
Accelerating Applications at Scale Using One-Sided
Communication

Hongzhang Shan, Brian Austin, Nicholas J. Wright, Erich Strohmaier,
John Shalf and Katherine Yelick

CRD and NERSC
Lawrence Berkeley National Laboratory, Berkeley, CA 94720

hshan, baustin, njwright, estrohmaier, jshalf, kayelick@lbl.gov

Abstract—The lower overhead associated with one-sided mes-
saging as compared to traditional two-sided communication has
the potential to increase the performance at scale of scientific
applications by increasing the effective network bandwidth and
reducing synchronization overheads. In this work, we investigate
both the programming effort required to modify existing MPI
applications to exploit one-sided messaging using PGAS lan-
guages, and the resulting performance implications. In particular,
we modify the MILC and IMPACT-T applications to use the
one-sided communication features of Unified Parallel C (UPC)
and coarray Fortran (CAF) languages respectively. Only modest
modifications to the source code are required where fewer than
100 lines of the source code out of 70,000 need to be changed for
each application. We show that performance gains of more than
50% can be achieved at scale, with the largest benefits realized
at the highest concurrencies (32,768 cores).

I. INTRODUCTION

With the advent of petascale computing platforms, the num-
ber of cores inside a compute node and the number of nodes
across the whole system have increased dramatically, and this
trend, of greater and greater parallelism, seems likely to con-
tinue onto foreseeable exascale systems. The legacy MPI pro-
gramming model has started to face challenges to efficiently
exploit such massive and hierarchical parallelism [10], [30],
[9]. These challenges include a reduced amount of memory per
core, reduced memory and network bandwidth per core, a lack
of mechanisms to express parallelism inside a private address
space, and the inefficiency of using two-sided messages to
handle large amounts of fine-grain communication. To address
these challenges, researchers are starting to investigate other
programming models [15]. Among these future programming
models, the Partitioned Global Address Space (PGAS) family
of languages, in this work represented by CoArray Fortran
(CAF) [24] and Unified Parallel C (UPC) [3], have attracted
great attention.

A big difference between MPI and PGAS languages is
that PGAS languages provide a global shared address space
which enables a thread to name and access distributed data
structures directly. Remote data can be accessed either im-
plicitly (through assignment statements that will eventually be
translated into one-sided messages by the compiler) or explicit
one-sided message functions. One-sided communications are
also supported by MPI-2 [20], although we do not explore

their use in this paper. The principle reason is that performance
measurements on our experimental platform show that MPI-2
one-sided performs significantly worse than PGAS and in fact
worse than the MPI two-sided.

CAF and UPC have both been around for a decade or so.
Neither of them however has been widely adopted by the
user community; partly because of the lack of a developer
environment, and partly because of the lack of convincing
performance results for real applications, especially at large-
scale, that demonstrate why they are viable (or superior)
alternatives to the MPI programming model.

In our earlier work [28], we investigated the programming
and performance differences between PGAS languages (UPC
and CAF) and MPI using micro benchmarks and the FFT
benchmark from the NAS suite on a Cray XE6 platform. In
this work we study real, large-scale scientific applications. We
have selected two, MILC [18] and IMPACT-T [26], which
are two important consumers of computing cycles on NERSC
(and other) platforms. IMPACT-T simulates the dynamics
of a beam of charged particles within a particle accelerator
and MILC is developed to study quantum chromodynamics
within the framework of lattice gauge theory to understand
the strong dynamics of quarks and gluons. Both applications
were originally developed in the MPI programming model.

Instead of developing PGAS implementations from scratch,
we incrementally replace the MPI communication with one-
sided communication features of UPC or CAF. The purpose
is to minimize programming effort and to demonstrate the
benefits of one-sided messaging without commingling the
results with other scalar code optimizations or changes to the
algorithm.

To motivate one-sided messaging, we also show messaging
rate results collected for both MPI and CAF on the Cray
XE6 platform. Similar results have been reported earlier [28].
However, the previous results were collected under a uni-
directional communication pattern, which does not reflect with
the scientific applications we have chosen. Therefore, we
changed the micro benchmark code accordingly and measured
the performance using bi-directional communication patterns.
Due to the anticipated reduction in memory per core on
future exascale platforms, messaging rate is likely to become
an increasingly important performance metric, especially for

small messages.
The principle contributions of this paper are

• We quantify the potential performance benefits of one-
sided communication as compared to MPI for a bidirec-
tional communication pattern on a Cray XE6 platform
and examine the dependence of this on message size.

• We show how to minimally modify two existing MPI-
based scientific applications, MILC and IMPACT-T , in
order to exploit the performance benefits of the one-sided
communication primitives of UPC and CAF languages
respectively.

