Improving UPC Productivity via Integrated Development Tools

Beth R. Tibbitts

IBM Corporation
tibbitts@us.ibm.com

Max T. Billingsley Il

University of Florida
billingsley®@hcs.ufl.edu

Alan D. George

University of Florida
george@hcs.ufl.edu

Abstract 1. Introduction

In the world of high-performance computing (HPC), there The field of high-performance computing (HPC) has as its
has been an increased focus in recent years upon the imexplicit goal the achievement of high levels of application
portance of productivity in HPC application development. performance, allowing ever-larger and more complex prob-
One crucial aspect of productivity is the programming model lems to be solved. Parallel computing has long been the
used, and the family of partitioned global-address-space dominant paradigm in HPC. There are a diversity of par-
(PGAS) models, such as UPC and X10, has served toallel systems in use, ranging from smaller shared-memory
advance the state of the art in balancing performance andsystems (notably including modern multi-core workstatijon
productivity. Also of great importance is the variety of to commodity clusters (with interconnects ranging from
development tools used to support activities such as gditin Ethernet to high-bandwidth, low-latency networks such as
debugging, and optimizing programs. These tools are oftenInfiniBand) to high-end offerings such as Cray XT and
most useful as part of an integrated development environ- BlueGene systems. To exploit the potential these systems
ment (IDE). While some progress has been made towardsoffer, programmers must cope with the many complexities
bringing IDE capabilities into the HPC world, in particular of the machines and their software environments, and they
by way of Eclipse projects, support has mainly focused on need effective tools to craft programs that take advantége o

MPI and OpenMP tools.

In this paper, we present research and development ac-

tivities that are bringing Eclipse-based IDE capabilities
the PGAS developer community. We focus on tools for
UPC, giving background on previously existing capabtitie
to work with UPC programs in Eclipse and then present-
ing a tool-chain and project wizard for the open-source
Berkeley UPC compiler, basic UPC static analysis tools,
and integration of our performance analysis tool (Parallel
Performance Wizard) supporting UPC. Finally, we conclude
by proposing future work and providing recommendations
for further integration of UPC and other PGAS tools to
enhance overall developer productivity.

Categories and Subject Descriptors D.2.6 [Software En-
gineering: Programming Environments—Integrated envi-
ronments; D.1.3 Programming TechniqugsConcurrent
Programming—~Parallel programming

Keywords Eclipse, partitioned global address space, UPC

[Copyright notice will appear here once "preprint’ option is removed.]

the capabilities of highly parallel HPC systems.

One key aspect is the programming model used. For over
a decade, MPI [1] has dominated the HPC development
landscape, with OpenMP [2] often being used for finer-
grained coordination within an HPC system node. But MPI
has some notable drawbacks, specifically with regard to ease
of use (in particular because programmers must manually
coordinate send/receive pairs) and overall programmer pro
ductivity.

For many years, efforts have been under way to develop
new parallel programming models that would be a real
improvement over MPI (and OpenMP). One particular effort
has centered on the family of partitioned, global-address-
space (PGAS) programming models, which promise an
improved balance of productivity and performance by way
of their shared-memory abstraction and explicit notion of
data affinity. Probably the most mature member of the PGAS
family is the UPC language [3]; others include Titanium [4]
and the newer X10 [5] and Chapel [6] languages being de-
veloped as part of the DARPA High Productivity Computing
Systems (HPCS) initiative [7].

The HPCS program has emphasized the importance of
productivity in the HPC world. While sheer application
performance is clearly a vital aspect of HPC, what appli-
cation writers need really be concerned with is total-time-
solution, which includes overall development time as well a
application run time. Previous work [8] has identified time-
to-solution as the key productivity metric for programming

2010/9/29

languages (along with other development tools). Devel- A more recent but no less important part of the Eclipse
opment time is of course directly impacted by developer ecosystem is the Eclipse PTP (Parallel Tools Platform)
productivity, a measure of how quickly and efficiently the project [13], which is aimed at bringing integrated develop
developer can turn the application requirements into a com- ment capabilities to the world of parallel application deve
plete, correct, and efficient program. While there is exgstin opment. Previous work has shown that PTP and associated
work toward precise metrics for programmer productivity tools can offer substantial benefits for the parallel devel-
[9], we do not concern ourselves in this paper with analjtica opment process [14]. Some of the particular capabilities
or emperical methods to analyze productivity, but rather offered by PTP include: a variety of error checking and stati
accept the general notion that developers seek to produceanalysis tools; runtime monitoring and control of parallel
a correct, performant program as quickly and easily as jobs; debugging support for multi-process applicatiomst a
possible. an external tools framework for integrating dynamic anialys

There are a number of other tools that may aid pro- tools. The PTP project initially focused mainly on MPI and
ductivity during the many stages of application develop- OpenMP development tools.
ment. These include source-code editors, debuggers,-profil The remainder of this paper presents recent and current
ing tools (e.g., gprof), and a wide variety of other statidan work to bring a parallel development environment to the
dynamic analysis tools. For many users, these tools may beworld of PGAS, beginning with UPC. This work leverages
most useful when they are part of an integrated developmentand extends capabilities of the Eclipse platform, CDT, and
environment, or IDE. One integration platform of partiaula PTP to comprise an Eclipse-based integrated toolset for UPC
interest—because of its extensible architecture, operesou application developers.
licensing, and growing developer community—is Eclipse
which will be described in further detail below.

