
Improving UPC Productivity via Integrated Development Tools

Max T. Billingsley III

University of Florida

billingsley@hcs.ufl.edu

Beth R. Tibbitts

IBM Corporation

tibbitts@us.ibm.com

Alan D. George

University of Florida

george@hcs.ufl.edu

Abstract
In the world of high-performance computing (HPC), there
has been an increased focus in recent years upon the im-
portance of productivity in HPC application development.
One crucial aspect of productivity is the programming model
used, and the family of partitioned global-address-space
(PGAS) models, such as UPC and X10, has served to
advance the state of the art in balancing performance and
productivity. Also of great importance is the variety of
development tools used to support activities such as editing,
debugging, and optimizing programs. These tools are often
most useful as part of an integrated development environ-
ment (IDE). While some progress has been made towards
bringing IDE capabilities into the HPC world, in particular
by way of Eclipse projects, support has mainly focused on
MPI and OpenMP tools.

In this paper, we present research and development ac-
tivities that are bringing Eclipse-based IDE capabilitiesto
the PGAS developer community. We focus on tools for
UPC, giving background on previously existing capabilities
to work with UPC programs in Eclipse and then present-
ing a tool-chain and project wizard for the open-source
Berkeley UPC compiler, basic UPC static analysis tools,
and integration of our performance analysis tool (Parallel
Performance Wizard) supporting UPC. Finally, we conclude
by proposing future work and providing recommendations
for further integration of UPC and other PGAS tools to
enhance overall developer productivity.

Categories and Subject Descriptors D.2.6 [Software En-
gineering]: Programming Environments—Integrated envi-
ronments; D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming

Keywords Eclipse, partitioned global address space, UPC

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
The field of high-performance computing (HPC) has as its
explicit goal the achievement of high levels of application
performance, allowing ever-larger and more complex prob-
lems to be solved. Parallel computing has long been the
dominant paradigm in HPC. There are a diversity of par-
allel systems in use, ranging from smaller shared-memory
systems (notably including modern multi-core workstations)
to commodity clusters (with interconnects ranging from
Ethernet to high-bandwidth, low-latency networks such as
InfiniBand) to high-end offerings such as Cray XT and
BlueGene systems. To exploit the potential these systems
offer, programmers must cope with the many complexities
of the machines and their software environments, and they
need effective tools to craft programs that take advantage of
the capabilities of highly parallel HPC systems.

One key aspect is the programming model used. For over
a decade, MPI [1] has dominated the HPC development
landscape, with OpenMP [2] often being used for finer-
grained coordination within an HPC system node. But MPI
has some notable drawbacks, specifically with regard to ease
of use (in particular because programmers must manually
coordinate send/receive pairs) and overall programmer pro-
ductivity.

For many years, efforts have been under way to develop
new parallel programming models that would be a real
improvement over MPI (and OpenMP). One particular effort
has centered on the family of partitioned, global-address-
space (PGAS) programming models, which promise an
improved balance of productivity and performance by way
of their shared-memory abstraction and explicit notion of
data affinity. Probably the most mature member of the PGAS
family is the UPC language [3]; others include Titanium [4]
and the newer X10 [5] and Chapel [6] languages being de-
veloped as part of the DARPA High Productivity Computing
Systems (HPCS) initiative [7].

The HPCS program has emphasized the importance of
productivity in the HPC world. While sheer application
performance is clearly a vital aspect of HPC, what appli-
cation writers need really be concerned with is total-time-to-
solution, which includes overall development time as well as
application run time. Previous work [8] has identified time-
to-solution as the key productivity metric for programming

1 2010/9/29



languages (along with other development tools). Devel-
opment time is of course directly impacted by developer
productivity, a measure of how quickly and efficiently the
developer can turn the application requirements into a com-
plete, correct, and efficient program. While there is existing
work toward precise metrics for programmer productivity
[9], we do not concern ourselves in this paper with analytical
or emperical methods to analyze productivity, but rather
accept the general notion that developers seek to produce
a correct, performant program as quickly and easily as
possible.

There are a number of other tools that may aid pro-
ductivity during the many stages of application develop-
ment. These include source-code editors, debuggers, profil-
ing tools (e.g., gprof), and a wide variety of other static and
dynamic analysis tools. For many users, these tools may be
most useful when they are part of an integrated development
environment, or IDE. One integration platform of particular
interest—because of its extensible architecture, open-source
licensing, and growing developer community—is Eclipse,
which will be described in further detail below.