• We show that the naively modified version of the MILC
code, which uses global barrier synchronization in or-
der to ensure data consistency, has performance worse
than the original MPI version. By using point-to-point
synchronization instead we improve the performance sig-
nificantly, with the largest performance benefits demon-
strated at the largest concurrencies. Our results show that
at 32K cores the one-sided UPC version of the code is
1.5 times faster than the original MPI version.

• Our analysis indicates that the faster performance of the
one-sided communication versions of the MILC code
using UPC is due to the greater effective bandwidth
it achieves at the message sizes of interest. The lower
overhead of one-sided messaging achieves a greater mes-
saging rate than is achievable using a 2-sided messaging
protocol.

• We show that by modifying the dominant communication
kernel in the IMPACT-T code to use CAF we are able to
make the performance of the entire code 1.18 times faster
than the MPI one at 16K cores, with the performance of
the kernel itself 1.5 times faster.

The rest of the paper is organized as follows. Section II
discusses the approach we used to modify IMPACT-T and
MILC to exploit the one-sided communication features of
PGAS languages. Section III describes the Cray XE6 experi-
mental platform and the Gemini interconnect. Our messaging
rate micro benchmark is described in Section IV. In Section V,
we describe in detail the code changes to modify MILC to use
UPC one-sided communication and compare the performance
and scalability between the UPC and MPI implementations.
Similarly in Section VI, we discuss how IMPACT-T has been
modified to use CAF and the corresponding performance
changes. Related work is discussed in Section VII. Finally we
summarize our conclusions and future work in Section VIII.

II. APPROACH

In this section we describe the general approach we took to
modify each of the applications to exploit the one-sided com-
munication features of UPC and CAF. We use an incremental
approach to modify IMPACT-T and MILC, taking advantage
of the interoperability of MPI with PGAS languages on the
Cray XE6. The following are the main steps we take to modify
MPI applications to use the one-sided communication features
of UPC and CAF:

1) Identify the communication performance critical piece
of the application and the corresponding communication
related variables and change their definition from local
in MPI to global definitions (coarray in CAF and shared
in UPC). For CAF, the coarray size needs to be the
same across all images, whether they are dynamically
allocated or statically defined. For UPC, this is not
necessary. However, we need to define the data locality
for the shared variables. A block size can be used to
control how the shared data will be distributed cyclically
across UPC threads.

2) Allocate memory space for dynamically allocated data.
In CAF, the allocate function can be used to allocate
space for coarrays. In UPC, different functions may be
called depending on the desired data affinity.

3) Replace the MPI sending/receiving functions with data
assignment statements which will be translated into one-
sided put or get operations by the compiler. The granu-
larity of the assignment statement can be used to control
the message sizes. UPC also provides corresponding
one-sided put and get functions. In UPC, non blocking
put and get functions are provided on by the Cray
compiler although they are not in the UPC standard.
In CAF, the compiler directive pgas defer sync can be
used to delay the synchronization of the PGAS data
references until the next synchronization instruction.

4) Add synchronization when necessary to maintain data
consistency and guarantee data correctness. This is
usually needed before get or after put operations. For
example, a thread has to make sure that the correct data
has been placed in the source buffer by another thread
before it initiates a get operation.

This incremental approach enables us to modify large
application codes to exploit one-sided communication with
a minimum of programming effort. Such an approach is
essential for a new programming model to succeed, because
a huge majority of existing scientific applications running on
high-performance computing platforms today are developed
in message passing style, whether directly or not [9]. A more
radical approach is to rewrite the full applications to exploit a
fine-grained communication pattern. However, this approach
requires substantial programming effort and has not been
pursued here as this work is focused upon investigating the
performance advantages of one-sided communication.

III. EXPERIMENTAL PLATFORM

Our work was performed on a Cray XE6 platform, called
Hopper, which is located at NERSC and consists of 6,384
dual-socket nodes each with 32GB of memory. Each socket
within a node contains an AMD “Magny-Cours” processor
with 12 cores running at 2.1 GHz. Each Magny-Cours package
is itself a MCM (Multi-Chip Module) containing two hex-
core dies connected via hyper-transport. (See Fig. 1.) Each
die has its own memory controller that is connected to two 4-
GB DIMMS. This means each node can effectively be viewed
as having four chips and there are large potential performance

penalties for crossing the NUMA domains. Every pair of nodes
is connected via hypertransport to a Cray Gemini network
chip. Hopper’s Gemini chips collectively form a 17x8x24 3-D
torus. In this work we used the Cray compiler version 8.0.2
which supports both Coarray Fortran and Unified Parallel C.

Fig. 1. The node architecture of Hopper.