In this paper we present a range of UPC application In order for Eclipse to be a useful platform for UPC de-
development tools as integrated with the Eclipse platform velopers, there are a number of requirements that must be
to Comprise an integrated deve|opment environment for fulfilled. These requirements fall in a few distinct catdger
UPC. The remainder of the paper is organized as follows: basic support for the UPC language; capabilities related to
Section 2 gives an overview of the Eclipse platform and building a UPC application; functionality for running the
architecture and outlines requirements for UPC support in resulting program; and support for other development steps
Eclipse; Section 3 then covers UPC tools in Eclipse. We such as debugging and the use of other static and dynamic
present the integration of our para||e| performance tool tools. Here we address further considerations for each of
which supports UPC in Section 4, before presenting a brief these categories of requirements.
application study in Section 5, and finally concluding and ~ Perhaps the most obvious of the requirements is basic
discussing future work in Section 6. support for the UPC language itself; this support would

entail handling UPC as a top-level source program language,
identifying UPC with the .upc (and optionally .c) filename
. . extension. Recognizing the UPC language is important not
2. Eclipse Platform and Architecture only for basic tools such as the source-code editor but also
Eclipse [10] is an extensible, open-source platform for so that any other tool plug-ins can identify UPC as the
integrating software development tools. From a user’stpoin applicable language and function accordingly.
of view, Eclipse provides a powerful integrated develop- Another requirement for UPC support is the availability
ment environment (IDE) that can help the user be pro- of one or more compiler plug-ins so an application can be
ductive throughout each stage of software development. built within the Eclipse environment. Users need to be able
Architecturally, Eclipse comprises an general-purpos¢to to specify any relevant UPC compilation options and see
integration framework in which a wide variety of tools can the output of programs invoked during the build process.
be added in the form of Eclipse plug-ins. The build process with a supported UPC compiler should

Eclipse was originally created by IBM as a Java IDE, but be smoothly integrated into the Eclipse workflow, ideally
is now governed by the Eclipse Foundation [11]. Numerous with most or all of the tedious details associated with the
projects have since added support for many other program-application build handled by the system.
ming paradigms and languages. One such project is Eclipse The requirements for running a UPC application are
CDT (C/C++ Development Tooling) [12], which provides a generally quite similar to those for running other paral-
full-featured environment for developing programs writte lel applications, in particular those written using anothe
in C, C++, and related languages. Because much HPCprogramming model with the single-program-multiple-data
(and other parallel) development is done using languages(SPMD) execution model, such as MPIl. The PTP project
in the C/C++ family, CDT forms an important part of the generally provides the necessary capabilities by way of the
Eclipse ecosystem that has particular relevance for alphral available resource-manager plug-ins and parallel runtime
development environment. system.

" Requirements for UPC Support

2 2010/9/29

Other development steps that should also be covered s e ~
by UPC tools in Eclipse include debugging, analyzing the |» wo-
performance of an application, and various other static and
dynamic analyses. However, it should be noted that in the
case of debugging, there is currently no freely available, m=t
open-source debugger that fully supports UPC. Providing
such a debugger should be considered an initial requirement
that will hopefully soon be met by the wider UPC commu-
nity. At that point the parallel debug platform provided by
PTP will serve as an ideal platform for integrating a UPC .
debugger. T e

Configuration: | Debug [Active] ~ | | Manage Configurations...

