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ABSTRACT 
Given the complexity of parallel programs, users often must 
rely on performance analysis tools to help them improve the 
performance of their code.  While many tools support the 
analysis of message-passing programs, no tool exists that 
fully supports programs written in languages that present a 
global address space to the programmer, such as UPC and 
SHMEM.  Due to the differences between message-passing 
and global-memory languages, existing tools cannot be easily 
extended to support UPC and SHMEM.  Furthermore, the 
inclusion of implicit and one-sided communication renders 
many of the analyses irrelevant.  Because of these reasons, 
there exists a need for a new performance tool specifically 
designed for UPC and SHMEM.  In this paper, we present a 
framework for the development of a modularized 
event-based performance analysis tool for UPC and 
SHMEM.  This framework was developed based on findings 
from three different studies we conducted: a tool evaluation, 
a language analysis, and a usability study.  For each unit in 
our modularized design framework, we discuss the 
functionalities and development options.  Next, the reusabil-
ity of candidate components from existing tools is evaluated 
with respect to each specific unit.  Finally, the interaction 
between related units is described.  We are currently devel-
oping a working prototype based on this framework. 
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1.  INTRODUCTION 
To meet the growing demand for greater computing power, 
new shared-memory machines and clusters are constantly 
being built.  In order to take advantage of these powerful 
systems, many parallel languages have been developed based 
on different programming models, such as the mes-
sage-passing and global address space models.  Due to the 
complexity of these parallel programs, users often must rely 
on performance analysis tools (PAT) to help them improve 
the performance of their code.  Among the available pro-
gramming models, the Message Passing Interface (MPI), a 
message-passing programming model, has received the lion’s 
share of PAT research and development, as it remains the 
most well-known and used parallel programming model.  
Almost all existing parallel PATs support MPI program 
analysis. 
 
Recently, languages presenting the programmer with a global 
address space (GAS) are quickly gaining popularity.  
Unified Parallel C (UPC) [1-2] and Shared Memory Pro-
gramming (SHMEM) [3] are among the most promising 
GAS languages.  By extending the memory hierarchy to 
include an additional global memory layer, these languages 
provide environments that are similar to that of threaded 
sequential programming.  Instead of the explicit data ex-
change required by message-passing models, GAS languages 
allow implicit data exchange through reading and writing of 
global variables.  The implicit communication greatly re-
duces the complexity of data management from a program-
mer’s perspective.  Furthermore, GAS languages enable the 
development of new algorithms for large systems that are 
otherwise too complex to program under a message-passing 
environment [4].  However, the GAS abstraction forces the 
programmer to give up some control over the communication 
between nodes, which can lead to a reduction in performance.  
Therefore, PAT support for GAS languages becomes even 
more critical to the programmer.  Unfortunately, no tool 
exists that fully supports the analysis of programs written in 
UPC or SHMEM. 
 
In this study, we present the framework of a new PAT spe-
cifically designed for UPC and SHMEM.  Several studies, 



including an evaluation of existing tools, an examination of 
the UPC and SHMEM languages, and an investigation of 
tool usability were performed and the findings were used in 
the development of this framework. 
 
The next section of this paper provides an overview for UPC, 
SHMEM, and existing performance tools.  In Section 3, a 
brief overview of our approach is given.  Section 4 describes 
the high-level design of the proposed UPC/SHMEM PAT.  
Finally, Section 5 presents conclusions and directions for 
future research. 
 
2.  BACKGROUND 
In the following subsections we present an overview of the 
global-memory parallel languages UPC and SHMEM.  In 
addition, we also include a brief introduction to performance 
tools. 
 
2.1 UPC 
Unified Parallel C (UPC) began to take shape in the late 
1990s, and Version 1.0 of the language specification became 
available in February 2001.  Since then, UPC has caught the 
attention of many organizations in educational institutes, 
government, and industry.  The key to its success is the 
ability to create powerful shared-memory parallel programs 
with a C-like syntax.  Its ability to use a shared-memory 
model on a variety of architectures is making it very impor-
tant in a number of high-performance applications.  Version 
1.2 of the UPC specification became available in June 2005. 
 
