
Challenges for Performance Analysis in
High-Performance Reconfigurable Computing

Seth Koehler, John Curreri, and Alan D. George
NSF Center for High-Performance Reconfigurable Computing (CHREC)

HCS Research Lab, ECE Department, University of Florida
Email: {koehler, curreri, george}@chrec.org

Abstract

Reconfigurable computing (RC) applications em-
ploying both microprocessors and reconfigurable hard-
ware (e.g., FPGAs) have the potential for large speedup
when compared with traditional parallel applications.
However, this potential is marred by the additional com-
plexity of these dual-paradigm systems, making it diffi-
cult to achieve the desired performance. For parallel
software applications (e.g., in MPI), performance anal-
ysis tools are well researched and widely available, aid-
ing designers in understanding the dynamic behavior
of their applications. Unfortunately, for RC applica-
tions, such concepts and tools are lacking, despite be-
ing of great importance due to the increased complexity
of these applications. In this paper, we explore chal-
lenges faced in attaining automated techniques for in-
strumentation and low-overhead runtime measurement
of diverse resources in RC systems. We present ideas for
the integration of these techniques into existing perfor-
mance analysis tools for conventional parallel systems
with the goal of creating a unified analysis tool for RC
applications. Results from a case study are provided us-
ing a prototype of this new tool.

1. Introduction

As parallel computing systems (e.g., multicore
CPUs, clusters, etc.), multiprocessor systems-on-chip
(MPSoC), and reconfigurable computing (RC) systems
continue to mature, the amount of processing power
available to applications continues to increase. RC ap-
plications employ both microprocessors and reconfig-
urable hardware such as FPGAs to handle computation-
ally intensive problems. These RC applications have the
potential to achieve orders-of-magnitude performance
gains, using less power and hardware resources than
conventional software applications [1], [2]. However,

the behavior of an RC application can be particularly
difficult to track and understand due to additional levels
of parallelism and complex interactions between hetero-
geneous resources inherent in such systems [2]. High-
performance RC applications are by definition a super-
set of traditional parallel computing applications, con-
taining all the problems and complexity of these appli-
cations and more due to their use of both micropro-
cessors and FPGAs. To handle this complexity, per-
formance analysis1 tools will be indispensable in ap-
plication analysis and optimization, even more so than
in parallel computing applications where such tools are
already commonly used and highly valued.

Unfortunately, traditional performance analysis
tools are only equipped to monitor application behav-
ior from the CPU’s perspective. Systems such as
the Cray XD1 [3] or those employing Opteron-socket-
compatible FPGA boards (e.g., XtremeData [4] or DRC
[5]) are advancing the FPGA from slave to peer with
CPUs, enabling the FPGA to independently interact
with resources including main memory, other CPUs,
and other FPGAs. Due to the increasingly significant
role FPGAs play in RC applications, conventional tools
have an increasingly incomplete view of application
performance, yielding the need for hardware-aware per-
formance analysis tools that can provide a complete
view of RC application performance. To illustrate this
need, Figure 1 shows the hierarchy of parallelism and
myriad of interactions inside an RC computer, differ-
entiating between communications that can be moni-
tored (light arrows) and others that cannot (dark arrows)
by traditional performance analysis tools. With FPGA
communication paths to CPUs, other FPGAs, and vari-
ous levels of memory, the amount of unmonitored com-
munication is significant, hindering the designer’s abil-
ity to understand and improve application performance.

1 Throughout this paper, performance analysis refers to experimen-
tal performance analysis (i.e., studying application behavior on an
actual system at runtime).



N
o
d
e

N
o
d
e

N
o
d
e

O
n
-b
o
a
rd
 

M
e
m
o
ry

..
.

M
a
in
 M
e
m
o
ry D
e
v
ic
e
 

In
te
rf
a
c
e

..
.

B
o
a
rd
 I
n
te
rf
a
c
e

..
.

B
o
a
rd
 I
n
te
rf
a
c
e

C
P
U
 

In
te
rc
o
n
n
e
c
t

T
o
p
-l
e
v
e
l 
A
p
p

Figure 1: Potential communication bottlenecks (represented by arrows) in an RC application

In this paper, we explore the challenges faced in
attaining low-overhead, automatable techniques for in-
strumentation and runtime measurement of RC applica-
tions. We also present concepts for the integration of
these techniques into an existing parallel performance
analysis tool, Parallel Performance Wizard (PPW), with
the goal of creating a unified performance analysis tool
for RC applications. Section 2 discusses background
and prior work related to performance analysis in soft-
ware and RC. Section 3 then explores the challenges
and techniques for performance analysis of RC applica-
tions. Next, Section 4 provides a case study to demon-
strate the overhead, benefits, and importance of perfor-
mance analysis in RC applications using a prototype of
our hardware measurement module. Finally, Section 5
concludes and gives directions for future work.

2. Background & related research

The goal of performance analysis is to understand
a program’s runtime behavior on a given system in
order to locate and alleviate performance bottlenecks.
For parallel-computing applications, Maloney’s TAU
framework [6] and Chung et al.’s recent study of per-
formance analysis tools on the Blue Gene/L [7] pro-
vide a good introduction to the various challenges, tech-
niques, and tools in performance analysis. Performance
analysis can generally be decomposed into five stages
(shown in Figure 2): instrument, measure, analyze,
present, and optimize. Instrumentation is the process
of gaining access to application (or system) data to be
measured and stored at runtime. Measurement is then
the act of recording and storing data while the appli-
cation is executed on the target system. The resulting
measured data is next presented via visualizations and
analyzed by the application designer to locate poten-
tial performance bottlenecks. Optionally, some analysis
may be automated, allowing visualizations to be aug-
mented with the locations of potential bottlenecks. The
designer then optimizes the application, attempting to
remove performance bottlenecks discovered in the pre-

vious stages. These steps may then be repeated until
desired performance is achieved or no further perfor-
mance gains seem likely.