1$Tool Settings | Build Steps ' Build Artifact uBinary Parsers @ Error Parsers

Network API | MPI v

Figure 1. Dialog for Berkeley UPC settings.
Challenges

There are a number of challenges associated with providing . .
UPC support in the Eclipse environment. The overarching 3.1 UPC Compiler Toolchains
challenge is to provide sufficient functionality, with com- One of the mostimportant aspects of UPC supportin Eclipse
pe”mg features and usab"ity, such that UPC devek)peﬂs Wi is integration of a UPC Compiler available to the user. In the
consider adopting the environment. Additionally, thisdun ~ Eclipse world this is achieved by creating a plug-in for CDT
tionality needs to be cleanly integrated within Eclipseisih ~ that provides a newool-chainfor the compiler to integrate it
itself is a challenge because of the scope and complexityWith CDT’s managed-make system (in which CDT manages
of the Eclipse infrastructure. This integration is, howeve the build process instead of requiring users to supply hand-
well worth the effort required, because of the substantial Written Makefiles). The tool-chain plug-in encapsulates th
existing Eclipse functionality that becomes available for means of properly invoking the compiler and linker, and
UPC developers. One final challenge arises from the fact provides access to compiler and linker options by way of
that many required Eclipse components were not initially & standard CDT user interface.
designed with UPC (or other PGAS languages) in mind; Our contribution in this area has centered on adding sup-
a number of these components (e.g., the External Toolsport for the open-source Berkeley UPC [15] compiler. Our
Framework in PTP, which will be mentioned later in the tool-chain plug-in includes all of the aforementioned func
paper) required at least minor modifications to support UPC. tionality, giving full access to the compiler within Eclips
Because there are many possible options for the Berkeley
UPC compiler, all of which can be important for the UPC
. . programmer, our toolchain plug-in provides an interface to
3. UPC Tools in Eclipse specify Berkeley UPC options within Eclipse. This intedac
In this section we cover the variety of UPC-related capabil- integrates with the standard build-settings interfaceipiex
ities that have been added to Eclipse. We first cover someby CDT. When the Berkeley UPC tool-chain has been
existing functionality in the CDT project which gives basic selected, choosin@/C++ Build— Settingsin the project
support for the UPC language. We then present our work on properties dialog brings access to the interface shown in
a fully functional plug-in for the Berkeley UPC compilerand Figure 1.
basic static analysis tools for UPC. CDT also includes another UPC toolchain provided for
Some existing basic support for the UPC language is the IBM UPC compiler [18]. The IBM xIUPC toolchain
provided by the CDT project, which has added UPC to the integrates with the managed-build system and provides a
family of C/C++ languages handled by CDT. The original user interface to set compiler options in a user-friendly.wa
parser as part of CDT was hand-coded for the particular Additionally, the xIUPC toolchain is remote-enabled via
syntax of GNU C. An additional, more extensible parser was the PTP Remote Development Tools (RDT). RDT allows
written by IBM and employs an externally-generated gram- CDT projects to exist on a remote machine; such projects
mar file for the particular language variation. This caggbil can be built and launched on a remote machine as well.
was used by the UPC tools to provide a UPC-specific parserThis is well-suited for development of large code bases on
that the C editor employs to recognize the particulars of the large remote clusters. The UPC parser is remote-enabled to
UPC syntax. This enables usage of parsing- and indexing-facilitate remote parsing and indexing of UPC source code,
based features such as content assist, navigation, sealich, allowing UPC projects to be efficiently developed remotely.
hierarchy, and type hierarchy, along with UPC-aware syntax A remote xIUPC toolchain is also available to facilitate
highlighting in the source-code editor itself. A screertisho remote builds of the xIUPC project. The Ul provides a user-
which shows a UPC program in the Eclipse editor will be friendly way to specify and manage complex build options
shown in Section 5 below. without makefiles.

3 2010/9/29

- — = . - —
X C Project [&] sample_sortupc 8 [£ m19937ar bug.upe | [sample_sorth ! =

C Project — 7void my_upc_all_gather(shared void *dst, B
; 28 shared const void *src, <
Create C project of selected type 29 iy rbytes) i m
|g 20 upc.memcpy((shared char *)dst + MYTHREAD * THREADS * nbytes,
. | 31 {shared char *)src + MYTHREAD, nbytes);
Project name: | HelloUPC| B]
Use default location | double mysecond() {
35 struct timeval tv;
36 aett\meofdav(&tu @y b
5] >
L Problems | 2 Tasks. Ecnnsnle =1 properties | -b» UPC Artifact View: 53 Y i K }lﬂ ok,
Project type: Toolchains: | UPC Amfa(t Filename LineNo Canstruct
~ (= Exccutable Cross GCC Eﬂm__
upc_all_alloc sample_sort.upc Function Call

@ Empty Project Intel(R) Fortran Toolchain on 1A-32

P . - - upc_all_lock_alloc sample_sort.upc 94 Function Call
® Cross-Compile Project B Linux

upc_lock sample_sort.upc 99 Function Call
upc_unlock sample_sort.upc 104 Function Call
upe_lock_free sample_sart.upc 106 Function Call
upc_all_alloc sample_sort.upc 121 Function Call

Linux GCC
XL C/C++ Tool Chain

® ANSI
® TestProjectWithExtraPages
@ TestwidgetsLabel R R R . N R R
@ WP Hello world € Project Figure 3. UPC artifacts are identified and linked with editor.
@ MPI| Pi C Project

@ MPI Pi C++ Project

\AAAA

4 Show project types and toolchains only if they are supported on the platform

Iﬁ sample_sort.upc &2 15 mtl9937ar_bug. upc |_f=| sample_sort.h ”2]. =8
| 27 void my_upc_all_gather(shared void *dst, .
8 shared const void *src,
size_t nbytes) { m 1
P 30 upcmenyonC Cshared chor *)dsk + MYTHREAD * THREADS * nbytes,
\ —_— 3 e
@ < Back Next > Cancel | Finish i | Name: upc_memcpy

32} |prototype: void upc_memcpy(shared void * restrict dst, shared const void * restrict src, size_t n)

33 Description:

g Copies n characters from a shared object having affinity with one thread to a shared object having afﬁmty
| with the same or another thread.

— e

Figure 2. First page of UPC project wizard.

Figure 4. Eclipse hover help gives API assistance for UPC
3.2 UPC Project Wizard APIs and keywords.