A. Gemini

The defining feature of the Cray XE6 architecture is the
Gemini interconnect, which provides hardware support for
global address spaces. There are two mechanisms to transfer
the internode messages using one-sided communication with
Gemini: Fast Memory Access (FMA) and Block Transfer En-
gine (BTE). The FMA transport mechanism involves the CPU,
has low latency and allows more than one transfer to be active
at the same time. Transfers using the BTE are performed by
the Gemini network chip, asynchronously with CPU so that the
communication and computation can overlap. In general, FMA
is used to transfer short messages and BTE for long messages.
The point at which this transition occurs is controlled by
the environment variable MPICH_GNI_RDMA_THRESHOLD
for MPI and by PGAS_OFFLOAD_THRESHOLD for PGAS
languages. The torus in the XE6 is asymmetrical in its perfor-
mance capabilities, the links in the X and the Z directions are
capable of double the bandwidth of the Y (9.4 GB/s vs 4.7
GB/s). The injection bandwidth of a single node is 6.1GB/s
(peak).

IV. MESSAGING RATES

Measuring the messaging rate is important to determine the
viability of interconnects on HPC platforms, especially for
one-sided and PGAS programming models [29]. As we move
closer to exascale we expect this to increase in importance
as memory constraints are likely to result in more and more
strong-scaled problems.

In our earlier work [28], we have measured the messaging
rate performance of the Gemini interconnect using a uni-
directional communication pattern. In this section, we report
the performance results using a bi-directional communication
pattern, which matches our selected applications more closely.

A. Implementation

The MPI messaging rate code was obtained from OSU
Micro benchmark suite [21]. It was originally designed to
measure uni-directional performance. Here we changed the
code slightly so that it can be used to measure the bi-
directional messaging rates. The codes are executed using two
sets of processes, one on each node. The set of processes
on node A simultaneously send messages to their partners on
node B individually, and vice versa. In the MPI version, a
process sends a series of same size messages to its partner
using nonblocking MPI Isend. The number of messages is
determined by a variable called “window size” and our ex-
periments show that setting the window size to 64 is large
enough to achieve converged performance. Same number of
MPI Irecvs are posted in advance to receive the messages.
Finally, MPI Waitall is used to wait for all messages to finish.
This process will be repeated in a certain number of times.
In the CAF implementation, the nonblocking MPI Isend and
MPI Irecv functions are substituted by a loop with direct
load/store assignment (corresponding to one-sided put oper-
ation). However for each loop iteration the starting address is
incremented by one so that the data sent is not contiguous
between loop iterations. (This prevents the compiler collaps-
ing the loop over messages into one message.) In order to
ensure that non-blocking communication was used the delayed
synchronization compiler directive pgas defer sync was used.
Then, at the end, a synchronization call is made to ensure all
data has been received.

B. Performance

The codes are executed using two sets of processes, one
set on each node. The messaging rate between two nodes
using 1, 6, and 24 communicating pairs per node for MPI
and CAF are shown in Fig. 2 and 3 respectively. (The two
nodes have a 1-hop network distance.) For small messages,
MPI achieves the best performance when 6 pairs are used, a
rate of 10 million messages per second. Using 24 pairs, the
message rate drops significantly. More contention for a specific
hardware resources causes big performance degradation. On
the contrary, the message rates of CAF for small messages
increase steadily with the number of communicating pairs
used. The best performance is obtained when 24 pairs are used,
which is about 7.4 times better than the best MPI message rate.
CAF clearly shows much better scalability for small messages.
However, when message size becomes larger than 64 bytes,
the performance for 24 pairs also drops below of that for 6
pairs.

For very small messages aggregation is still beneficial. As
shown in Fig. 3, the messaging rate for 8-byte and 16-byte
messages is very close, thus using 16-byte messages will
achieve almost double the bandwidth of 8-byte messages. Even
so, because of the increased messaging rate, in the latency limit
the PGAS effective bandwidth for 8-bytes messages is about
7.4× the MPI one.