In this paper we present a range of UPC application
development tools as integrated with the Eclipse platform
to comprise an integrated development environment for
UPC. The remainder of the paper is organized as follows:
Section 2 gives an overview of the Eclipse platform and
architecture and outlines requirements for UPC support in
Eclipse; Section 3 then covers UPC tools in Eclipse. We
present the integration of our parallel performance tool
which supports UPC in Section 4, before presenting a brief
application study in Section 5, and finally concluding and
discussing future work in Section 6.

2. Eclipse Platform and Architecture
Eclipse [10] is an extensible, open-source platform for
integrating software development tools. From a user’s point
of view, Eclipse provides a powerful integrated develop-
ment environment (IDE) that can help the user be pro-
ductive throughout each stage of software development.
Architecturally, Eclipse comprises an general-purpose tool-
integration framework in which a wide variety of tools can
be added in the form of Eclipse plug-ins.

Eclipse was originally created by IBM as a Java IDE, but
is now governed by the Eclipse Foundation [11]. Numerous
projects have since added support for many other program-
ming paradigms and languages. One such project is Eclipse
CDT (C/C++ Development Tooling) [12], which provides a
full-featured environment for developing programs written
in C, C++, and related languages. Because much HPC
(and other parallel) development is done using languages
in the C/C++ family, CDT forms an important part of the
Eclipse ecosystem that has particular relevance for a parallel
development environment.

A more recent but no less important part of the Eclipse
ecosystem is the Eclipse PTP (Parallel Tools Platform)
project [13], which is aimed at bringing integrated develop-
ment capabilities to the world of parallel application devel-
opment. Previous work has shown that PTP and associated
tools can offer substantial benefits for the parallel devel-
opment process [14]. Some of the particular capabilities
offered by PTP include: a variety of error checking and static
analysis tools; runtime monitoring and control of parallel
jobs; debugging support for multi-process applications; and
an external tools framework for integrating dynamic analysis
tools. The PTP project initially focused mainly on MPI and
OpenMP development tools.

The remainder of this paper presents recent and current
work to bring a parallel development environment to the
world of PGAS, beginning with UPC. This work leverages
and extends capabilities of the Eclipse platform, CDT, and
PTP to comprise an Eclipse-based integrated toolset for UPC
application developers.

Requirements for UPC Support

In order for Eclipse to be a useful platform for UPC de-
velopers, there are a number of requirements that must be
fulfilled. These requirements fall in a few distinct categories:
basic support for the UPC language; capabilities related to
building a UPC application; functionality for running the
resulting program; and support for other development steps
such as debugging and the use of other static and dynamic
tools. Here we address further considerations for each of
these categories of requirements.

Perhaps the most obvious of the requirements is basic
support for the UPC language itself; this support would
entail handling UPC as a top-level source program language,
identifying UPC with the .upc (and optionally .c) filename
extension. Recognizing the UPC language is important not
only for basic tools such as the source-code editor but also
so that any other tool plug-ins can identify UPC as the
applicable language and function accordingly.

Another requirement for UPC support is the availability
of one or more compiler plug-ins so an application can be
built within the Eclipse environment. Users need to be able
to specify any relevant UPC compilation options and see
the output of programs invoked during the build process.
The build process with a supported UPC compiler should
be smoothly integrated into the Eclipse workflow, ideally
with most or all of the tedious details associated with the
application build handled by the system.

The requirements for running a UPC application are
generally quite similar to those for running other paral-
lel applications, in particular those written using another
programming model with the single-program-multiple-data
(SPMD) execution model, such as MPI. The PTP project
generally provides the necessary capabilities by way of the
available resource-manager plug-ins and parallel runtime
system.

2 2010/9/29



Other development steps that should also be covered
by UPC tools in Eclipse include debugging, analyzing the
performance of an application, and various other static and
dynamic analyses. However, it should be noted that in the
case of debugging, there is currently no freely available,
open-source debugger that fully supports UPC. Providing
such a debugger should be considered an initial requirement
that will hopefully soon be met by the wider UPC commu-
nity. At that point the parallel debug platform provided by
PTP will serve as an ideal platform for integrating a UPC
debugger.