Original Application

Instrument

Execute

Measure

Analyze 

(Automatically)Present

Optimize

Measured Data File

Execution 

Environment

Visualizations

Instrumented Application

Potential Bottlenecks

Analyze 

(Manually)

Modified Application

Optimized Application

Figure 2: Stages of performance analysis

Performance analysis should not be confused with
analytical models or simulation, which provide esti-
mates of application performance that must eventually
be verified against actual performance. Performance
analysis is essential to capture actual application be-
havior on a given target system for the purposes of op-
timization. Similarly, although debug techniques can
be useful to performance analysis, this overlap is lim-
ited by fundamental differences in their purpose. For
example, debug techniques such as breakpointing and
FPGA readback must stop the FPGA application in or-
der to retrieve data [8]. Unfortunately, this technique
effectively isolates the FPGA from the rest of the sys-
tem, which typically cannot be paused. While isolation
is encouraged in debugging, it is extremely problem-
atic in performance analysis since component interac-
tion in the system is a key factor. Tools such as Altera’s
SignalTap [9] and Xilinx’s ChipScope [10] do allow an
FPGA to run at or near full speed in a system (minimiz-
ing changes to application behavior), but are designed
to monitor exact values at each cycle over a given pe-
riod to ensure correctness, much like a logic analyzer.
In contrast, performance analysis assumes correctness

2



and is instead concerned with timeliness of application
progress, often allowing data to be summarized or ig-
nored. By reducing the data recorded, fewer storage
and communication resources are necessary to monitor
an application, minimizing the distortion of the origi-
nal application’s behavior. In addition, SignalTap and
ChipScope require separate connectors (e.g., JTAG) to
acquire data, which are not readily accommodated or
available for many systems.

While some preliminary work exists in RC perfor-
mance analysis, this field is significantly less mature
than its software counterpart. DeVille et al.’s paper in-
vestigates the use of distributed and centralized perfor-
mance analysis probes in an FPGA, but is limited in
scope to efficient measurement within a single FPGA
[11]. Schulz et al.’s OWL framework paper proposes
use of FPGAs for system-level performance analysis,
monitoring system components such as cache lines,
buses, etc. However, their work is directed at monitor-
ing software behavior from hardware, rather than mon-
itoring hardware itself [12].

3. Challenges for RC performance analysis

Significant challenges exist in each of the five
stages of performance analysis. Instrumentation and
measurement form the foundation of performance anal-
ysis that is built upon by analysis, presentation, and op-
timization. Thus, our focus in this paper will be instru-
mentation and measurement. We also briefly present
challenges in presentation as well as concepts toward a
unified performance analysis tool. As automating anal-
ysis and optimization are still open research areas (and
often performed manually), these topics are beyond the
scope of this paper. Within instrumentation and mea-
surement, the key goals of performance analysis tools
are the following (adapted from [6]):

1. Perturb the original application’s behavior as little
as possible (minimize impact).

2. Record sufficient detail & structure to accurately re-
construct application behavior (maximize fidelity).

3. Allow flexibility to monitor diverse applications and
systems (maximize adaptability and portability).

4. Require as little effort and trouble for the designer
as possible (minimize inconvenience).

Goals 1 and 2 are opposed to one another, as are
Goals 3 and 4. Thus, the challenges faced generally
stem from attempting to reach a compromise.

3.1. Challenges for hardware instrumentation

Instrumenting a hardware design involves gaining
entry points to signals (i.e., wires) in the application.

A logic analyzer exemplifies this process with logic
probes connected to external pins that are in turn con-
nected to values of interest in the application. By taking
advantage of the reconfigurability of an FPGA, we can
use the built-in routing resources to temporarily access
application data, gaining the necessary entry points for
measurement. Instrumentation involves choosing what
data to instrument, choosing the level(s) of instrumen-
tation (e.g., source, binary, etc.), and finally modifying
the application at the chosen level to gain access to the
selected data. These issues are discussed in the follow-
ing subsections.

3.1.1. What to instrument

Instrumenting an application begins with a selec-
tive process that determines what data to record and
what to ignore. The data chosen should reflect appli-
cation behavior as closely as possible while simultane-
ously minimizing perturbation of that behavior (Goals 1
and 2). While application knowledge is useful in mak-
ing these selections, it is desirable to automate this time-
consuming process when possible (Goal 4). In addition,
automation is essential if hardware was generated from
a high-level language (HLL), as the designer will not be
aware of the implementation details. Software perfor-
mance analysis has demonstrated that such automation
is possible by using knowledge of what constitutes a
common performance bottleneck to guide instrumenta-
tion. Thus, one key challenge in FPGA instrumentation
is determining common performance bottlenecks in a
typical FPGA design.

Applications consist of communication and com-
putation, both of which must be monitored to un-
derstand application behavior. Software performance
analysis typically monitors specific constructs that in-
voke communication explicitly or implicitly through
synchronization primitives such as barriers, and locks.
Computation is typically monitored by timing function
calls or other control structures such as loops, which
in hardware is similar to the control of subcompo-
nents, such as through a state machine, pipeline, or
loop counter. Thus, these hardware communication and
control constructs provide a starting point for studying
common performance bottlenecks in an FPGA.