The corresponding bandwidths for the message rates shown
in Fig. 2 and 3 are shown in Fig. 4. For clarity, only results

0	

2	

4	

6	

8	

10	

12	

8	 16
	

32
	

64
	

12
8	

25
6	

51
2	

10
24
	

20
48
	

40
96
	

81
92
	

16
38
4	

32
76
8	

65
53
6	

13
10
72
	

26
21
44
	

52
42
88
	

10
48
57
6	

20
97
15
2	

N
o.
	 o
f	 M

es
sa
ge
s	
	

(x
10
e6
)	 /
	 S
ec
	

Message	 Sizes	 (Bytes)	

6	 Pairs	
24	 Pairs	
1	 Pair	

Fig. 2. The bi-directional messaging rate for MPI using 1, 6, and 24 pairs
per node.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

8	 16
	

32
	

64
	

12
8	

25
6	

51
2	

10
24
	

20
48
	

40
96
	

81
92
	

16
38
4	

32
76
8	

65
53
6	

13
10
72
	

26
21
44
	

52
42
88
	

10
48
57
6	

20
97
15
2	

N
o.
	 o
f	 M

es
sa
ge
s	
	

(x
10
e6
)	 /
	 S
ec
	

Message	 Sizes	 (Bytes)	

24	 Pairs	

6	 Pairs	

1	 Pair	

Fig. 3. The bi-directional messaging rate for CAF using 1, 6, and 24 pairs
per node.

for 6 pairs and 24 pairs are shown. The CAF performance
increases much faster with increasing message size. The
main performance difference between CAF and MPI occurs
for small message sizes where the benefits of single-sided
messaging are mostly strongly felt. For a 32 byte message,
using 24 pairs, the CAF performance has reached around
2GB/s, which is much higher than the corresponding MPI
bandwidth of 0.1 GB/s.

There is a performance drop for CAF when the message size
reaches 4096 bytes, which is the threshold in CAF to switch
from the FMA mechanism to using the BTE. The startup cost
for the BTE is the reason for the sudden performance drop,
which cannot be amortized well for such small message sizes.
We also note that as more communicating pairs are used, the
phenomenon becomes more explicit, which is simply because
the BTE processes requests through the kernel and therefore
sequentially which means the startup cost will be accumulated
as more communicating pairs are used. For large messages,
CAF usually performs better or close than MPI except for

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

8	 16
	

32
	

64
	

12
8	

25
6	

51
2	

10
24
	

20
48
	

40
96
	

81
92
	

16
38
4	

32
76
8	

65
53
6	

13
10
72
	

26
21
44
	

52
42
88
	

10
48
57
6	

20
97
15
2	

A
gg
re
ga
te
	 B
W
	 (G

B/
s)
	

Message	 Sizes	 (Bytes)	

CAF	 6	 Pairs	
MPI	 6	 Pairs	
CAF	 24	 Pairs	
MPI	 24	 Pairs	

Fig. 4. The corresponding bandwidth of MPI and CAF for message rates in
Fig. 2 and 3 for 6 and 24 pairs.

message sizes between 512KB and 1MB, where the CAF
has another sudden performance drop due to protocol change.
Compared the performances of 6 pairs and 24 pairs, we can
find that for most cases using 6 pairs actually delivers better
performance than using 24 pairs. This is probably due to that
using 24 pairs can exhaust the interconnect resources very fast
and causes more contention.

We also performed the same measurements using UPC and
found that it delivers almost identical performance to CAF.
(Results not shown.)

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

8	 16
	

32
	

64
	

12
8	

25
6	

51
2	

10
24
	

20
48
	

40
96
	

81
92
	

16
38
4	

32
76
8	

65
53
6	

13
10
72
	

26
21
44
	

52
42
88
	

10
48
57
6	

20
97
15
2	

A
gg
re
ga
te
	 B
W
	 (G

B/
s)
	

Message	 Size	 (Bytes)	

MPI	 Two-‐Sided	
MPI	 One-‐sided	

Fig. 5. The corresponding bandwidth for MPI one-sided and two-sided using
6 pairs per node.

We also developed the messaging rate benchmark in MPI-2
one-sided using MPI Put. The results in Fig 5 show that MPI-
2 one-sided performs poorly overall. Both MPI one-sided and
two-sided deliver similar performance for small messages up
to 4096 bytes, but, for messages larger than 4096 bytes, the
MPI one-sided implementation performs significantly worse
than the MPI two-sided one, by greater than 2.5x. Thus it is
unlikely any performance advantage will be observed using
MPI-2 one-sided at this time, and we do not explore it further

here. Performance measurements using the OSU MPI Put and
MPIGet benchmarks [21] show same results as our messaging
rate benchmark.

V. MILC

MILC is a large scale numerical simulation code developed
by MIMD Lattice Computation (MILC) Collaboration [18] to
study quantum chromodynamics (QCD). The goal of these
calculations is to understand the strong dynamics of quarks and
gluons to extract the fundamental parameters for the Standard
Model of particle physics. The basic structure of the problem
is a four-dimensional rectangular lattice connected with links.
The 4-D lattice encompasses the three continuous dimensions
of space (X, Y, Z) and a fourth dimension of time (T). The
most time-consuming part of MILC is the computation of the
force coming from the dynamical quark fields, which is a
non-local force on the gluon fields. Computation of this force
requires solution of a large Hermitian positive-definite sparse
matrix problem, which is solved using the conjugate-gradient
algorithm [19].