Challenges

There are a number of challenges associated with providing
UPC support in the Eclipse environment. The overarching
challenge is to provide sufficient functionality, with com-
pelling features and usability, such that UPC developers will
consider adopting the environment. Additionally, this func-
tionality needs to be cleanly integrated within Eclipse, which
itself is a challenge because of the scope and complexity
of the Eclipse infrastructure. This integration is, however,
well worth the effort required, because of the substantial
existing Eclipse functionality that becomes available for
UPC developers. One final challenge arises from the fact
that many required Eclipse components were not initially
designed with UPC (or other PGAS languages) in mind;
a number of these components (e.g., the External Tools
Framework in PTP, which will be mentioned later in the
paper) required at least minor modifications to support UPC.

3. UPC Tools in Eclipse
In this section we cover the variety of UPC-related capabil-
ities that have been added to Eclipse. We first cover some
existing functionality in the CDT project which gives basic
support for the UPC language. We then present our work on
a fully functional plug-in for the Berkeley UPC compiler and
basic static analysis tools for UPC.

Some existing basic support for the UPC language is
provided by the CDT project, which has added UPC to the
family of C/C++ languages handled by CDT. The original
parser as part of CDT was hand-coded for the particular
syntax of GNU C. An additional, more extensible parser was
written by IBM and employs an externally-generated gram-
mar file for the particular language variation. This capability
was used by the UPC tools to provide a UPC-specific parser
that the C editor employs to recognize the particulars of the
UPC syntax. This enables usage of parsing- and indexing-
based features such as content assist, navigation, search,call
hierarchy, and type hierarchy, along with UPC-aware syntax
highlighting in the source-code editor itself. A screenshot
which shows a UPC program in the Eclipse editor will be
shown in Section 5 below.

Figure 1. Dialog for Berkeley UPC settings.

3.1 UPC Compiler Toolchains

One of the most important aspects of UPC support in Eclipse
is integration of a UPC compiler available to the user. In the
Eclipse world this is achieved by creating a plug-in for CDT
that provides a newtool-chainfor the compiler to integrate it
with CDT’s managed-make system (in which CDT manages
the build process instead of requiring users to supply hand-
written Makefiles). The tool-chain plug-in encapsulates the
means of properly invoking the compiler and linker, and
provides access to compiler and linker options by way of
a standard CDT user interface.

Our contribution in this area has centered on adding sup-
port for the open-source Berkeley UPC [15] compiler. Our
tool-chain plug-in includes all of the aforementioned func-
tionality, giving full access to the compiler within Eclipse.
Because there are many possible options for the Berkeley
UPC compiler, all of which can be important for the UPC
programmer, our toolchain plug-in provides an interface to
specify Berkeley UPC options within Eclipse. This interface
integrates with the standard build-settings interface provided
by CDT. When the Berkeley UPC tool-chain has been
selected, choosingC/C++ Build→ Settings in the project
properties dialog brings access to the interface shown in
Figure 1.

CDT also includes another UPC toolchain provided for
the IBM UPC compiler [18]. The IBM xlUPC toolchain
integrates with the managed-build system and provides a
user interface to set compiler options in a user-friendly way.
Additionally, the xlUPC toolchain is remote-enabled via
the PTP Remote Development Tools (RDT). RDT allows
CDT projects to exist on a remote machine; such projects
can be built and launched on a remote machine as well.
This is well-suited for development of large code bases on
large remote clusters. The UPC parser is remote-enabled to
facilitate remote parsing and indexing of UPC source code,
allowing UPC projects to be efficiently developed remotely.
A remote xlUPC toolchain is also available to facilitate
remote builds of the xlUPC project. The UI provides a user-
friendly way to specify and manage complex build options
without makefiles.

3 2010/9/29



Figure 2. First page of UPC project wizard.

3.2 UPC Project Wizard

One important part of an IDE is a way for users to quickly
and easily create new projects using a given programming
model. In general, the notion ofprojectsin Eclipse (as well
as other IDEs) is important for organizing and managing
the components of (and settings for) an application over
the course of its lifetime. Similarly, project templates can
be helpful for new and experienced programmers alike, as
they simplify and accelerate the routine process of begin-
ning a development project. To address this need for UPC
programmers, our Berkeley UPC tool-chain plug-in provides
the newUPC Hello World Projecttype. When a user chooses
to create a new UPC project, they can now select this project
type (along with the Berkeley UPC toolchain) in the dialog
shown in Figure 2.