One important part of an IDE is a way for users to quickly
and easily create new projects using a given programminginform the programmer of any potential problems with or
model. In general, the notion pfojectsin Eclipse (as well opportunities for improvement of the application.
as other IDEs) is important for organizing and managing As an initial step toward static analysis functionality for
the components of (and settings for) an application over UPC, we have created functionality allowing UPC “arti-
the course of its lifetime. Similarly, project templatesnca facts,” such as calls to UPC library APIs, to be located and
be helpful for new and experienced programmers alike, asdisplayed in a separate Eclipse view, with easy navigation
they simplify and accelerate the routine process of begin- to source-code lines. The UPC Artifacts view is shown in
ning a development project. To address this need for UPC Figure 3; this view is sortable by file, line number, or axttfa
programmers, our Berkeley UPC tool-chain plug-in provides and also links directly to the Eclipse editor.
the newUPC Hello World Projectype. When a user chooses For MPI and OpenMP, more sophisticated analysis tools
to create a new UPC project, they can now select this projectinclude MPI barrier analysis that detects deadlocks, among
type (along with the Berkeley UPC toolchain) in the dialog other features; MPI and OpenMP artifacts can also be
shown in Figure 2. located. The infrastructure exists for more advanced aigly
When a project is created using th#C Hello World tools for UPC. The parallel analysis features use the exjsti
Projecttype, the appropriate directory structure and several CDT AST (Abstract Syntax Tree) and also a PLDT-provided
files are created within the Eclipse workspace. One of thesecontrol-flow graph and other structures that allow for analy
files is an initial UPC source file, which contains code sis of complex program structures. These are currently used
for a simple “hello world” UPC program. The project can for various MPl and OpenMP analysis features—and the
immediately be built using Berkeley UPC, giving users opportunity exists for more complex analyses of UPC code
a simple, quick onramp to a working UPC application. as well.
Throughout the course of a UPC application’s lifetime, the
project abstraction in Eclipse helps developers keep whck 3.4 User Assistance Tools for UPC

all associated components and metadata. The Eclipse help system also provides hooks for dynamic
, . help features. Hovering over the UPC APIs in the editor
3.3 Analysis Tools in PTP invokes a “pop-up” feature with information about the API,
PTP includes several static analysis tools as part of thesourced both from header files and from additional help
Parallel Language Development Tools (PLDT) feature of information explicitly provided by PTP and PLDT. The
PTP. These tools generally aim at performing analyses basecdover help for UPC is shown in Figure 4.
solely on the program source code (along with the syntax There is also a separate help view available via the F1
and semantics of the applicable programming model) to key or Help — Dynamic help menu, and small HTML

4 2010/9/29

1 upc_a _ _ The descriptions here are for UPC-specific features, but
2 [eRaslidsidiaduattmile many other features help with code formatting, indenting,

@ upc_affinitysize(size_t totalsize, size_t nbytes, size_t threadid) size_t

© upc_all_alloc(size_t nblocks, size_t nbytes) void comparisons between versions of a file (e.g., from a CVS or
@ upc_all_broadcast(shared void * restrict dst, shared const void * restrict src, size_t nb . . .
@ upc_all_exchange(shared void * restrict dst, shared const void * restrict src, size_t nby SVN repOSItoryv etc) Compller error messages map eaSIIy
- 3 to source-code lines to easily identify and correct prolslem

Press "~Space” to show Template Propo:

While this type of functionality is quite widely used in
the Java community, for example, these productivity-sslat
capabilities represent a step forward for a parallel laggua

Figure 5. Eclipse content assist inserts code into the editor
as you type (a popup describing the API selected is not

shown here). like UPC
upe. I 4. Parallel Performance Wizard Support
12 =| upc_ferall - upc_forall loop
= _i_hud__%r\-\nileeaUharryinonp‘wilh gr Fﬁity In thls SeCtlon we present a key COﬂtI’IbUtIOﬂ Of thIS paper’
= upc_max_blocksize - UPC_MAX_BLOCKSIZE keyword namely the integration into Eclipse PTP of our performance

analysis tool, called Parallel Performance Wizard (PPW),

which is described in detail in [16]. This integration sexve

Figure 6. Editor templates ease coding of common idioms. as a prime example of the usefulness of Eclipse PTP as a
platform for bringing together a variety of PGAS tools.

| Fress "~Space' o show Help Proposais)

fles can be perused which provide information on the 41 ppw Overview

APIs and, if provided, examples of their use. This and the i

hover help described above makes information normally ONce @ developer has completed a working parallel ap-
found in reference books immediately available at the aser’ plication, an e_xperlmental p_erfprmanc_e-apalyas Process
fingertips during code development. Additionally, the CDT often needed in order to optimize application performance.

parser recognizes incorrect language usage and immagdiatel 1 IS Process often takes the form of a measure-modify
displays compiler error messages in tReoblems view cycle, in which an instrumented version of the program is

while also annotating the editor with error markers on the €Xécuted, performance data is collected at runtime, and the
lines containing the errors. results are examined by the programmer and used to modify
Content assist in the Eclipse editor helps remind the the program to improve its performance. Performance tools

programmer of language/library APIs and their arguments; help with eaph step of Fhis process, facilitating program
this assistance occurs dynamically as the user types sourcdStrumentation, performing measurement and handling of
code. When the user enters a few characters of the name oP€/formance data, and then presenting the data via user-
an API routine, for example, and then presses the Control- Tendly visualizations. _

Space key combination, a popup appears with choices and PPW IS an expenmental _perform_ance tO_OI which focuses
help information about the APIs available. This capability ©N OPtimization of applications written using PGAS pro-
is shown for UPC in Figure 5. If the user chooses one of 9ramming models.

the API choices provided with the mouse or arrow keys, the 4 5 ppyy Integration

selection is directly inserted in the code at the cursor-posi)) _ ,
tion. Hover help follows along as the user types arguments PPW has been integrated into Eclipse by way of PTP’s

as a reminder of required argument types. Because UPCEXternal Tools Framework (ETFw), which is designed to
consists of not only language features but also extensivefacilitate integration of existing parallel tools (perfeance
library functionality, this type of dynamic content assist analysis tools being one key example) into the Eclipse world

impactful for improving UPC developer productivity during 1 he ETFw defines a number of integration points for which
source-code editing. a tool specifies certain behavior to occur. The following lis