In this work we use v 7.6.0.1 of the MILC code which is
part of the NERSC6 benchmark suite. We use two problem
sizes defined as 323x72 and 643x144 global lattices. Each has
2 quark flavors, four trajectories and 15 steps per trajectory;
this results in over 35,000 CG iterations per run.

A. Parallel Implementation

MILC is developed to be run on large scale computing
platforms. The global lattice is evenly divided among the
processes and each process is assigned a sub-lattice. The
partition method is called “Hyper Prime”, which partitions the
longest dimension first. In turn, it prefers to divide dimensions
that have already been divided to reduce off-node directions.
In a four-dimensional lattice, each site has eight nearest
neighbors, four in the positive directions and four in the
negative directions. In order to reduce the error caused by
the “lattice distance”, the third nearest neighbors also need to
be fetched. If the nearest neighbor of a site does not belong
to the same process, communication via message passing is
used.

Once the partition is defined, the message patterns and
message sizes become fixed. The operations to access data of
the nearest neighbor sites are organized as gather operations.
There are total 16 gather operations, 8 for the nearest neigh-
bors (4 for positive directions and 4 for negative directions)
and 8 for the 3rd nearest neighbors. Each gather operation
is assigned a pointer array giving either the address of local
field data or address of the remote data in the message receive
buffer. Prior to each gather operation, a data structure is built
containing information about what sites have to be sent to
other processes or received from other processes. Data from
those sites destined for the same remote process will be
merged and sent in a single message.

All the communications in MILC are organized into one
source file and the same interfaces are used. The purpose is
to limit the changes into one file if different communication

models or algorithms are used and only the underlying imple-
mentations need to be replaced.

B. MPI Implementation

The communication in MILC is organized based on mes-
sage passing. Therefore, implementation using MPI does not
require code modification. MPI Isend and MPI Irecv are used
in the function do_gather to carry out the non-blocking
functions. MPI Waitall is used in wait_gather to wait
for all messages to finish. The message tags used in the
MPI Isend and MPI Irecv functions are used to differentiate
gather operations from different directions and match the
send and receive messages. Typically in between do_gather
and wait_gather calls some computation is performed in
order to maximize the potential communication/computation
overlap. MPI is the only programming model currently in
production use for MILC on large-scale distributed platforms.

C. UPC Implementation

In this section, we will describe in detail how we modified
MILC code from MPI to UPC using an incremental approach.
Our first target is to replace the nonblocking MPI functions
in do_gather using one-sided get or put operations. In
the standard UPC, only blocking functions upc_memget
and upc_memput are defined. However, on the Cray
XE6, Cray provides corresponding non-blocking functions
upc_memget_nb and upc_memput_nb. These functions
return a upc handle which can be used by upc_sync_nb
to ensure the function has finished. The potential advantage
of using non-blocking functions is to overlap the communica-
tion and computation. We choose to use upc_memget_nb
to replace the MPI Isend and MPI Irecv in do_gather
and upc_sync_nb to replace function MPI Waitall in
wait_gather.

A major difference between one-sided and two-sided mes-
saging is that the one-sided functions need to know the
addresses of both the source and destination buffers, though
they do not belong to the same thread. One of them should
be a global address. Upc_memget_nb has three parame-
ters, source, destination, and message size. The
destination and message size can be obtained from
the parameters of MPI Irecv. However, the source parameter
can not be directly copied from the parameters of MPI Isend.
We need to promote it from local variables in MPI to shared
variables in UPC.

In MPI implementation, the source buffer is dynamically
allocated in function prepare_gather. In UPC, if we
follow the same approach to dynamically allocate the buffer,
the thread which initiated the get call has to get this address
first from the thread which actually allocates the buffer. As a
result, one more round of communication is required. To avoid
such complexity, we allocate the source buffer in advance,
as the fixed communication patterns of MILC enable us to
compute the buffer size from the beginning. Each gather
operation needs at least one buffer associated with it. As there
are total 16 gather operations, eight for the nearest neighbor

in positive and negative X,Y,Z,T directions and eight for the
3rd nearest neighbors. In the conjugate-gradient solver, all 16
gather operations will be on the fly and two fields need to be
accessed at the same time, therefore, we associate two buffers
for each gather operation. The source buffers are defined
as follows in our UPC implementation and allocated using
upc_alloc which allocates the shared space with affinity to
the calling thread.

shared [] char *shared upcbuf[THREADS][32];

Due to the one-sided messages, the buffer management
in UPC becomes more explicit while in MPI, the matching
of sending and receiving buffers is implicitly done through
message tags and process ids.