When a project is created using theUPC Hello World
Project type, the appropriate directory structure and several
files are created within the Eclipse workspace. One of these
files is an initial UPC source file, which contains code
for a simple “hello world” UPC program. The project can
immediately be built using Berkeley UPC, giving users
a simple, quick onramp to a working UPC application.
Throughout the course of a UPC application’s lifetime, the
project abstraction in Eclipse helps developers keep trackof
all associated components and metadata.

3.3 Analysis Tools in PTP

PTP includes several static analysis tools as part of the
Parallel Language Development Tools (PLDT) feature of
PTP. These tools generally aim at performing analyses based
solely on the program source code (along with the syntax
and semantics of the applicable programming model) to

Figure 3. UPC artifacts are identified and linked with editor.

Figure 4. Eclipse hover help gives API assistance for UPC
APIs and keywords.

inform the programmer of any potential problems with or
opportunities for improvement of the application.

As an initial step toward static analysis functionality for
UPC, we have created functionality allowing UPC “arti-
facts,” such as calls to UPC library APIs, to be located and
displayed in a separate Eclipse view, with easy navigation
to source-code lines. The UPC Artifacts view is shown in
Figure 3; this view is sortable by file, line number, or artifact
and also links directly to the Eclipse editor.

For MPI and OpenMP, more sophisticated analysis tools
include MPI barrier analysis that detects deadlocks, among
other features; MPI and OpenMP artifacts can also be
located. The infrastructure exists for more advanced analysis
tools for UPC. The parallel analysis features use the existing
CDT AST (Abstract Syntax Tree) and also a PLDT-provided
control-flow graph and other structures that allow for analy-
sis of complex program structures. These are currently used
for various MPI and OpenMP analysis features—and the
opportunity exists for more complex analyses of UPC code
as well.

3.4 User Assistance Tools for UPC

The Eclipse help system also provides hooks for dynamic
help features. Hovering over the UPC APIs in the editor
invokes a “pop-up” feature with information about the API,
sourced both from header files and from additional help
information explicitly provided by PTP and PLDT. The
hover help for UPC is shown in Figure 4.

There is also a separate help view available via the F1
key or Help → Dynamic help menu, and small HTML

4 2010/9/29



Figure 5. Eclipse content assist inserts code into the editor
as you type (a popup describing the API selected is not
shown here).

Figure 6. Editor templates ease coding of common idioms.

files can be perused which provide information on the
APIs and, if provided, examples of their use. This and the
hover help described above makes information normally
found in reference books immediately available at the user’s
fingertips during code development. Additionally, the CDT
parser recognizes incorrect language usage and immediately
displays compiler error messages in theProblems view
while also annotating the editor with error markers on the
lines containing the errors.

Content assist in the Eclipse editor helps remind the
programmer of language/library APIs and their arguments;
this assistance occurs dynamically as the user types source
code. When the user enters a few characters of the name of
an API routine, for example, and then presses the Control-
Space key combination, a popup appears with choices and
help information about the APIs available. This capability
is shown for UPC in Figure 5. If the user chooses one of
the API choices provided with the mouse or arrow keys, the
selection is directly inserted in the code at the cursor posi-
tion. Hover help follows along as the user types arguments
as a reminder of required argument types. Because UPC
consists of not only language features but also extensive
library functionality, this type of dynamic content assistis
impactful for improving UPC developer productivity during
source-code editing.

Code templates also make programming of language
idioms or other commonly used programming constructs
easy to implement. For example, aupc forall loop with
shared-address or integer affinity is provided as one of
the built-in templates provided by PLDT, and can easily
initialize a UPC shared array in the loop. Figure 6 illustrates
this capability. Variable parts of the template can be quickly
modified to use variables within the user’s own program.
Addtionally, more code templates are easily added by the
user in the Eclipse preferences.

These and many other features help the programmer
increase productivity while working on a UPC application.

The descriptions here are for UPC-specific features, but
many other features help with code formatting, indenting,
comparisons between versions of a file (e.g., from a CVS or
SVN repository, etc.). Compiler error messages map easily
to source-code lines to easily identify and correct problems.
While this type of functionality is quite widely used in
the Java community, for example, these productivity-related
capabilities represent a step forward for a parallel language
like UPC.

4. Parallel Performance Wizard Support
In this section we present a key contribution of this paper,
namely the integration into Eclipse PTP of our performance
analysis tool, called Parallel Performance Wizard (PPW),
which is described in detail in [16]. This integration serves
as a prime example of the usefulness of Eclipse PTP as a
platform for bringing together a variety of PGAS tools.