Code templates also make programming of IanguageSho"‘{Sj each integration poiqt and the corresponding behavio
idioms or other commonly used programming constructs SPecified by our PPW plug-in for each:
easy to implement. For example, upcforall loop with
shared-address or integer affinity is provided as one of
the built-in templates provided by PLDT, and can easily) o .
initialize a UPC shared array in the loop. Figure 6 illustgat ~ * Build- In place of the usual UPC compiler invocation,
this capability. Variable parts of the template can be dyick the PPW compiler wrapper script is invoked to perform
modified to use variables within the user's own program. @0 instrumented build of the application, with options
Addtionally, more code templates are easily added by the ~ Corresponding to those specified by the user.

e InstrumentationNothing need be performed in this step
(instrumentation is handled by the next step).

user in the Eclipse preferences. e Launch.A parallel launch is performed using PTP’s par-
These and many other features help the programmer allel runtime, with special PPW environment variables
increase productivity while working on a UPC application. set to pass along options specified by the user.

5 2010/9/29

R B - Name: |anotherHelloUPC ¥ B X B 3 Name: |anothertelloUPC

4 ||| Source |#§ Environment | =1 Common Performance Analysis . s filter & {‘ . Source | g Environment| =] Common Performance Analysis - s
Tool Selection| PPW Compiler Wrapper - UPC | PPW Program Run - UPC & Launch Group Tool Selection PPW Compiler Wrapper - UPC| PPW Program Run - UPC

& Launch Group
<~ Pparallel Perf

nce Analysis < Parallel Performance Analysis

m || |--inst-functions --inst-local

Performance Analysis
£ Instrument functions £ Enable tracing
& Record data for shared-local accesses Trace buffer size
Use polite synchronization [Collect communication statistics

Collect per-line communication statistics

Appl Revert
Filter matched 4 of 4 items Apply fevert Filter matched 4 of 4 items PRy &

Figure 7. Dialog to specify instrumented-build options for Figure 8. Dialog to specify program-run options for PPW.
PPW.

5. Application Study

In this section we describe a brief application study which
serves as an example for using the various UPC capabilities
available within Eclipse.

e Data Management he resulting performance data file is
placed in the user’s workspace and named appropriately
(based on the current Eclipse project name).

« \isualizationThe PPW user interface is invoked in aspe- 5.1 Application Overview

cial mode for interaction with Eclipse; the performance The application chosen for this study is a UPC implemen-
data file is opened. tation of the Synthetic Aperture Radar (SAR) algorithm

completed by a fellow researcher in our lab; the UPC version

The behaviors specified above combine to provide accesswas in turn based on the sequential version of SAR from
to essentially all of PPW’s capabilities from within the the Scripps Institution of Oceanography and MPI versions
Eclipse environment. Users make use of these capabilitiesprovided by two additional researchers in our lab [17].
by creating a profile configuration for profiling the applica- With the MPI version as a starting point, several different
tion using PPW. Just as run configurations can be createdUPC versions were created; in this paper we will primarily

to perform a parallel application run using PTP, profile work with the initial UPC version (version 1) of the SAR
configurations encapsulate all necessary setup to build anapplication.

application with performance analysis support and then .
perform instrumented program runs to collect performance -2 Project Setup
data. To begin working with the SAR application, we first opened
Users simply seledRun — Profile Configurations...to Eclipse, switched to the C/C++ perspective, and created a
begin setting up a profile configuration for their applicatio new Empty C/C++ project corresponding to SAR version 1.
and then choosBarallel Performance Analysisto create a Upon creating the project, we chose our Berkeley UPC tool-
new profile configuration. Many of the fields are the same as chain (described in Section 3.2) to use for building. Beeaus
for a corresponding run configuration, but a few important we already had existing source code for the application,
new tabs will be available in th€rofile Configurations we then used the import function of Eclipse (by right-
dialog. Selecting th&@erformance Analysistab allows the clicking on the project to bring up thenport... menu) to
user to choose PPW from the available performance tools. Tobring the code into the Eclipse project. Note that if this
set PPW-specific options, users then usé?Rg/ Compiler had been a completely new program, we could have instead
Wrapper - UPC tab (Figure 7) to specify various options created a source directory and new UPC source files (using
for the instrumented build with PPW. Similarly, tiPW a simple wizard in Eclipse) to begin working. Figure 10
Program Run - UPC tab (Figure 8) is used to specify shows the SAR application within the Eclipse workspace,
options for the parallel program run with PPW. with the source-code editor opened to the main UPC file.
After the program is launched with PPW support enabled The program consists of a number of source files; a view of
from within Eclipse, the resulting performance data file is the source tree can be seen in the leftmost pane within Figure
placed within the user’s workspace. The PPW user inter- 10.
face is then automatically launched in a new special mode ,
allowing for interaction with the Eclipse environment. One -3 Build and Run
primary feature of this mode is that source-code locations To obtain an appropriate setup to build our application, we
corresponding to performance data being viewed within used the (previously described) Berkeley UPC dialogs to
PPW are shown directly in the Eclipse editor. An example adjust compilation options; for example, we added several
of such a view, showing the PPW GUI and the Eclipse editor libraries needed for the link step. Adding such libraries
window, is show in Figure 9. for the linker is particularly straightforward within Epbe