Another difference is that before calling upc_memget_nb
to fetch the data, users have to guarantee that the data in the
shared source buffer has become available. For this purpose,
our first method is to call a upc_barrier before calling
upc_memget_nb to assure the data correctness.

Surprisingly, the upc_barrier turns out to be very ex-
pensive on Cray XE6 (see next subsection) though the size
of the sub lattice assigned to the UPC threads are equal,
and thus the code should be load-balanced. Further study
reveals that this is the due to topology effects on the torus
interconnect; some messages for the barrier synchronization
have to go through a longer path than others. To avoid the
expensive barrier operation, we implement a point-to-point
synchronization through volatile shared variables, thanks to
the shared address space provided by UPC. A UPC thread
can spin on a volatile shared variable to wait for its content to
be changed before calling get to fetch the data. On the other
side, once the data has been prepared, the thread responsible
for preparing the data will notify the receiver by changing
the contents of the corresponding volatile shared variable.
This optimized version is called “UPC Opt” and the above
implementation using upc barrier is called “UPC Naive”.

Compared with original MPI implementation, the to-
tal change is about 60 lines. Though the number of
changed lines is small, it is not straightforward to auto-
mate this process. Upc_memget_nb has three parameters,
source, destination, and message size. While the
destination and message size can be derived di-
rectly from the corresponding MPI Irecv function, finding the
matching source buffer is difficult, especially when the neigh-
bor sites for one direction lie on more than one UPC threads.
Furthermore, the source buffer is dynamically allocated in the
MPI version, it changes whenever the function prepare gather
is called. It will be challenging for an automatic program to
figure out a method to get the address.

Note that changing the code to use UPC does not change the
communication pattern. The same size point-to-point messages
are organized in the same order as in the MPI version. The
synchronization characteristics in each case are slightly differ-
ent though. In two-sided MPI, synchronization is implicit and
managed by the underlying library implementation while in
UPC it is explicit, users have to guarantee the data availability

and correctness.

D. Performance and Scalability
A performance metric sites/second has been used which

measures how many lattice sites can be processes per second.
The calculation formula is:

(Nx ×Ny ×Nz ×Nt)/TotalRunningT ime

where Nx, Ny , Nz , Nt are the lattice sizes in the X, Y, Z, and
T directions. Two global lattice sizes are used, 323 × 72 and
643×144 in X, Y, Z, and T directions, respectively. The second
lattice is 8 times larger than the first. The strong scaling results
from 512 to 32,768 cores for the small and large problems are
shown in Figs. 6 and 7 respectively.

0	

20000	

40000	

60000	

80000	

100000	

120000	

512	 1024	 2048	 4096	 8192	 16384	 32768	

Si
te
s	
/	
Se
co
nd

	

Number	 of	 Cores	

UPC	 Opt	

MPI	

UPC	 Naïve	

Fig. 6. The performance of MILC for a small lattice 323 × 72.

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

800000	

512	 1024	 2048	 4096	 8192	 16384	 32768	

Si
te
s	
/	
Se
co
nd

	 	

Number	 of	 Cores	

UPC	 Opt	

MPI	

UPC	 Naïve	

Fig. 7. The performance of MILC for a large lattice 643 × 144

The UPC implementation using point-to-point synchroniza-
tion (labeled ‘UPC Opt’) performs best for both problem sizes.
When 512 cores are used, it delivers very close performance
to MPI. However, when 32,768 cores are used, the UPC
performance is 1.5 times that of the MPI implementation for
the large lattice and 2.5 times for the small lattice.

The naı̈ve UPC code always delivers the worst performance.
By examining the time breakdowns, we find that this is mainly
caused by the upc barrier operation, which becomes very
expensive, especially when the number of cores becomes large.
For example, over 70% of the total running time is consumed
by this barrier when 32,768 cores are used, even for the larger
lattice. By applying the performance tool CrayPat [6], we
found that this is mainly caused by the waiting time inside
the barrier operation to wait for all the threads to finish. But,
the higher waiting time is not caused by load imbalance, as the
workload has been perfectly partitioned among the threads. It’s
the topology effect of the torus. Some messages pass through
more interconnect hops than others.

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

1,000	 10,000	 100,000	 1,000,000	

Cu
m
ul
a&

ve
	 H
is
to
gr
am

	

Message	 Sizes	 (Bytes)	

1K	
32K	

Fig. 8. The cumulative message size distribution for lattice size 643 × 144
when 1k and 32k cores are used.