UPC is available on a growing number of HPC systems.  
Examples of newer platforms with UPC support include the 
HP 9000 and AlphaServer, Cray X1, and SGI Altix.  In 
addition, any systems supporting MPI (such as the IBM SP) 
or connected by a cluster interconnect (e.g., SCI, Quadrics, 
InfiniBand, and Myrinet) can be used with the Berkeley UPC 
runtime system [5], albeit with varying degrees of perform-
ance. 
 
2.2 SHMEM 
Cray Research originally created the SHMEM library for use 
on the T3D supercomputer.  The SHMEM library provides 
a shared-memory abstraction for to programmers writing 
code for parallel computers.  It allows a processing node to 
read and write data stored in the physical memory on another 
processing node.  In addition to the basic set of primitives 
for accessing remote memory (e.g., get and put), the 
SHMEM library provides collective parallel operations.  
Although primarily available on Cray and SGI systems, 
SHMEM is also available for numerous other HPC machines, 
including machines equipped with either QsNet from Quad-
rics or Scalable Coherent Interface from Dolphin. 
 
Portable support for SHMEM middleware exists in the form 
of GPSHMEM, an effort from Ames Laboratory to increase 
the portability of SHMEM.  GPSHMEM implements the 
SHMEM library by coupling MPI libraries with the 
Aggregate Remote Memory Copy Interface (ARMCI) library, 
a portable remote memory copy library. 
 

2.3 Performance Analysis Tools 
There are numerous performance tools using experiment 
measurement available for sequential and parallel languages 
[7].  In the experimental measurement approach, programs 
are executed and performance data are gathered through 
sampling or event recording.  In sampling-based tools, a 
separate thread periodically records hardware counter data 
and the performance of the program is estimated using these 
data after program termination.  These tools typically in-
troduce very low overhead but have trouble reproducing 
accurate program behavior.  In event-based tools, the user 
program is instrumented at pre-determined points in the code 
so event data can be recorded.  Event-based tools can be 
trace-based, where an individual event is recorded (e.g., 
start/end time of 5th execution of func_1), or profile-based, in 
which statistical information is kept instead (e.g., minimum 
time of func_1).  Tracing provides tools with sufficient data 
to reconstruct a program’s behavior, but often requires a huge 
amount of storage space.  Profiling, on the other hand, re-
quires only a few registers and memory locations to keep 
track of data, but cannot be used to reconstruct or analyze all 
of a program’s behavior.  Almost all parallel performance 
tools are event-based and provide tracing, profiling, or both. 
 
Profiling tools supporting sequential C and MPI are the most 
common, with some profiling tools also supporting 
shared-memory programming models such as OpenMP and 
SHMEM.  Many performance tools use the Performance 
Application Programming Interface (PAPI) [8], which pro-
vides platform-independent access to hardware counters on a 
variety of platforms.  These hardware counters can be used 
to track a wide range of low-level performance statistics, 
such as the number of instructions issued, L1 cache misses, 
and data TLB misses.  In addition, some tools such as KO-
JAK [9] and Paradyn [10] also attempt to precisely identify 
performance bottlenecks and qualify them according to their 
impact on performance.  Few tools support SHMEM or 
UPC, and tools with support for these models are typically 
not portable and can only perform simple analyses. 
 
3.  APPROACH 
In order to develop a framework tailored to UPC and 
SHMEM that enables user productivity, we conducted sev-
eral studies in parallel.  We first evaluated several popular 
parallel PATs, including Dimemas/Paraver [11], DynaProf 
[12], HPCToolkit [13], Intel Cluster Tools [14], KOJAK, 
MPE/Jumpshot [15], mpiP [16], MPICL/ParaGraph [17], 
Paradyn, SvPablo [18], and TAU [19].  Twenty-three char-
acteristics in four categories (portability, scalability, usabil-
ity/productivity, and miscellaneous) were used to evaluate 
these tools.  In addition, a standard set of test programs, 
including MPI micro benchmarks, the NAS NPB LU bench-
mark, and the CAMEL cryptanalysis program which served 
as a control program, was used with each tool to see if the 
tool could provide sufficient information to detect perform-
ance bottlenecks.  Through this process, we were able to 
identify characteristics and techniques common to successful 
PATs and select appropriate components for reuse [20]. 
 