6 2010/9/29

Iz Parallel Performance Wizardl S CamelUPCIS par BEE
| Eile_Edit_Opuons Analysis _Help

[camel.upe &2 = || 7 CJ Defaul Revision Profile Charts | Profile Table | Tree Table | Data Transfers | Array Distri [Anatysis |
[cameluPc_3 . par

S70 /7 only have the master do the Sort, since 1t won't take that Long 0]
871 /¢ do the sort (the PK2 array has affinity to the master thread)
572 quicklySortLocal (sharedindex) ; AR | Calsite T Totaly [Sef [Gals]
a73 printf(*sort took %0.ef\n", timer_elapsedia)}; ;A‘:”u"sfr"”n:‘m camel upe 676 A St :
=74 fflushistdout); & ® upc_wait 146828 5 1.46828 ¢ 12
¥ Upe_wait camelupr 867 1.13085 5 1.13085 5 2
¥ upc_wait camelupc 816 335.62307 ms 335.62307 ms 2
2
2
2

Metric [Time [+] Thread: [An Threads |~ |

875 shared n = sharedindex;
876 i
877 upc_fence;

: » upe_wait camel upc 836 L2562 ms 124562 ms
a78 upc_barrier;

¥ upc_wait camelupcE7E 29946800 us 29945500 us

879 local_copy_n = shared_n; » upe_wait camelupcBE 214.73000us 214.73000 us

880 3 ¥ upc_wait camelupc7ls 49.62300us 49.62300 s 2

88l) /7 end if igtr <2 o ® upc_get 45142613 ms 45142613 ms 115

882 else { § # upc_lock 2578365 ms 25.78365 ms 75

883 /¢ loop through, making sure to group by who has affinity to keyarray's element » upc_lock camel.upc:801 25.32729 ms 25.22729ms 12

884 /f that the iteration is looking at 3 camelupcB87 426.91500 s 426.91500 us 47

885 upc_forallim = 0; m < local_copy_n; m+; Gkeyarray[ml) { b upe_lock camel.upc:856 29.44900 ps 2844000 ys 16

286 if (({lastRound{curRly, keyarray[m]) == c) && (lastRound(R1Y, keyarray[m]) == c2)) { § ® unc_put 0.72528 ms 0.72528 ms 82

a7 ¥ upc_pu camelupc B85 188.65100 s 188.65100 us 23|

. Pk2[sharedindex] = keyArray[ml; » upe_put camelupc B89 179.53400us 179.53400 us 23

250 charedindexs+: ¥ upc_put camelupc 806 72.48900ps 72.48900 s 6
. . » upe_put cammel upc 802 72.24100us 72.34100 s

890 Lock 1tlock

o1 " upe_unlock(resultlock); » upc_pit camelupc 807 59.04800us 59.04800 ps

oo 3 ¥ upe_put camel upc 803 54.28100 U5 54.28100 s

803} /7 end if igtr == 3

894 1} ;/ end leop through crypt results
895

[
6
[
» upe_put camelupc804 507910015 50.79100 s 6
» upe_put camelupc 805 4814900 s 48.14900 ps 5

& & upc_unlock 0.56265 ms 0.56265 ms 75
. ¢ e upc_notity 260.57200 ps 260.57200 ps 12
595 upc_barrier; } upc_notify camel.upc 867 £7.51900us 8751900 us 2
g7 ¥ upe_natify camelupc 816 82.16200ps 82.15200 ps 2
2

2

2

2

4

4

2

2

go8 if [MYTHREAD == o) { » upc_notify camel.upc: 896 26.80200 45 2680200 us
899 time6 = timer_nowl); ¥ upe_natify camelupc 838 24116005 24.11600 ps
00 » upc_notify camelupcE7E 22.99900Us 22.49900 Us
GOl pekksskkksskesbik END PLAINTEXT ; CIPHERTEXT ANALYSIS hbtmtbbombhobots ¥ upe_natify camelupc7la 17.4740015 17.47400 s
oo sy Propert: Value 9 » timer_elapsed camelupc129 235.82500 ps 166.74000 ps 3
03 Run cate 1/14/10 » timer_nowr camel upc: 123 £9.08500 U5 £9.08500 s 3
cod if (charedindex == ©) { [[frhreads 2 » UINTZhex camelupc2ll 127.82800ps 127.82800 ps

Trace 7 Merged trace o b upc_all_lock_alloc camel upc7e2 10230500 U5 83 58400 s
a m) |[uid date [1j14/10 =

‘ Now viewing data file CamelUPC_3.par

Figure 9. PPW GUI and Eclipse editor showing source-code correlation

because of the convenient interface provided by way of the 5.4 Performance Analysis
CDT project. We were then ready to build our application—
this was as simple as clicking on the 'Build’ button in the
main Eclipse view. Once the build itself was invoked, we
were able to continue working within Eclipse while the build
progress was depicted in thi&rogressview. The Console

view provided a listing of the output from Berkeley UPC; 145" Tool Location Configuration. We then created

this can be seen in the bottom portion of Figure 10. _ a profile configuration with many options set the same as