4.1 PPW Overview

Once a developer has completed a working parallel ap-
plication, an experimental performance-analysis processis
often needed in order to optimize application performance.
This process often takes the form of a measure-modify
cycle, in which an instrumented version of the program is
executed, performance data is collected at runtime, and the
results are examined by the programmer and used to modify
the program to improve its performance. Performance tools
help with each step of this process, facilitating program
instrumentation, performing measurement and handling of
performance data, and then presenting the data via user-
friendly visualizations.

PPW is an experimental performance tool which focuses
on optimization of applications written using PGAS pro-
gramming models.

4.2 PPW Integration

PPW has been integrated into Eclipse by way of PTP’s
External Tools Framework (ETFw), which is designed to
facilitate integration of existing parallel tools (performance
analysis tools being one key example) into the Eclipse world.
The ETFw defines a number of integration points for which
a tool specifies certain behavior to occur. The following list
shows each integration point and the corresponding behavior
specified by our PPW plug-in for each:

• Instrumentation.Nothing need be performed in this step
(instrumentation is handled by the next step).

• Build. In place of the usual UPC compiler invocation,
the PPW compiler wrapper script is invoked to perform
an instrumented build of the application, with options
corresponding to those specified by the user.

• Launch.A parallel launch is performed using PTP’s par-
allel runtime, with special PPW environment variables
set to pass along options specified by the user.

5 2010/9/29



Figure 7. Dialog to specify instrumented-build options for
PPW.

• Data Management.The resulting performance data file is
placed in the user’s workspace and named appropriately
(based on the current Eclipse project name).

• Visualization.The PPW user interface is invoked in a spe-
cial mode for interaction with Eclipse; the performance
data file is opened.

The behaviors specified above combine to provide access
to essentially all of PPW’s capabilities from within the
Eclipse environment. Users make use of these capabilities
by creating a profile configuration for profiling the applica-
tion using PPW. Just as run configurations can be created
to perform a parallel application run using PTP, profile
configurations encapsulate all necessary setup to build an
application with performance analysis support and then
perform instrumented program runs to collect performance
data.

Users simply selectRun → Profile Configurations... to
begin setting up a profile configuration for their application,
and then chooseParallel Performance Analysisto create a
new profile configuration. Many of the fields are the same as
for a corresponding run configuration, but a few important
new tabs will be available in theProfile Configurations
dialog. Selecting thePerformance Analysistab allows the
user to choose PPW from the available performance tools. To
set PPW-specific options, users then use thePPW Compiler
Wrapper - UPC tab (Figure 7) to specify various options
for the instrumented build with PPW. Similarly, thePPW
Program Run - UPC tab (Figure 8) is used to specify
options for the parallel program run with PPW.

After the program is launched with PPW support enabled
from within Eclipse, the resulting performance data file is
placed within the user’s workspace. The PPW user inter-
face is then automatically launched in a new special mode
allowing for interaction with the Eclipse environment. One
primary feature of this mode is that source-code locations
corresponding to performance data being viewed within
PPW are shown directly in the Eclipse editor. An example
of such a view, showing the PPW GUI and the Eclipse editor
window, is show in Figure 9.

Figure 8. Dialog to specify program-run options for PPW.

5. Application Study
In this section we describe a brief application study which
serves as an example for using the various UPC capabilities
available within Eclipse.

5.1 Application Overview

The application chosen for this study is a UPC implemen-
tation of the Synthetic Aperture Radar (SAR) algorithm
completed by a fellow researcher in our lab; the UPC version
was in turn based on the sequential version of SAR from
the Scripps Institution of Oceanography and MPI versions
provided by two additional researchers in our lab [17].
With the MPI version as a starting point, several different
UPC versions were created; in this paper we will primarily
work with the initial UPC version (version 1) of the SAR
application.

5.2 Project Setup

To begin working with the SAR application, we first opened
Eclipse, switched to the C/C++ perspective, and created a
new Empty C/C++ project corresponding to SAR version 1.
Upon creating the project, we chose our Berkeley UPC tool-
chain (described in Section 3.2) to use for building. Because
we already had existing source code for the application,
we then used the import function of Eclipse (by right-
clicking on the project to bring up theImport... menu) to
bring the code into the Eclipse project. Note that if this
had been a completely new program, we could have instead
created a source directory and new UPC source files (using
a simple wizard in Eclipse) to begin working. Figure 10
shows the SAR application within the Eclipse workspace,
with the source-code editor opened to the main UPC file.
The program consists of a number of source files; a view of
the source tree can be seen in the leftmost pane within Figure
10.