In an FPGA, communication includes off-board
(e.g., to another FPGA, CPU, main memory, etc.), on-
board (e.g., to on-board DDR memory or other FP-
GAs connected to the FPGA on-board), or on-chip (be-
tween components inside the FPGA device) commu-
nication. Communication off-board and on-board is
widely known to be problematic in FPGA-based system
designs, but on-chip communication can be a significant

3



bottleneck as well, especially if some form of routing
network or data distribution is implemented in the de-
sign (a common technique used in applications contain-
ing multiple cores to exploit parallelism). Instrument-
ing on-chip communication between components such
as frequency of communication or bytes transferred can
help the designer to better understand how the compo-
nent is used. However, due to the large amount of par-
allelism possible in an FPGA, monitoring all on-chip
communication can incur significant overhead.

Control can become a bottleneck when too many
cycles are used for setup, completion, or bookkeeping
tasks. However, the primary reason for instrumenting
control is to gain insight into the application’s behavior,
helping the designer to locate other bottlenecks. As an
example, if a state machine contains a state that waits
for data from an FFT core, recording the number of cy-
cles spent in this wait-state can determine whether the
FFT core is a bottleneck in the application. This infor-
mation is comparable to a software performance analy-
sis tool monitoring the amount of time an FFT subrou-
tine required.

It is important to note that instrumentation should
be restricted to clocked elements in hardware. Synthesis
and place-and-route tools already optimize delays asso-
ciated with unclocked (combinatorial) signals; these de-
lays can be analyzed via timing analysis, simulation, or
debugging tools. However, even in designs that are pri-
marily combinatorial, there is inevitably some clocked
portion of the design that handles control or communi-
cation (and often multiple levels of communication and
control), demonstrating the wide applicability of these
areas across designs (Goal 3).

Thus, communication and control are reasonable
points to instrument initially. However, application
knowledge can often give further insight into what
should be instrumented. Certain control and commu-
nication may be unnecessary to monitor in a specific
application; performance may be better understood by
monitoring a specific input value to a component. This
application knowledge is extremely difficult to auto-
mate, and thus determining what to instrument remains
a significant challenge in RC performance analysis.

3.1.2. Levels of instrumentation

Before reaching the challenge of modifying an ap-
plication for analysis, the level at which instrumenta-
tion will occur must be selected. The hardware portion
of an RC application can be instrumented at any level
between source code (HDL) and bit file (binary loaded
directly onto the FPGA). While it is also possible to use
system-level instrumentation (e.g., OWL [12] discussed

in Section 2), this approach lacks portability due to the
requirement of dedicated hardware to monitor system
components such as cache lines, buses, etc. In addition,
data unrelated to the application is also captured, such
as the behavior of the operating system and other run-
ning applications, making system-level instrumentation
less suitable for performance analysis of a specific ap-
plication; thus, system-level instrumentation is not con-
sidered further here.

Graham et al. provides an excellent look at the var-
ious levels and tradeoffs of application-level instrumen-
tation inside an FPGA [13]. They indicate that while in-
strumenting at intermediate levels between source code
and binary offers some advantages (e.g., modifying
clean abstract syntax trees as opposed to source code or
binaries), these advantages are not significant enough to
counterbalance the poor documentation and difficulty of
accessing these levels (some levels occur only in mem-
ory during synthesis). Thus, the levels of instrumen-
tation are in practice polarized into source-level and
binary-level instrumentation.

Source instrumentation is attractive since it is eas-
ier to implement, fairly portable across devices, flexible
with respect to which signals can be monitored, and of-
ten minimizes the change in area and speed of the in-
strumented design due to optimization of the design af-
ter instrumentation. Source instrumentation also offers
the possibility of source correlation, allowing behavior
to be linked back to source code, although the mean-
ing and implementation of this correlation is less clear
in a language modeling hardware than in one modeling
execution of instructions on a CPU.

By contrast, binary-level instrumentation is attrac-
tive because it requires less time to instrument a design
(e.g., minutes instead of hours as it occurs after place-
and-route), is portable across languages for a specific
device, and perturbs the design layout less, again since
it is mostly added after the design has been optimized
and implemented. Unfortunately, binary instrumenta-
tion loses some flexibility since synthesis and imple-
mentation may have significantly transformed or elimi-
nated some data during optimization or made some data
inaccessible via the FPGA routing fabric. Links be-
tween behavior and source are also lost. Applying in-
strumentation at both levels is also possible, allowing
the designer to select the appropriate compromise for
each instrumented datum. Table 1 provides a summary
of this comparison.

3.1.3. Modifying the application

Once an instrumentation level has been selected,
the application must be modified to allow access to

4



Table 1: Source vs. binary instrumentation
Source-level Binary-level

Difficulty Text parsing Bit file signal routing
Design

Perturbation
Low change in
area & speed

Low change in on- chip
physical layout

Time to
Instrument Long (hours) Short (minutes)

Portability Good across
devices

Good across languages

Flexibility Access to all
signals

Some data inaccessible

Source
Correlation Possible Generally not possible

whatever data has been chosen for instrumentation.
While both source and binary instrumentation can draw
heavily from similar techniques in both software and
FPGA debugging, automatically inserting instrumenta-
tion based upon the decision to instrument control and
communication (discussed in Section 3.1.1) still poses
a challenge for FPGA instrumentation. While software
performance analysis often scans source code for spe-
cific API calls that are harbingers of communication
(e.g., an MPI Send call in an MPI program), FPGA
communication and control are more difficult to detect.