While our tool evaluation study focused on identifying ex-
isting technologies applicable to UPC and SHMEM, our 



language analysis study examined the constructs in both 
languages and identified applicable events for each construct.  
We noted the important features of these languages that 
affect the development of a PAT.  The goal of our usability 
study was to investigate the aspects of a performance tool’s 
user interface that impact the user’s ability to apply the tool 
effectively.  With the results of this study, we were able to 
design our tool to be practical, functional, and usable. 
 
4.  UPC/SHMEM PAT FRAMEWORK 
Figure 1 illustrates the typical stages in the experimental 
measurement approach.  In this cycle, user code is first 
instrumented by the tool.  This instrumented version is then 
executed and event data are gathered.  Based on the gath-
ered data, the tool performs various performance analyses 
and the result is presented to the user.  Finally, optimiza-
tions are made to the original code and the whole cycle re-
peats until an acceptable level of performance is reached.  
This model works well for a performance analysis tool so we 
adopted it for our UPC/SHMEM PAT. 
 

 
 

Figure 1. Experimental Measurement Stages 
 
Several important findings from our studies have played a 
major role in shaping our design of the framework.  We 
found that it is critical for a successful tool to provide 
source-code correlation so a user can easily associate per-
formance data with actual code.  Profiling data allow users 
to quickly identify possible areas to focus their tuning efforts, 
while tracing data provide detailed information that are nec-
essary to determine the cause of performance degradation.  
Techniques used by existing PATs are compatible with UPC 
and SHMEM but are scattered among many tools.  The 
wrapper approach for instrumentation commonly found in 
MPI tools works well with SHMEM libraries, but would be 
inadequate for several UPC compiler implementations.  Due 
to UPC’s memory models and aggressive compiler optimiza-
tions, correct instrumentation of UPC programs is only 
achievable with help from UPC compiler developers.  Fur-
thermore, the inability of most existing tools in tracking and 
analyzing implicit and one-sided communication remains the 
biggest roadblock in extending them to support to UPC and 
SHMEM.  A specific model for UPC and SHMEM (similar 

to the newly added feature found in KOJAK [21]) is needed 
to handle implicit and one-sided communication.  Finally, 
the user interface of a tool must be intuitive and easy to learn.  
In our studies we found that the primary reason why PATs are 
avoided by users is because that while PATs can be effective 
at troubleshooting performance problems, they are often too 
hard to use effectively. 
 
Figure 2 diagrams the framework for our UPC/SHMEM PAT.  
It consists of five modules corresponding to each stage of the 
experimental performance analysis cycle, and details for each 
module are presented in the following subsections.  Each 
unit in a module is classified either as core, advanced, or 
extra.  Core units are vital for the tool to function correctly, 
while advanced units include functionalities that are highly 
desirable but not critical to the system.  Finally, extra units 
provide features that may prove to be of some use but require 
additional investigation.   
 
In describing a specific unit, the unit’s primary functional-
ities and preferred implementation approach based on our 
study findings are first explained. Appropriate development 
options are then discussed followed by an evaluation of the 
reusability of candidate components from existing 
tools.  Lastly, we describe the interaction between related 
units.  
 
4.1 Instrumentation Module 
The instrumentation module deals with how and when to 
instrument user code.  Program instrumentation is possible 
at any level in the source-compile-link-execute cycle [22].   
Among these, source-level and binary-level instrumentation 
are used by modern PATs.  Source-level instrumentation is 
attractive because it is easier to correlate the measured event 
data back to the original code, thus making it simpler for the 
user to identify code segments responsible for performance 
degradation. It is often simpler to implement source-level 
instrumentation in a portable manner.  Unfortunately, this 
method can interfere with compiler optimization and makes 
gathering low-level events difficult. 
 