As one scales these MILC calculations to larger core counts
in strong scaling mode, the sub-lattice assigned to a core will
become smaller, causing the surface-to-volume ratio of the
local sub-lattice to increase. As a result, the total communi-
cation volume will increase with the number of cores while
the individual message size will become smaller at the same
time. Fig. 8 shows the message size transition for the large
lattice (643 × 144) when the number of cores being used
increases from 1,024 to 32,768. When 1,024 cores are used,
the message size for the gather operations range from 27KB to
880KB. When the number of cores reaches 32,768, the range
of message sizes decreases to between 1.5KB and 27KB. Thus
the performance advantage at 32,768 cores for the one-sided
UPC version as opposed to the MPI one can be understood
with reference to Fig 4. At 32,768 cores, the message sizes
are in the ‘sweet-spot’, where one-sided messaging has the
greatest performance advantage over two-sided MPI.

VI. IMPACT-T
IMPACT-T simulates the dynamics of a beam of elec-

trons (or other charged particles) within a particle accel-
erator. IMPACT-T is used for both accelerator design and
theoretical beam physics. The performance of a new (or
proposed) accelerators can be evaluated and optimized on the

basis of IMPACT-T calculations. Detailed understanding of
collective phenomena effecting beams, such as space-charge
driven microbunching, can only be acheived using large-scale
simulations with a realistic number of particles.

IMPACT-T uses the Particle-in-Cell (PIC) technique to
simulate the particles’ motion; particles move through a 3-D
phase-space and the electrostatic field is stored on a grid. Typ-
ical runs begin by sampling the initial particle positions and
velocities from a user-selected probability density function. A
two-step leapfrog algorithm with small time-step errors is then
used to integrate the particles relativistic equations of motion.
For each time-step, the positions are incremented according
to their current velocities, the electromagnetic (EM) fields
are computed at the updated positions, then the momenta are
incremented based on the EM fields. Evaluating the EM field
is the most time-consuming part of an IMPACT-T calculation.
The EM field has two components: an external field created
by the accelerating structure and the space-charge field due to
Coulomb interactions among the particles. The PIC approach
accelerates the evaluation of the space-charge field by replac-
ing direct Coulomb summation with the solution of Poisson’s
equation on a grid. IMPACT-T uses an Poisson solver based on
the Fast Fourier Transform (FFT) and an integrated Green’s
function to reduce discretization errors for cells with large
aspect ratios [26].

A. Parallel Implementation

IMPACT-T is parallelized using a 2-D domain decom-
position, whereby the computational domain is divided into
subdomains by slices through the Y and Z axes. Each process
is assigned one subdomain and is responsible for storing and
updating the particles and grid points within its subdomain.
The particle load is balanced within the sliced dimensions by
adjusting the width of each slice so that all slices have the same
number of particles. However, residual load imbalances are an
unavoidable result whenever the 3-D particle distribution func-
tions cannot be factored into three 1-D functions.1 Particles are
transferred between processes whenever they move between
subdomains, and the subdomain boundaries are periodically
recomputed to maintain optimal load balance.

The parallel algorithm involves four communication phases:
1) redistribution of subdomains to ensure load balancing,
2) particle movement between processor subdomains, 3) ex-
change of ghost cells between neighboring subdomains, and
4) solution of Poisson’s equation. Here, we port only the
Poisson equation solver because the other communication
phases scale well and typically contribute very little to the
total run time.

The Poisson solver used by IMPACT-T follows the FFT-
based approach of Hockney and Eastman[11], which requires
3-D Fourier transforms of the Green’s function and charge
density, followed by a 3-D inverse FFT of their product. The
3-D FFTs are implemented as a sequence of 1-D FFTs. In

1The condition for load balancing is actually somewhat weaker- only the
integrated 2-D PDF need be factorizable, i.e.

∫
ρ(x, y, z)dx = ρy(y)ρz(z).

the 2-D domain decomposition, one dimension of the grid is
always stored locally and contiguously, which permits each 1-
D FFT to be executed with an optimized serial algorithm. The
data must be transposed before the 1-D FFT can be applied to
another dimension. The solver’s parallel performance depends
critically on this series of parallel transposes.

B. MPI Implementation

The communication in IMPACT-T was originally imple-
mented with MPI and no changes were required for our exper-
iments. Each process is a member of two MPI communicators,
one for members of the same Y-slice, and another for members
of the same Z-slice. A parallel transpose is accomplished by
calling MPI Alltoallv within either the Y- or Z-communicator.
The performance is optimized by message aggregation: the
Green’s function and charge density buffers are merged prior
to the transpose so that both arrays can be transposed with a
single call to MPI Alltoallv.