Source-level instrumentation for hardware can em-
ploy a preprocessor to scan application code and in-
sert lines to extract the desired data at runtime (e.g., in
VHDL, the component interface can be modified to al-
low access to performance data). The challenge here
lies in the expressiveness of the given language; the pre-
processor must be able to cope with the various ways in
which a designer may structure or express the behavior
of their application. For example, the use of an enumer-
ated type in VHDL along with a clocked case statement
using it would usually suggest a state machine. How-
ever, the same structure could be represented with con-
stants and a complicated if-then-else structure.

Binary-level instrumentation suffers similar diffi-
culties. Now control and communication must be de-
tected from a fully optimized and implemented de-
sign. While escaping the problem of the source lan-
guage’s expressiveness, the hierarchy and structure be-
hind much of the application has been flattened and re-
formed during synthesis and implementation. Given a
set of physical lookup tables (LUTs) in the FPGA to
monitor, binary-level instrumentation can be performed
by synthesizing and implementing the original design
as usual, save the need to reserve space and connection
points for the measurement device. After synthesis and
implementation, tools such as Xilinx’s JBits SDK [14]
can be used to place the measurement framework in the
device and route signals to it from the application.

3.2. Challenges for hardware measurement

Measurement is concerned with how to record and
store data selected during instrumentation. An integral
challenge of this process is to record enough data to un-
derstand application behavior while at the same time
minimizing perturbation caused by recording (Goals 1
and 2). Due to limited resources and a lack of resource
virtualization on an FPGA, resource sharing between
the application and measurement framework presents a
unique challenge for RC performance analysis.

3.2.1. Recording and storing performance data

To balance fidelity and overhead, software per-
formance analysis employs techniques such as trac-
ing (recording the event time and associated data) and
profiling (recording summary statistics and trends, not
when specific events occurred). These methods can be
triggered to record information under specific condi-
tions (event-based) or periodically (sampling). The ef-
ficacy of one technique over another is dependent upon
what behavior needs to be observed in the application.

Tracing is the methodology of recording data and
the current time (based on a device clock), allowing du-
ration and relative ordering of events to be analyzed. To
maintain event ordering between devices, clock offset
and drift must be periodically monitored on all CPUs
and FPGAs; methods such as those in [15] estimate
round-trip delay, enabling clock drift to be corrected
postmortem. While closely related to hardware debug-
ging, tracing in performance analysis must be sustain-
able for an indefinite period of time in order to capture
application behavior (debug techniques often record un-
til memory is exhausted). To reduce the amount of
data recorded, event-based tracing records data only un-
der specified conditions, whereas sample-based tracing
records data periodically. Based on the event condi-
tions or sampling frequency, a different compromise is
reached between fidelity and perturbation.

Profiling differs from tracing in that no specific
event timing is stored. Rather, summary statistics of the
data are maintained, usually with simple counters that
are extremely fast and fairly small. Profiling sacrifices
some of the fidelity of tracing for less perturbation of
the design. Profile counters can provide statistics such
as totals, maximums, minimums, averages, and even
variance and standard deviation, although at the cost of
additional hardware (and possible performance degra-
dation). Like tracing, profile counters can be updated
based upon an event or periodically (sampling).

One significant difference between software and
hardware performance analysis with respect to profiling
and tracing is parallelism. While software measurement

5



requires additional instructions to profile or trace the
application that generally degrade performance, profile
counters and trace buffers can work independently of
the application and each other in hardware. Thus, hard-
ware performance analysis can incur no performance
degradation if sufficient resources are available and the
maximum design frequency is unaffected. In addition,
it is possible to monitor extremely fine-grain events,
even those occurring every cycle. Another significant
difference involves resource availability. While pro-
filing typically requires far less memory than tracing,
profile counters that must be accessed simultaneously
will likely be placed in logic cells on an FPGA rather
than block RAM. Unfortunately, logic cells are scarce
in comparison to block RAM, the latter of which is suit-
able for tracing. For example, 512 36-bit profile coun-
ters require 16.7% of logic cells in a Xilinx Virtex-4
LX100 device, and yet could be stored in a single block
RAM (representing only 0.4% of block RAM on the
same device) [16]. Unfortunately, block RAM can be
limiting as well when tracing (e.g., the LX100 contains
only 540KB of block RAM) [16]. In contrast, soft-
ware performance analysis has hundreds of megabytes
of memory or more to store profile and trace data.

In hardware, the tradeoffs between tracing and pro-
filing provide a significant challenge to automating the
selection of the measurement type to use for a specific
signal in an FPGA. While the designer may recognize
data that would be problematic for tracing or poorly rep-
resented by profile counters, this knowledge is rarely
explicit in the application code or bit file. Worse, once
a selection has been made, the measurement framework
necessary to monitor this selection may not fit in the
remaining logic or memory on the FPGA, or the mea-
surement framework may cause significant degradation
of the maximum frequency at which the application can
run. Thus, finding a balance between perturbation and
fidelity may require significant knowledge of both the
application and tradeoffs in measurement strategies.

3.2.2. Managing shared resources

One of the greatest challenges in RC performance
analysis is the management of shared resources that
were once exclusively controlled by the application. Al-
though the sharing of on-chip resources is important,
this sharing is handled by the synthesis and implemen-
tation tool, and thus is of less concern. Off-chip com-
munication sharing is more difficult due to the limited
number of communication paths. While recording data
would ideally require no off-chip communication, lim-
ited FPGA memory necessitates periodic transfers of
performance data to a larger storage medium at runtime.