5.3 Build and Run

To obtain an appropriate setup to build our application, we
used the (previously described) Berkeley UPC dialogs to
adjust compilation options; for example, we added several
libraries needed for the link step. Adding such libraries
for the linker is particularly straightforward within Eclipse

6 2010/9/29



Figure 9. PPW GUI and Eclipse editor showing source-code correlation.

because of the convenient interface provided by way of the
CDT project. We were then ready to build our application—
this was as simple as clicking on the ’Build’ button in the
main Eclipse view. Once the build itself was invoked, we
were able to continue working within Eclipse while the build
progress was depicted in theProgressview. The Console
view provided a listing of the output from Berkeley UPC;
this can be seen in the bottom portion of Figure 10.

Once the build completes, the resulting executable is
placed within the project workspace (as can be seen listed
in the left portion of Figure 10. To perform a parallel run
of the application, we first switched to the PTPParallel
Runtimeperspective and created a new resource manager
corresponding to our execution environment. For the sake
of simplicity, we used a basic OpenMPI resource manager
to run the application on the 16-core SMP system on which
we were developing the SAR application (and on which we
were running Eclipse).

Once the resource manager was created and started,
we selectedRun → Run Configurations... to create a
new Parallel Application run configuration for the SAR
application. Here we chose the resource manager created
above, selected the program executable (from within the
project workspace), and specified the number of processes
to use for the run along with all options to be passed to
the application executable. Once the run configuration was
complete, we simply clicked “Run” to begin the execution.
While the program was running we were able to view the
status of the job and its processes within theJobs Listand
Machinesviews in the PTPParallel Runtimeperspective,
and console output from the program could be seen in the
Consoleview.

5.4 Performance Analysis

In order to conduct performance-analysis experiments with
the SAR application using PPW, we had one initial config-
uration step to perform, whereby we specified the location
of our PPW installation. This field was accessible via the
dialog underPreferences→ Parallel Tools → External
Tools → Tool Location Configuration. We then created
a profile configuration with many options set the same as
for the run configuration previously used. We decided to
perform a full program trace of both UPC operations and our
own user functions, so we set the PPW build and run options
accordingly via the dialogs described in Section 3.2 above.
We then started the run; while waiting for it to complete,
we were again able to monitor its progress via theParallel
Runtimeperspective. We also continued to use the Eclipse
editor to examine the SAR source code itself while the run
was taking place.

Upon completion of the run, the PPW GUI was launched
with the results from our performance experiment. Exam-
ining the resulting data allowed us to observe the main
performance problem with the initial SAR code (which
our colleague had previously identified): namely a poorly
balanced synchronization relating to I/O performed solely
on a master UPC thread.

6. Conclusions and Future Work
This paper has presented our work towards an integrated
development environment for UPC that aims to substantially
improve developer productivity throughout the many stages
of HPC application development. After giving an overview
of the Eclipse platform and architecture and outlining re-
quirements for UPC support in Eclipse, we presented a
range of UPC tools as integrated into Eclipse. Specifically,

7 2010/9/29



Figure 10. Eclipse workspace with SAR application.

we covered existing support for the UPC language before
presenting UPC compiler toolchains—in particular our con-
tributed support for Berkeley UPC—a UPC project wizard,
and UPC analysis and user-assistance tools. We then focused
on the integration of our PPW performance tool, which
serves as a key example of the use of Eclipse as a PGAS tool
integration platform, before finally describing a brief UPC
application study as a concrete example of the process of
UPC development in the Eclipse environment.

While Eclipse is presently a mature and state-of-the-art
integrated development environment with useful features
already available for the UPC programmer, the infrastructure
provided by Eclipse, CDT, and PTP can be extended for
more tools to specifically meet UPC development require-
ments. Furthermore, the wider PGAS community could
benefit from future research and development efforts to
bring more tools into a common, integrated environment
like Eclipse. It deserves mentioning that another PGAS
language, X10, also has Eclipse tooling available in the form
of the X10DT. Besides the normal Eclipse IDE features of
editor, build and launch features, X10DT also includes sev-
eral refactoring tools that specifically enhance concurrency.