On the other hand, since binary-level instrumentation targets 
executables or object code generated after compiler optimi-
zations, it often provides more detailed and accurate per-
formance data.  However, each architecture supported 
would require a system-specific instrumentation unit. In ad-
dition, it takes more effort to provide source-code correlation 
using binary instrumentation rather than source-level instru-
mentation. 
 
We favor source-level instrumentation over binary-level    
instrumentation because of our strong preference for 
source-code correlation.  However, a hybrid source- and 
binary-level instrumentation approach may work the best as 
it can provide the most accurate and easy to understand per-
formance data.  We are currently investigating the best in-
strumentation level for each language construct.  
To prevent interference with compiler optimization and allow 
maximum tool portability, we use performance interfaces for 
UPC and SHMEM.  For SHMEM, an interface called 
PSHMEM was defined and incorporated in several systems 



including Cray SHMEM.  However, no such interface is 
currently available for UPC.  We have proposed a UPC 
performance tool interface [23] to the UPC community and 
are now ready to evaluate the effectiveness of this interface 
in several implementations, including Berkeley UPC and HP 
UPC. 
 
4.1.1 Source instrumentation manager unit 
This core unit handles the instrumentation of user programs 
at the source level.  By default, all UPC and SHMEM con-
structs are instrumented automatically by this unit through 
the corresponding performance interface.  Users can instruct 
the instrumentation manager to include or exclude certain 
constructs (e.g., user functions) by modifying the unit’s con-
figuration file.  Figure 3 illustrates the contents of a con-
figuration file that specifies user_func_1 and all UPC con-
structs except upc_memget to be instrumented by the unit.  
In addition, the user is able to instrument any segment of 
code by manually inserting pre-defined calls to this unit. 
 

 
 

Figure 3. Example of Instrumentation Configuration File 
 
Development options - If the compiler-supported profiling 
interface is not available, the unit can modify the original 
program through a source-to-source translation and then feed 

the translated program to the compiler.  This approach is 
less desirable as inserted instrumentation code may interfere 
with compiler optimizations, thus altering the behavior of the 
original program.  Additionally, some desirable detailed 
performance information will be unattainable.  Since many 
UPC compilers use source-to-source translations coupled 
with runtime libraries, an alternative option is to instrument 
the compiler-translated program.  Unfortunately, there is no 
standard as to how compilers translate the original programs; 
as a result, multiple units will need to be developed and 
maintained to handle each compiler. 
 
Reusability evaluation - Besides the push for the UPC per-
formance tool interface, we evaluated many candidate com-
ponents for UPC and SHMEM instrumentation including 
compiler frontends (GCC [24], Open64 [25], EDG [26]), 
PDToolkit [28] (used by KOJAK and TAU), source-to-source 
compilers (SUIF/SUIF2 [29], Sage++ [30], Cetus [31]), and 
parsers (CIL [32], Keystone [27]).  Most of these compo-
nents require a great deal of work to correctly support UPC, 
making them less attractive than the compiler-supported 
performance tool interface option.  However, we will have 
to use one of them to instrument user functions, and among 
these components, CIL and EDG appear most appropriate. 
 
Unit interaction – This unit calls the measurement units for 
the actual measurement of events.  It also interacts with the 
input interface for easy, user-driven, source-code instrumen-
tation. 
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4.1.2 Binary instrumentation manager unit 
This advanced unit performs instrumentation on the program 
executable.  It takes the compiler-generated object code and 
statically creates the instrumented object code at compile 
time.  The UPC and SHMEM performance tool interfaces 
can also be used to facilitate the task if instrumentation is 
performed by the compiler. 
 
Development options - Dynamic instrumentation can also be 
supported.  However, due to the complexity that dynamic 
instrumentation entails, this alternative will require more 
investigation. 
 
Reusability evaluation - If the performance interface is avail-
able, Paradyn’s DynInst can be directly reused with some 
effort once we determine the correct mapping between pro-
filing interface calls and DynInst calls.  DPCL [33], another 
dynamic binary instrumentation tool, does not seem appro-
priate due to its limited platform support. 
 