Software performance analysis tools can share
memory, communication, and processor time with the
application through operating system and hardware vir-
tualization (processes, virtual memory, sockets, etc.).
FPGAs have none of this infrastructure, requiring per-
formance analysis to handle these complexities man-
ually. To share the FPGA interconnect, performance
analysis frameworks must ensure performance and ap-
plication data can be distinguished so that each is deliv-
ered to the correct location, usually by allocating mem-
ory and address space for performance data to use ex-
clusively. Arbitration between the application and per-
formance analysis hardware is also necessary to ensure
that only one can access the interconnect at a time.

One added complexity is that the communication
architecture may only allow the CPU to initiate a data
transfer from the FPGA to main memory. This scenario
can be handled by instrumenting the application soft-
ware to periodically poll the performance analysis hard-
ware for data, either directly between other application
tasks or via a separate process or thread. If supported,
interrupts can be used to have the CPU initiate a trans-
fer, although interrupts are often scarce and thus may
need to be shared if used by the application. When pro-
cesses, threads, or interrupts are used, the application
and performance monitoring software must use locks to
guarantee they do not access the FPGA simultaneously.

It is important to note that while measurement de-
termines the need for communication sharing, instru-
mentation is affected as well, since it must now be
aware of these communication schemes and seamlessly
integrate with them. Communication schemes such as
memory maps or network packets are used with a vari-
ety of interconnects. Combined with diverse APIs for
FPGAs, virtualizing communication is a major chal-
lenge for RC performance analysis.

Figure 3 illustrates the possible changes to an RC
application during instrumentation in order to support
measurement. In hardware, component interfaces are
modified to allow performance data to be accessed, and
a new top-level file is added to control communication
access between the original application and the perfor-
mance analysis module. In addition, the communica-
tion path between the CPU and FPGA is now shared
and controlled by the new top-level file. In software, a
data transfer module is added to support CPU-initiated
performance transfers. Modifications to the HLL source
are also necessary to retrieve performance data.

3.3. Challenges in performance presentation

Current trace-based displays such as Jumpshot [17]
show communication and computation for parallel com-

6



Original top-level file

Module

Submodule

Modified 

component 

interface

User Application (HLL)

Hardware Measurement 

Thread / Process

Lock

CPU(s)
FPGA Access Methods 

(Wrapper)

Original Application

Data Transfer Module

FPGA(s)

User Application (HDL)

Measurement and Interface

Hardware Measurement 

Module (HMM)

Submodule Submodule

Module

New top-level file

Legend

Original RC 

Application

Additions by 

Instrumentation

Figure 3: Additions made by source-level
instrumentation of an RC application

puting applications. These displays can be extended to
include FPGAs as additional processing elements for
RC applications. A visualization (mockup) example is
shown in Figure 4. In this example, the CPUs (nodes
0-7) are actively completing their work and receiving
data from the FPGAs (nodes 8-15). Nodes 3 (CPU) and
11 (FPGA) are idle while most processors finish the cur-
rent iteration somewhere in the middle of the diagram.
Nodes 4 and 12 are lagging, completing towards the end
of the interval and finally allowing global synchroniza-
tion of all nodes before a new iteration begins.

Figure 4: Mockup Jumpshot visualization of
an RC application with 8 CPUs and 8 FPGAs

Unfortunately, trace-based displays scale poorly
with system size. If the performance data included hun-
dreds of CPUs and FPGAs communicating with each
other, this diagram may become ineffective. Worse yet,
the classification of an FPGA as a single processing el-
ement above does not accurately account for the levels
of parallelism inside the FPGA. Treating the FPGA as
a multicore processor may be inadequate as well if the
FPGA design uses different cores in the same device or
possibly in a hierarchy.

Hierarchical views of clusters such as Ganglia [18]
have been developed and could be useful in large-scale
RC systems for displaying heterogeneous devices and
behavior. Finding the right balance between abstraction

and detail in large-scale visualizations remains a signifi-
cant challenge in presentation for parallel computing as
well as RC.

3.4. Unified performance analysis tool

To create a holistic view of an RC application’s
behavior, a unified software/hardware tool is essential.
Separate tools will give a disjointed view of the sys-
tem, requiring significant effort to stitch the two views
back together. In addition, each tool must make deci-
sions about instrumentation and measurement without
any knowledge of what is being monitored by the other.
A unified tool could potentially take advantage of strate-
gically choosing where to monitor a specific event, such
as software, hardware, or both, based upon factors such
as efficiency, difficulty in accessing information, and
accuracy of that information. Also, some instrumen-
tation and measurement techniques require complimen-
tary modifications to software and hardware (e.g., mod-
ifying a memory map to allow CPU-initiated transfers
of performance data).

We use the Parallel Performance Wizard (PPW)
[19] as a specific software performance analysis tool to
discuss integration here, although these concepts apply
to other tools as well. PPW supports performance anal-
ysis for Partitioned Global Address Space (PGAS) pro-
gramming languages such as UPC and SHMEM (with
addition of MPI support planned) via the Global Ad-
dress Space Performance (GASP) interface [20], which
is currently implemented by compilers such as Berke-
ley’s UPC and gcc-upc. Based on a specific language,
many constructs such as synchronization primitives will
warrant monitoring, which the compiler instruments by
using event callback functions (user-definable events
are also possible). These events can then be received
by any tool supporting the GASP interface, where the
tool can choose to profile, trace, or ignore these events.

