5] SHMEM API for Parallel Programming,
http://www.shmem.org/.

[6] Dan Bonachea, GASNet Specification U.C.Berkeley Tech
Report (UCB/CSD-02-1207).

[7] Berkeley UPC project website. http://upc.lbl.gov/

[8] The Chapel Parallel Programming Language,
http://chapel.cray.com/

[9] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A.
Krishnamurthy, P. Hilnger, S. Graham, D. Gay, P.Colella, and A.
Aiken, Titanium: A High-Performance Java Dialect, Workshop
on Java for High-Performance Network Computing, Las Vegas,
Nevada, June 1998.

[10] Numrich, R. W. and Reid, J. 1998. Co-array Fortran for
parallel programming. SIGPLAN Fortran Forum 17, 2 (Aug.
1998).

[11] GASNet website, http://gasnet.cs.berkeley.edu

[12] A. Mainwaring and D. Culler, Active Message Applications
Programming Interface and Communication Subsystem Orga-
nization, U.C. Berkeley Computer Science Technical Report,
1996.

[13] Changil Yoon, Vikas Aggarwal, Vrishali Hajare, Alan D.
George, Max Billingsley III, GSHMEM: A Portable Library for
Lightweight, Shared-Memory, Parallel Programming, Proc. of
Partitioned Global Address Space, Galveston, Texas, October
2011.

[14] Message Passing Interface Standard Version 2.2, Septem-
ber 4 2009. http://www.mpi-forum.org/docs/mpi-2.2/mpi22-
report.pdf

[15] H. Su, D. Bonachea, A. Leko, H. Sherburne, M. Billingsley
III, and A. George, GASP! A Standardized Performance Analysis
Tool Interface for Global Address Space Programming Models,
Proc. of Workshop on State-of-the-Art in Scientific and Parallel
Computing (PARA06), Umeå, Sweden, 2006.

[16] Parallel Performance Wizard (PPW) tool project website,
http://ppw.hcs.ufl.edu.

[17] HPCToolkit website, http://hpctoolkit.org/

[18] GASNet Trace, http://gasnet.cs.berkeley.edu/dist/README

[19] Manual page of UPC trace,
http://upc.lbl.gov/docs/user/upc trace.html

[20] GWU UPC NAS 2.4 benchmarks. http://www.gwu.edu/
upc/download.html

[21] D. Bonachea, R. Nishtala, P. Hargrove, M. Welcome, K.
Yelick. GASNet Collectives Poster at SuperComputing 2006
(PDF), Optimized Collectives for PGAS Languages with One-
Sided Communication , Nov 2006

[22] GASNet collectives design notes,
http://gasnet.cs.berkeley.edu/dist/docs/collective notes.txt