Unit interaction – This unit calls the measurement units for 
the actual measurement of events. 
 
4.2 Measurement Module 
Units in the measurement module are responsible for the 
actual recording, accessing, and manipulating of basic event 
data.  A basic event is defined as a complete and minimal 
set of raw events necessary to perform the user’s desired 
analyses.  Units in this module are completely hidden from 
the user. 
 
4.2.1 Measurement units 
These core units determine what events to record and how to 
measure them, which can depend on the mode of operation 
(profiling or tracing).  The generic hardware measurement 
unit interacts with existing hardware counter measuring in-
terfaces (e.g., PAPI or PCL [34]) to record interesting hard-
ware events such as L2 miss rate.  Two generic software 
measurement units, one each for UPC and SHMEM, deal 
with event recording at the software level. 
 
Development options - Ideally, the generic units are sufficient 
to guarantee the correctness of the system as they define a 
uniform means for event measurement regardless of the un-
derlying software/hardware architecture.  However, in some 
cases, specific measurement strategies may be needed to 
record some events in a platform-dependent way (e.g. dif-
ferent hardware counter measuring interfaces for different 
systems) or store additional implementation-specific infor-
mation (e.g., caching in HP-UPC and MuPC).  In such cases, 
system-specific software or hardware measurement units will 
need to be developed to supplement the generic units. 
Reusability evaluation - PAPI is an ideal candidate for reuse 
in this unit because it has become the standard hardware 
counter interface and supports a wide variety of architec-
tures. 
 
Unit interaction – This unit calls the low-level event 
read/write unit to store event data and is used by the instru-
mentation units for actual event recording. 
 

4.2.2 Low-level event read/write unit  
This core unit is for reading and writing basic event data to 
storage.  By default, tracing data are written to files while 
profiling data are stored in main memory. 
 
Development options - It is possible to separate this unit into 
read and write parts and merge each with their respective 
units.  However, having a separate unit for basic event read-
ing/writing is more desirable as this decouples the data for-
matting from the rest of the process. 
 
Reusability evaluation – We have evaluated trace file formats 
from several tools but no conclusion has been drawn on the 
best format to use. 
 
Unit interaction – This unit’s write capability is used by the 
measurement units to store new basic event data.  Its read 
capability is used by the high-level event read/write unit for 
efficient access to basic event data. 
 
4.2.3 Event file manager unit 
This core unit is primarily responsible for the management of 
basic event data, including the automatic generation of a 
single, combined trace file from each node’s individual trace 
file.  In addition, this unit has a trace format converter 
sub-unit that enables conversion of basic and composite 
event data (i.e. events generated by combining multiple basic 
events) from the format used by our tool to a format used by 
an existing tool.  Typically, this feature is included so users 
familiar with another tool can view the data using the other 
tool.  Since no existing tool fully supports UPC or SHMEM, 
the development of multiple sub-units, one for each format, 
is of low priority. 
 
Unit interaction – This unit interacts with the input interface 
for easy event data management. 
 
4.3 Analysis Module 
Units in this module are responsible for various 
post-execution processing of basic event data recorded by the 
measurement module.  Examples of event processing in-
clude simple aggregation of basic data, generation of analy-
sis-specific data, and other more advanced analysis ap-
proaches.  Units in this module are completely hidden from 
the user. 
 
4.3.1 High-level event read/write unit 
This core unit provides access to basic and composite event 
data.  From the basic event data, composite events are gen-
erated by the aggregation sub-unit.  Once generated, both 
the basic and composite event data are searchable through 
the search/indexing sub-unit that uses indexing for efficient 
access. 
 
Unit interaction – This unit calls the low-level event 
read/write unit to access basic event data and is used by the 
analysis/data manager for access to basic and composite 
event data. 
 