To track FPGA activity from software, the GASP
interface could be extended with generic events such
as FPGA reset, configure, send, and receive. Upon
receiving an FPGA event, the performance tool could
store information such as bytes transferred, time taken
to configure the FPGA, or transfer latency, providing
a detailed view of FPGA communication from soft-
ware. However, automatically adding these extended
GASP functions around FPGA communication is dif-
ficult; FPGA communication can appear in a variety
of ways in software, including vendor APIs, pointers,
and I/O calls. Ideally, a standard API for FPGA ac-
cess could make detection of FPGA calls trivial. In the
absence of such a standard, performance analysis tools
must detect each vendor’s FPGA access methods.

7



4. Case study

To demonstrate the overhead, benefits, and im-
portance of RC performance analysis techniques, we
present a case study using a prototype version of our
hardware measurement module (HMM). The HMM al-
lows for profiling and tracing of data via event-based
triggering or sampling and uses CPU polling via a sepa-
rate thread to periodically transfer performance data off-
chip since this is universally supported. Due to porta-
bility, flexibility, and difficulty concerns, instrumenta-
tion in our framework is performed at the source level.
While instrumentation is currently performed manually,
the HMM allows quick customization of (and easy ac-
cess to) profile counters and trace buffers, eliminating
the time-consuming and error-prone process of manu-
ally measuring performance. Figure 5 illustrates the de-
sign of our prototype HMM.

Triggers

Signal 

Analysis 

Module

Signals

Data

Profile Counters0 1 2 P - 1

Trace Data

Trace Data

Trace Data

Cycle Counter

Module Statistics

Module Control

Request

Perf. Data

Sample Control

signal

value

comp trigger

B
u
ff
e
r

B
lo
c
k
 R
A
M

O
n
-b
o
a
rd
 

M
e
m
o
ry
 

(D
D
R
/Q
D
R
)

data

...
Figure 5: Hardware Measurement Module

For our case study, we executed the N-Queens
benchmark application on two RC systems. The first
RC system, the Cray XD1, consists of six nodes, each
containing two Opteron 250 CPUs and a Xilinx Virtex-2
Pro 50 FPGA connected via a high-speed interconnect
(3.2GB/s ideal peak) [3]. The second RC system is a
16-node Gigabit Ethernet cluster, each node containing
a 3.2GHz Intel Xeon EM64T processor and a Nallatech
H101-PCIXM application accelerator [21] employing a
Xilinx Virtex-4 LX100 user FPGA and connected via a
PCI-X bus (1GB/s ideal peak). The N-Queens applica-
tion was implemented using UPC (software) and VHDL
(hardware). Compilation for the Cray XD1 was per-
formed using Synplicity’s Synplify Pro 8.6.2, Xilinx’s
ISE 7.1.04i, and Berkeley UPC 2.4.0. Compilation for
the cluster was performed using Nallatech’s Dimetalk
3.1.5, Xilinx’s ISE 9.1.03i, and Berkeley UPC 2.4.0.

The N-Queens problem asks for the number of dis-
tinct ways that N queens can be placed onto an NxN
chessboard such that no two queens can attack each
other [22]. As only one queen can be in each column,
a simple algorithm was employed to check all possible

positions via a back-tracking, depth-first search. Par-
allelism was exploited by assigning two queens within
the first two columns; each core then receives a partial-
board and generates all possible solutions by moving
queens in the remaining N − 2 columns, returning the
number of solutions to software. The program was exe-
cuted on both RC systems using a board size of 16×16.
The N-Queens application was first executed without
hardware instrumentation to acquire baseline timing,
and then with instrumentation to collect measured data.
The HMM was configured to include 16 profile counters
in each FPGA (six for monitoring application commu-
nication, nine for monitoring an N-Queens core state
machine, and one to monitor the number of solutions
found by that core) and one 2KB trace buffer to moni-
tor the exact cycle in which any core in the application
completed. The UPC and VHDL code were modified to
allow performance data to be transfered at runtime, with
the CPU polling the FPGA once per millisecond for per-
formance data (the application independently polled the
device once per 100 milliseconds). Table 2 provides the
overhead incurred by adding instrumentation to the N-
Queens cores and periodically measuring profile coun-
ters and trace data from the N-Queens application at
runtime. From this data, a maximum overhead band-
width of 33.3KB/s was observed, which is negligible
when compared to the interconnect bandwidth. Less
than 7% of the FPGA’s resources and 2% of the block
RAM were needed to monitor the application. Fre-
quency degradation ranged from 1% on the XD1 to no
degradation on the LX100s in the cluster.

Table 2: Performance Analysis Overhead
XD1 XD1 (instr.)

Slices
(23616 total) 9041 (38.3%)

9901 (41.9%)
+860 (3.7%)

Block RAM
(232 total) 11 (4.7%)

15 (6.5%)
+4 (1.7%)

Frequency
(MHz) 124

123
-1 (-0.8%)

Communication
(KB/s) 0.08

33.29
+33.21

Cluster Cluster (instr.)
Slices

(49152 total) 23086 (47%)
26218 (53%)
+3132 (6.4%)

Block RAMs
(240 total) 21 (8.8%)

22 (9.2%)
+1 (0.4%)

Frequency
(MHz) 101

101
0 (0%)

Communication
(KB/s) 0.04

29.86
+29.82

The number of cycles spent in each state of an N-
Queens core state machine was monitored in order to
understand a core’s behavior at runtime. While not ac-