As we have briefly mentioned, one important area of
future work involves debugging of UPC (and other PGAS)
applications. One near-term step would entail integrating
support for debugging of Berkeley UPC programs via GDB
(using the capabilities described in [19]), even though this

toolset is not a true UPC-aware debugger. A full-featured,
open-source, UPC-aware debugger may likely become avail-
able in the future; when available, the full integration of this
tool with PTP’s parallel-debug framework should be consid-
ered essential. One other distinct opportunity for future work
involves the remote enablement (via RDT) of the Berkeley
UPC tool-chain and the PPW integration, though the latter
would require PTP’s External Tools Framework to first be
extended to support remote operation.

In summary, the existing set of UPC tools exposes the
opportunity for more tools to be integrated to aid the pro-
ductivity of UPC programmers. As the UPC community
becomes increasingly aware of the importance of tools—
and recognizes the advantages of fully integrated toolsets—
Eclipse will provide an appropriate environment for making
UPC/PGAS development tooling a reality.

Acknowledgments
Some of the work presented in this paper was supported in
part by the U.S. Department of Defense. Portions of this
material are supported by or based upon work supported by
the Defense Advanced Research Projects Agency (DARPA)
under its Agreement No. HR0011-07-9-0002. We would
like to acknowledge former and current contributers to the
CDT and PTP projects, including those at IBM Corporation
and other supporting organizations. We would also like to
express our thanks for the use of the SAR application written

8 2010/9/29



by Hung-Hsun Su, former member of the UPC group at the
University of Florida.

References
[1] MPI: A Message Passing Interface Standard,

http://www.mpiforum.org, June 1995.

[2] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan,
and J. McDonald,Parallel Programming in OpenMP, Morgan
Kaufmann, 2000.

[3] The UPC Consortium,UPC Language Specification v1.2,
http://www.gwu.edu/~upc/docs/upcspecs1.2.pdf, 2005.

[4] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit,
A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella,
and A. Aiken,Titanium: A High-Performance Java Dialect,
Concurrency: Practice and Experience, vol. 10, pp. 825836,
1998.

[5] The X10 Programming Language, http://x10-lang.org.

[6] The Chapel Parallel Programming Language,
http://chapel.cray.com.

[7] HPCS - High Productivity Computer Systems,
http://www.highproductivity.org.

[8] K. Kennedy, C. Koelbel, and R. Schreiber,Defining and
Measuring the Productivity of Programming Languages,
International Journal of High-Performance Computing
Applications, vol. 18, pp. 441-448, 2004.

[9] C. Danis, J. Thomas, J. Richards, J. Brezin, C. Swart, C.
Halverson, R. Bellamy, and P. Malkin,Towards Applying
Complexity Metrics to Measure Programmer Productivity
in High Performance Computing, Proceedings of the 2008
International Conference on Software Engineering (ICSE),
Workshop on SE for Computational Science and Engineering,
Leipzig, Germany, May 13, 2008.

[10] Eclipse - An Open Development Platform,
http://www.eclipse.org.

[11] The Eclipse Foundation, http://www.eclipse.org/org.

[12] Eclipse C/C++ Development Tooling,
http://www.eclipse.org/cdt.

[13] PTP - Eclipse Parallel Tools Platform,
http://www.eclipse.org/ptp.

[14] G. Watson, C. Rasmussen, and B. Tibbitts,An Integrated
Approach to Improving the Parallel Application Development
Process, Proceedings of the 2009 IEEE international
Symposium on Parallel & Distributed Processing, May 23 -
29, 2009.

[15] Berkeley Unified Parallel C (UPC) Project, http://upc.lbl.gov.

[16] H. Su, M. Billingsley, and A.D. George,Parallel Performance
Wizard: A Performance System for the Analysis of Partitioned
Global-Address-Space Applications, International Journal of
High-Performance Computing Applications, accepted and in
press.

[17] A. Jacobs, G. Cieslewski, C. Reardon, and A.D. George,
Multiparadigm Computing for Space-Based Synthetic Aperture
Radar, Proc. of 2008 International Conference on Engineering
of Reconfigurable Systems and Algorithms (ERSA), Las Vegas,
NV, July 14-17, 2008.

[18] IBM xlUPC Compiler,
http://www.alphaworks.ibm.com/tech/upccompiler

[19] Debugging Berkeley UPC applications,
http://upc.lbl.gov/docs/user/upc-debugging.shtml

9 2010/9/29