 



4.3.2 Analysis units   
These core units perform specific analyses and generate the 
resulting analysis data.  Each unit is responsible for a single 
analysis but can use data from other analysis units.  The 
analysis is either time-oriented or resource-oriented.  In 
time-oriented analyses, all event data are processed with 
respect to time and the goal is to minimize the overall pro-
gram execution time.  Resource-oriented analyses, on the 
other hand, look at the program resource utilization and at-
tempt to identify redundant accesses that can be removed to 
improve overall program performance.  Useful analyses 
include load-balancing analysis (time-oriented), scalability 
analysis (time-oriented), and memory system analysis (time- 
and resource-oriented). 
 
Reusability evaluation - As the performance bottleneck de-
tection process relies heavily on accurate analyses, KOJAK’s 
EXPERT and Paradyn’s W3 were closely investigated with 
respect to UPC and SHMEM.  Due to their strong depend-
ency to their respective tools, these components cannot easily 
be reused separately from the rest of the tool.  However, 
because some of the identified bottlenecks except ones for 
point-to-point communication are applicable to UPC and 
SHMEM, we recommend reusing the underlying mecha-
nisms.  In addition, we are currently developing a model for 
implicit and one-sided communication for the purpose of 
bottleneck characterization that can be incorporated into this 
unit.  This model is necessary for the tool to perform ap-
propriate performance analyses for UPC and SHMEM. 
 
Unit interaction – This unit is used by the analysis/data man-
ager to perform specific analyses.  The analysis/data man-
ager supplies all the necessary data to the appropriate analy-
sis unit. 
 
4.3.3 Analysis/data manager unit   
This core unit manages access to all basic, composite, and 
analysis event data.  The performance data manager 
sub-unit manages the meta-data (file name, mode, etc.) for all 
trace/profile data generated.  Once this meta-data is ob-
tained, it invokes the search sub-unit to efficiently access 
data stored in a single trace file.  Finally, based on the view 
selected by the user, this unit invokes the appropriate analy-
sis units to produce analysis data. 
 
Unit interaction – This unit calls the high-level event 
read/write unit to access basic and composite event data.  It 
also invokes the analysis units, simulator, performance pre-
diction unit, and performance bottleneck detection unit to 
perform their corresponding capabilities.  In addition, this 
unit provides the necessary event data to the visualization 
manager. 
 
4.3.4 Performance prediction unit 
This extra unit is for performance prediction and optimal 
performance estimation.  In performance prediction, the 
unit statically examines the structure of the program prior to 
program execution and uses predefined models to predict the 
program performance.  In optimal performance estimation, 
the unit uses the performance data gathered during program 
execution and restructures the program to produce an “opti-

mal” version of the original program.  The performance of 
this “optimal” version is then estimated and serves as the 
based-line for the original program.  The user is then able to 
compare the performance of the original program against the 
“optimal” version to evaluate the quality of their program. 
 
Reusability evaluation – The majority of the performance 
prediction models, such as the various LogP and BSP models, 
evaluated are either too simplistic or require a great deal of 
user interaction to function correctly.  Among the models, 
lost cycles analysis [35] looks promising as it is easy to im-
plement and it presents an easy-to-understand metaphor that 
illustrates where performance is being lost.  However, one 
problem that will need to be addressed before implementing 
this strategy is how to report lost cycles with a granularity 
finer than at the application level.  Another promising pre-
diction model is Adve’s deterministic task graphs [36], as it 
provide a relatively low-cost solution for performance pre-
diction. 
 
Unit interaction – This unit is used by the analysis/data man-
ager. 
 
4.3.5 Performance bottleneck detection unit 
This extra unit is responsible for the automatic identification 
of performance bottlenecks within the program.  Using all 
available data, it checks to see if any of the predefined per-
formance bottleneck patterns are observed. 
 
Reusability evaluation – As mentioned in the reusability 
evaluation of analysis units (section. 4.3.2), neither Paradyn’s 
W3 model nor KOJAK’s EXPERT is sufficient for bottleneck 
detection in UPC and SHMEM. 
 
Unit interaction – This unit is used by the analysis/data man-
ager. 
 
4.3.6 Simulator 
This extra unit enables the simulation of a user program 
under different system architectures.  Since most users are 
interested in improving program performance on a particular 
architecture, the development of this unit is a low priority. 
 