8



cessible from a software performance analysis tool, this
information is easily obtained by using as many pro-
file counters as there are states, with each counter in-
crementing when that state occurs. From this data, the
percentage of cycles spent in each state was calculated
and is shown in Figure 6. More than a third of the to-
tal time is spent determining whether any queens can
attack each other. While this state would normally be
targeted for optimization, it was already heavily opti-
mized, leaving little room for improvement. However,
Figure 6 also shows that the Reset Attack Checker state
consumes 12% of the total state machine cycles, which
is surprising given the relatively small job that this state
performs. Thus, a relatively simple modification was
made to combine the Reset Attack Checker state, as
well as the Finished and Reset Queen Row, with the re-
maining states, giving an ideal speedup of 16.3% versus
the non-optimized version, based upon removing these
states from the graph. This speedup is ideal as the opti-
mization only applies to a portion of the application (ne-
glecting setup and communication times). While fre-
quency degradation can also affect speedup, a negligi-
ble drop in core clock frequency of the optimized ver-
sion was observed. The optimized N-Queens core was
then measured on the target systems, giving an average
speedup of 10.5%. This performance gain was greatly
facilitated by the use of hardware performance analy-
sis, removing guesswork from understanding the appli-
cation’s behavior and aiding in the detection of perfor-
mance bottlenecks.

Queen 
Attacking?

37%

Finished?

1%

Queen Off 
Board?

12%

Move 
Queen 
Row?
12%

Move 
Queen Col?

13%

Reset 

Attack 

Checker

12%

Valid 
Solution?

12%

Reset 

Queen Row

1%

Figure 6: Distribution of cycles spent in core
state machines of N-Queens

The trace buffer was used to monitor the cycle in
which any core in the device completed in order to un-
derstand the penalty of the application’s static schedul-
ing, which requires all cores in the device to complete
before receiving further work. Tracing data (ignoring
trivial completions of invalid starting boards) revealed
that the first core to complete was idle 25% of the time,

waiting for the last core to complete; on average cores
were idle 10% of the time. Thus, a dynamic scheduling
algorithm could ideally improve speedup by 11%.

Figure 7 shows the speedup of the parallel software
and both the initial and optimized hardware versions of
N-Queens over the baseline sequential C version. The
8-node software version was able to achieve a speedup
of 7.9 over the sequential baseline. The cluster exe-
cuting the optimized hardware on 8 FPGAs achieved
a speedup of 37.1 over the baseline.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

Number of nodes

A
p

p
li
c

a
ti

o
n

 S
p

e
e

d
u

p

Cluster Optimized HW XD1 Optimized HW
Cluster Initial HW XD1 Initial HW
Cluster SW XD1 SW

Figure 7: Speedup of N-Queens Application

5. Conclusions

In this paper we have explored various challenges
faced in RC performance analysis. While we discussed
some challenges that are shared by software perfor-
mance analysis, many of these challenges are more dif-
ficult in or unique to RC. Challenges such as resource
sharing, automation of instrumentation and measure-
ment, as well as compromises between accurate and
precise measurement all need to be addressed for per-
formance analysis to be successful. Furthermore, as
systems continue to increase in size, the difficulty in
presenting meaningful visualizations continues to in-
crease. We proposed that, due to the complexity inher-
ent in large-scale RC systems and applications, unifi-
cation of software and hardware performance analysis
into a single tool is crucial to efficiently record and un-
derstand application behavior at runtime.

To demonstrate the overhead and benefits of these
techniques, results from an N-Queens case study were
provided. Using N-Queens on two RC platforms, we
demonstrated that our prototype hardware measurement
module (HMM) incurred little overhead. Measuring
application behavior using profile counters and trac-
ing cost no more than 6.4% of the logic resources in
a medium-sized FPGA, 1.7% of the block RAM, 1% in

9



frequency degradation, and 33KB/s in bandwidth when
polled once per millisecond. From the performance data
returned, including statistics on time spent in the main
N-Queens state machine, the behavior of the application
was readily understood, resulting in a 10.5% speedup
with minimal modifications.

Directions for future work include studying more
advanced methods of signal analysis, measurement ap-
proaches (e.g., FPGA-initiated transfers), and other
techniques to minimize overhead and improve the fi-
delity of measured data. In addition, further study of
automated instrumentation techniques (especially with
high-level languages) as well as development of large-
scale visualizations will be critical in order for perfor-
mance analysis of RC applications to achieve wide use.
Recording data from more complex designs, such as de-
signs with multiple clock domains or an embedded pro-
cessor, are also important. Finally, automation of anal-
ysis and optimization are open areas of research that
could enable more widespread and effective use of per-
formance analysis without intricate design knowledge.

Acknowledgments

This work was supported in part by the I/UCRC
Program of the National Science Foundation under
Grant No. EEC-0642422. The authors gratefully ac-
knowledge vendor equipment and/or tools provided by
Xilinx, Cray, Nallatech, Aldec, and Synplicity.

References

[1] M. C. Smith, J. S. Vetter, and X. Liang. “Accelerating
scientific applications with the SRC-6 reconfigurable
computer: methodologies and analysis”, Proc. of 19th
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Apr. 2005, p. 157b.

[2] J. L. Tripp, A. A. Hanson, M. Gokhale, and H. Mortveit.
“Partitioning hardware and software for reconfigurable
supercomputing applications: a case study”, Proc. of
2005 ACM/IEEE Conference on Supercomputing (SC),
Nov. 2005, p. 27.

[3] Cray, “Cray XD1 datasheet”, 2005, http://www.cray.
com/downloads/Cray XD1 Datasheet.pdf.