Once the build completes, the resulting executable is o the run configuration previously used. We decided to
placed within the project workspace (as can be seen listedyerorm a full program trace of both UPC operations and our
in the left portion of Figure 10. To perform a parallel run o\ yser functions, so we set the PPW build and run options

of the application, we first switched to the PHarallel accordingly via the dialogs described in Section 3.2 above.
Runtimeperspective and created a new resource managefye then started the run: while waiting for it to complete,

corresponding to our execution environment. For the sake o \vere again able to monitor its progress via Bagallel
of simplicity, we used a basic OpenMPI resource manager g ntimeperspective. We also continued to use the Eclipse

to run the application on the 16-core SMP system on which ¢ jtor to examine the SAR source code itself while the run
we were developing the SAR application (and on which we o taking place.

were running Eclipse). Upon completion of the run, the PPW GUI was launched
Once the resource manager was created and startedyith the results from our performance experiment. Exam-
we selectedRun — Run Configurations... to create a jning the resulting data allowed us to observe the main

new.Par.aIIeI Application run configuration for the SAR erformance problem with the initial SAR code (which
application. Here we chose the resource manager createtgur colleague had previously identified): namely a poorly

above, selected the program executable (from within the jgianced synchronization relating to 1/0 performed solely
project workspace), and specified the number of processes;,, 4 master UPC thread.

to use for the run along with all options to be passed to
the application executable. Once the run configuration wasg. Conclusions and Future Work
complete, we simply clicked “Run” to begin the execution.
While the program was running we were able to view the
status of the job and its processes within flobs Listand
Machinesviews in the PTPParallel Runtimeperspective,
and console output from the program could be seen in the
Consoleview.

In order to conduct performance-analysis experiments with
the SAR application using PPW, we had one initial config-
uration step to perform, whereby we specified the location
of our PPW installation. This field was accessible via the
dialog underPreferences— Parallel Tools — External

This paper has presented our work towards an integrated
development environment for UPC that aims to substantially
improve developer productivity throughout the many stages
of HPC application development. After giving an overview
of the Eclipse platform and architecture and outlining re-
quirements for UPC support in Eclipse, we presented a
range of UPC tools as integrated into Eclipse. Specifically,

7 2010/9/29

C/C++ - SAR vi/src/sar_upc_vi.upc - Eclipse SDK

File Edit Source Refactor Navigate Search Project Run Window Help

=4

rrEEe &

g & b G | K- B (35 07 0- Q- (O~ (U~ | & 9 | [F 1 | H il e e 8 T Eiparallel R... |fEC/CH+ &Java
{5 Project Explorer 53 - ‘& ¥ < 0|l sar_upc vi.upc 23 [¢ range_migration.c i 1€l range_compression.c ;’3 = B || 5= outlin % @Make =0
b £ HellouPc if ((tfile = fopen(fname, "w")} == NULL) {] AR o %7
: printf("Error opening image file %s\n", fname);
¥ 5 5AR V1 return EXIT FAILURE; o sarh
b 4P Binaries } o tsc_ppch
. 1 3)
= (= Debug N ® shared_p_image_c: data_t* |
b %5 SAR V1 - [x86_64/le] ifdef VERBOSE B = b i) =
- printf("\n [Node %d] INITIALIZATION\n", MYTHREAD); .
b = sIc Fflush(stdout); e get time() : double
- @src endif e main{int, char*+) ; int

-

|| azimuth_compression.c

// INITIALIZATION AND EARLY ERROR PROTECTION
if (MYTHREAD == 8) {

b [g azimuth_transform.c check = read paramfile(pfile, &par);

b [g file_io.c t‘f (check != 8)

b [g math.c printf("Error reading parameter file... error code %d\n", check);
B, return EXIT FAILURE;

e #

|£] range_migration.c

1
fclose(pfile);

i

b =l
b [g sar_upc_vl.upc KT I, ﬂ 1
> [u sarh [#: Problems | & Tasks | & Console &2 . [Properties | (% Remote Environments! L9F I; B B e et B 50O
b [b tsc_ppc.h C-E}zild [_SARTvI]) |
b [tsch /usr,fTucal,fbeerlEy_upc/hin/upcc -g -¢ -osrc/range_migration.o ../src/range_migration.c _‘.]
T Jusr/local/berkeley upc/bin/upcc -g -c -osrc/sar upc vl.o ../src/sar upc vl.c
> [g util.c Just/local/berkeley upc/bin/upcc -g -c -osrc/azimuth transform.o ../src/azimuth transform.c
fusr/local/berkeley_upc/bin/upcc -g -c -osrc/util.o ../src/util.c
Jusr/local/berkeley_upc/bin/upcc -g -¢ -osrc/azimuth compression.o ../src/azimuth_compression.c
Jusr/local/berkeley upc/bin/upcc -g -c -osrc/file io.o ../src/file io.c
Jusr/local/berkeley upc/bin/upcc -g -c -osrc/math.o ../src/math.c
fusr/local/berkeley_upc/bin/upcc -g -0SAR_v1 src/util.o src/sar_upc_vl.o src/range migration.o src/
range_compression.o src/math.o src/file io.o src/azimuth transform.o src/azimuth compression.o -lgsl -lgslcblas -1m
Build complete for project SAR vl
Time consumed: 23652 ms. =
ne | Writable

Smart Insert 70:45

Figure 10. Eclipse workspace with SAR application.

we covered existing support for the UPC language before toolset is not a true UPC-aware debugger. A full-featured,
presenting UPC compiler toolchains—in particular our con- open-source, UPC-aware debugger may likely become avail-
tributed support for Berkeley UPC—a UPC project wizard, able in the future; when available, the full integrationtaift
and UPC analysis and user-assistance tools. We then focusetbol with PTP’s parallel-debug framework should be consid-
on the integration of our PPW performance tool, which ered essential. One other distinct opportunity for futuogkwv
serves as a key example of the use of Eclipse as a PGAS toolnvolves the remote enablement (via RDT) of the Berkeley
integration platform, before finally describing a brief UPC UPC tool-chain and the PPW integration, though the latter
application study as a concrete example of the process ofwould require PTP’s External Tools Framework to first be
UPC development in the Eclipse environment. extended to support remote operation.