Unit interaction – This unit is used by the analysis/data man-
ager to start simulations. 
 
4.4 Presentation Module 
This is the only module in the system that is fully exposed to 
the user.  The presentation module is also used to facilitate 
program instrumentation and data visualization both before 
and after program execution. 
 
4.4.1 Input interface unit 
The user interface of the tool is a core unit and is used to 
facilitate code instrumentation before program execution, 
data processing/managing after program execution, and view 
selection before and after program execution.  The com-
mand-line interface will first be defined based on established 
standards to minimize the time needed to learn to use the tool.  
Once completed, the graphical interface will be developed 



completely based on the command-line interface.  This 
ensures that both interfaces will provide the same 
functionality, and will also reduce the number of changes 
required when modification to the interface is needed. 
 
Reusability evaluation - SvPablo's primary interface simpli-
fies user specification of source code instrumentation points, 
but uses a built-in parser that would be difficult to maintain.  
Tool Gear, a part of mpiP, provides an infrastructure for 
building performance data viewers that can communicate 
with a separate data collector.  However, on platforms 
without DPCL (a major component of Tool Gear), the de-
velopers must create their own collector, and the usefulness 
of the infrastructure for use in post-mortem analysis is lim-
ited. 
 
Unit interaction – This unit interacts with the source instru-
mentation manager prior to program execution.  It also fa-
cilitates view selection in the visualization manager and basic 
event data management in event file manager. 
 
4.4.2 Visualization manager unit  
These core units are responsible for generation of various 
visualizations from event data (all types).  Useful visualiza-
tions featured in existing performance tools include timeline 
display, call-graph tree, speedup chart, communication vol-
ume display, and array placement display.  In addition, new 
user-defined views can be added through the plug-in view 
interface. 
 
Reusability evaluation – None of the tools we evaluated pro-
vide a complete solution.  Jumpshot provides an excellent 
timeline display visualization but lacks support for a profil-
ing information display.  TAU's Paraprof features a diverse 
set of visualizations for profile data, but relies on other tools 
for trace visualization.  KOJAK's CUBE features an innova-
tive browser for profile data extracted from a trace, but does 
not have a timeline viewer.  HPC Toolkit also provides a 
useful display, integrating profile and source code correlation 
information, but does not support viewing traces.  
 
Unit interaction – This unit calls the analysis/data manager 
to retrieve the appropriate data.  It also interacts with the 
input interface unit for view selection. 
 
4.5 Optimization Module 
Units in the optimization module facilitate the optimization 
process that is often performed by the user by automating 
certain tasks.  Units in the module can either be completely 
hidden from the user or exposed to the user. 
 
4.5.1 Performance bottleneck resolution unit 
This extra unit is responsible for automatic or semi-automatic 
bottleneck resolution after a bottleneck has been identified.  
No tool in existence currently provides this capability and the 
feasibility of this unit is still under investigation. 
Unit interaction – This unit interacts with the performance 
bottleneck detection unit. 
 
 

5.  CONCLUSIONS 
In this paper, a framework for a UPC and SHMEM perform-
ance analysis tool based on important findings from our tool 
evaluation, language analysis, and usability study was pre-
sented.  Units in the instrumentation, measurement, analysis, 
presentation, and optimization modules were discussed in 
terms of their primary functionalities, alternative develop-
ment options, and reusability evaluation of appropriate com-
ponents. 
 
Our framework specifically targets global-memory parallel 
languages such as UPC and SHMEM but can also be adopted 
for the majority of parallel languages.  The major difference 
between our framework and the existing designs is the reali-
zation for the need to support the tracking and analysis of 
implicit and one-sided communication.  Without a well 
formulated model, no tool can work well with these lan-
guages.  Another important realization is the need for com-
piler developers to support a UPC performance interface, 
however, the details of this interface are beyond the scope of 
this paper. 
 
The implementation of the UPC performance interface and 
the development of an implicit and one-sided communication 
model for bottleneck characterization are currently underway.  
A working prototype based on this framework is scheduled 
for beta-release in late 2006. 
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