[4] XDI, “XD1000TMFPGA Coprocessor Module for
Socket 940”, http://www.xtremedatainc.com/.

[5] DRC, “RPU100-L60 DRC Reconfigurable Processor
Unit”, 2006, http://www.drccomputer.com/.

[6] S. S. Shende and A. D. Malony. “The Tau Parallel
Performance System”, International Journal of High-
Performance Computing Applications (HPCA), May
2006, 20(2):297–311.

[7] I. Chung, R. E. Walkup, H. Wen, and H. Yu. “MPI
performance analysis tools on Blue Gene/L”, Proc. of
2006 ACM/IEEE Conference on Supercomputing (SC),
Nov. 2006, p. 123.

[8] K. Camera, H. K. So, and R. W. Brodersen. “An in-
tegrated debugging environment for reprogrammable
hardware systems”, Proc. of 6th International Sym-
posium on Automated Analysis-Driven Debugging
(AADEBUG), Sep. 2005, pp. 111–116.

[9] Altera, “Design Debugging Using the SignalTap II Em-
bedded Logic Analyzer”, Mar. 2007, http://www.altera.
com/literature/hb/qts/qts qii53009.pdf.

[10] Xilinx, “Xilinx ChipScope Pro Software and User
Guide, v. 9.1.01”, Jan. 2007, http://www.xilinx.com/ise/
verification/chipscope pro sw cores 9 1i ug029.pdf.

[11] R. DeVille, I. Troxel, and A. George. “Performance
monitoring for run-time management of reconfigurable
devices”, Proc. of International Conference on En-
gineering of Reconfigurable Systems and Algorithms
(ERSA), June 2005, pp. 175–181.

[12] M. Schulz, B. S. White, S. A. McKee, H. S. Lee, and
J. Jeitner. “Owl: next generation system monitoring”,
Proc. of 2nd Conference on Computing Frontiers (CF),
May 2005, pp. 116–124.

[13] P. Graham, B. Nelson, and B. Hutchings. “Instrument-
ing Bitstreams for Debugging FPGA circuits”, Proc. of
9th annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), Apr. 2001, pp.
41–50.

[14] S. A. Guccione, D. Levi, and P. Sundararajan. “JBits:
A Java-based interface for reconfigurable computing”,
Proc. of 2nd Military and Aerospace Applications of
Programmable Devices and Technologies Conference
(MAPLD), Sep. 1999, p. 27.

[15] F. Cristian. “A probabilistic approach to distributed
clock synchronization”, Proc. of 9th International Con-
ference on Distributed Computing Systems (ICDCS),
June 1989, pp. 288–296.

[16] Xilinx, “Virtex-4 Family Overview”, Jan. 2007, http://
direct.xilinx.com/bvdocs/publications/ds112.pdf.

[17] C. E. Wu et al. “From trace generation to visualiza-
tion: a performance framework for distributed parallel
systems”, Proc. of 2000 ACM/IEEE Conference on Su-
percomputing (Cdrom) (SC), Nov. 2000, p. 50.

[18] M. L. Massie, B. N. Chun, and D. E. Culler. “The
Ganglia Distributed Monitoring System: Design, Im-
plementation and Experience”. Technical report, Uni-
versity of California, Berkeley, Feb. 2003.

[19] A. Leko and M. B. III. Parallel Performance Wiz-
ard User Manual, 2007, http://ppw.hcs.ufl.edu/docs/
pdf/manual.pdf.

[20] A. Leko, D. Bonachea, H. Su, H. Sherburne, B. Golden,
and A. George. “GASP! A Standardized Performance
Analysis Tool Interface for Global Address Space Pro-
gramming Models”, Proc. of Workshop on Applied Par-
allel Computing (PARA), June 2006, http://www.hcs.ufl.
edu/pubs/PARA06.pdf.

[21] Nallatech, “H100 Series FPGA Application Ac-
celerators”, Apr. 2007, http://www.nallatech.com/
mediaLibrary/images/english/5595.pdf.

[22] C. Erbas, S. Sarkeshik, and M. M. Tanik. “Differ-
ent Perspectives of the N-Queens problem”, Proc. of
1992 ACM Annual Conference on Communications,
Mar. 1992, pp. 99–108.

10

http://www.cray.com/downloads/Cray_XD1_Datasheet.pdf
http://www.cray.com/downloads/Cray_XD1_Datasheet.pdf
http://www.xtremedatainc.com/
http://www.drccomputer.com/
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.xilinx.com/ise/verification/chipscope_pro_sw_cores_9_1i_ug029.pdf
http://www.xilinx.com/ise/verification/chipscope_pro_sw_cores_9_1i_ug029.pdf
http://direct.xilinx.com/bvdocs/publications/ds112.pdf
http://direct.xilinx.com/bvdocs/publications/ds112.pdf
http://ppw.hcs.ufl.edu/docs/pdf/manual.pdf
http://ppw.hcs.ufl.edu/docs/pdf/manual.pdf
http://www.hcs.ufl.edu/pubs/PARA06.pdf
http://www.hcs.ufl.edu/pubs/PARA06.pdf
http://www.nallatech.com/mediaLibrary/images/english/5595.pdf
http://www.nallatech.com/mediaLibrary/images/english/5595.pdf

	Introduction
	Background & related research
	Challenges for RC performance analysis
	Challenges for hardware instrumentation
	What to instrument
	Levels of instrumentation
	Modifying the application

	Challenges for hardware measurement
	Recording and storing performance data
	Managing shared resources

	Challenges in performance presentation
	Unified performance analysis tool

	Case study
	Conclusions