While Eclipse is presently a mature and state-of-the-art In summary, the existing set of UPC tools exposes the
integrated development environment with useful features opportunity for more tools to be integrated to aid the pro-
already available for the UPC programmer, the infrastmectu ductivity of UPC programmers. As the UPC community
provided by Eclipse, CDT, and PTP can be extended for becomes increasingly aware of the importance of tools—
more tools to specifically meet UPC development require- and recognizes the advantages of fully integrated toelsets
ments. Furthermore, the wider PGAS community could Eclipse will provide an appropriate environment for making
benefit from future research and development efforts to UPC/PGAS development tooling a reality.
bring more tools into a common, integrated environment
like Eclipse. It deserves mentionin_g that_another PGAS Acknowledgments
language, X10, also has Eclipse tooling available in theafor o)
of the X10DT. Besides the normal Eclipse IDE features of S0me of the work presented in this paper was supported in
editor, build and launch features, X10DT also includes sev- Part by the U.S. Department of Defense. Portions of this
eral refactoring tools that specifically enhance concayen ~ Material are supported by or based upon work supported by

As we have briefly mentioned, one important area of the Def_ense Advanced Research Projects Agency (DARPA)
future work involves debugging of UPC (and other PGAS) under its Agreement No. HR0011-07-9-0002. We would
applications. One near-term step would entail integrating like to acknowledge forr_ner and current contributers to .the
support for debugging of Berkeley UPC programs via GDB CDT and PTP projects, including those at IBM Corporation

(using the capabilities described in [19]), even thougk thi @nd other supporting organizations. We would also like to
express our thanks for the use of the SAR application written

) 2010/9/29

by Hung-Hsun Su, former member of the UPC group at the [18] IBM xIUPC Compiler

University of Florida.

References

[1] MPI: A Message Passing Interface Standard
http://www.mpiforum.org, June 1995.

[2] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan,
and J. McDonaldParallel Programming in OpenMPMorgan
Kaufmann, 2000.

[3] The UPC ConsortiumPPC Language Specification v1.2
http://www.gwu.edu’upc/docs/upsspecsl.2.pdf, 2005.

[4] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit,
A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella,
and A. Aiken,Titanium: A High-Performance Java Dialect
Concurrency: Practice and Experience, vol. 10, pp. 825836,
1998.

[5] The X10 Programming Languagettp://x10-lang.org.

[6] The Chapel Parallel Programming Language
http://chapel.cray.com.

[7] HPCS - High Productivity Computer Systems
http://www.highproductivity.org.

[8] K. Kennedy, C. Koelbel, and R. Schreibégfining and
Measuring the Productivity of Programming Languages
International Journal of High-Performance Computing
Applications, vol. 18, pp. 441-448, 2004.

[9] C. Danis, J. Thomas, J. Richards, J. Brezin, C. Swart, C.
Halverson, R. Bellamy, and P. Malkiowards Applying
Complexity Metrics to Measure Programmer Productivity
in High Performance Computing®roceedings of the 2008
International Conference on Software Engineering (ICSE),
Workshop on SE for Computational Science and Engineering,
Leipzig, Germany, May 13, 2008.

[10] Eclipse - An Open Development Platform
http://www.eclipse.org.

[11] The Eclipse Foundatigrttp://www.eclipse.org/org.

[12] Eclipse C/C++ Development Tooling
http://www.eclipse.org/cdt.

[13] PTP - Eclipse Parallel Tools Platform
http://www.eclipse.org/ptp.

[14] G. Watson, C. Rasmussen, and B. Tibbi#s, Integrated
Approach to Improving the Parallel Application Development
Process Proceedings of the 2009 IEEE international
Symposium on Parallel & Distributed Processing, May 23 -
29, 2009.

[15] Berkeley Unified Parallel C (UPC) Projeduttp://upc.lbl.gov.

[16] H. Su, M. Billingsley, and A.D. Georg®arallel Performance
Wizard: A Performance System for the Analysis of Partitioned
Global-Address-Space Applicatignisiternational Journal of
High-Performance Computing Applications, accepted and in
press.

[17] A. Jacobs, G. Cieslewski, C. Reardon, and A.D. George,
Multiparadigm Computing for Space-Based Synthetic Aperture
Radar, Proc. of 2008 International Conference on Engineering
of Reconfigurable Systems and Algorithms (ERSA), Las Vegas,
NV, July 14-17, 2008.

http://www.alphaworks.ibm.com/tech/upccompiler

[19] Debugging Berkeley UPC applications
http://upc.Ibl.gov/docs/user/upc-debugging.shtml

2010/9/29