C. CAF Implementation

The essence of our transition to CAF is, simply, to replace
the MPI Alltoallv calls with direct accesses to remote coar-
rays. Our baseline CAF implementation, “CAF-get”, uses one-
sided get operations, as shown:

DO j=1,np_comm
srcid = order_comm(j)
spos = sdispls(rank_comm+1)[srcid]
rpos = rdispls(srcid)
rnum = recvcounts(srcid)
recvbuf(rpos+1 : rpos+rnum) = &

sendbuf(spos+1 : spos+rnum)[srcid]
ENDDO

In this example, the sendbuf, sdispls, recvbuf, rdispls and
recvcounts variables have the same meanings used by the MPI
standard [20], though sdispls and sendbuf must be declared
as coarrays. Instead of an MPI communicator data structure,
we use the variables np comm, order comm, and rank comm
to store, respectively, the size of the 1-D communicator, an
ordered list of images in the communicator, and the rank of
the local image within the communicator. Deriving the values
for order comm is not straightforward as it is related with how
the global domain is partitioned along the Y and Z directions,
making this process difficult to be automated. The remaining
variables, srcid, spos, rpos and rnum, are temporary and
used only to improve readability. The sendtype and recvtype
arguments to MPI Alltoallv are not necessary, as the CAF
compiler obtains this information from the declarations of
sendbuf and recvbuf. One-sided communication also obviates
the sendcounts argument. The restriction that coarrays have
the same size for all images introduces a minor complication
relative to MPI, which is easily overcome by determining the
maximum size before allocating the coarrays.

An improved CAF implementation, “CAF-opt”, incorpo-
rates two optimizations. First, the loop order is altered so that
image j gets data from image order comm(j) first, followed by

order comm(j+1) and so forth. This avoids the circumstance
where all images get from the same image simultaneously.
Second, each get is split into smaller messages (blocks) in
order to maximize the effective bandwidth as shown in Fig. 4.

We have also implemented the baseline and optimized CAF
algorithms using put operations. The put versions performed
similarly to the get versions.

0.0	

2.0	

4.0	

6.0	

8.0	

10.0	

12.0	

14.0	

16.0	

18.0	

20.0	

512	 1024	 2048	 4096	 8192	 16384	 32768	

To
ta
l	 R

at
e	
(S
te
ps
/S
ec
on

d	
)	

Number	 of	 Cores	

CAF-‐opt	

CAF-‐get	

MPI	

Fig. 9. Strong scaling of the full IMPACT-T application using MPI, naive
CAF and optimized CAF.

D. Performance
Our IMPACT-T performance benchmark simulates 50 mil-

lion particles using a 128x128x1024 grid in the X, Y and Z
directions, respectively. The simulation lasts 400 time-steps,
and the first 100 steps, which are not representative the normal
performance and use of IMPACT-T , are excluded from our
measurements. Fig. 9 plots the strong scaling performance of
the full IMPACT-T application from 512 to 32,768 cores. At
low concurrencies, the performance of the CAF versions is not
significantly different from the MPI version. As more cores are
used, the CAF versions’ performance increase more rapidly
than the MPI code, and reaches a maximum of 18% improve-
ment at 16,384 cores. Except at the highest concurrencies, the
CAF-get performance is comparable to CAF-opt.

The performance of the transpose portion of IMPACT-T
is measured by transpose “batches” per second. A batch of
transposes consists of all the variously sized transposes during
one step of the simulation. Fig. 10 shows the strong scaling
performance of the transpose kernel. Again, there is little
difference between the MPI and CAF versions up to 2048
cores. The performance advantage of CAF increases at higher
concurrencies, up to nearly 50% at 16,384 cores. This explains
the overall performance increase observed, as the transpose
phase is approximately 45% of the total runtime.

The better performance of CAF is mainly due to the greater
effective bandwidth it achieves. By choosing a block size such
that CAF always performs better or close to MPI. we are able
to maximize the one-sided communication benefits. Also, as
the CAF version sends messages out in a round-robin fashion
we avoid causing hot spots on the network.

0.0	

5.0	

10.0	

15.0	

20.0	

25.0	

30.0	

35.0	

40.0	

45.0	

50.0	

512	 1024	 2048	 4096	 8192	 16384	 32768	

Tr
an

sp
os
e	
Ra

te
	

(B
at
ch
es
	 /
	 S
ec
on

d	
)	

Number	 of	 Cores	

CAF-‐opt	

MPI	

Fig. 10. Strong scaling of the transpose kernel in IMPACT-T using MPI and
optimized CAF implementations.

VII. RELATED WORK

The related work can be classified into two categories
based on the programming languages targeted: CAF and UPC.
Several researchers have studied how to port MPI applications
into UPC and compared their relative performance [16],
[8], [2], [14], [27], [22]. But the studies mainly focused on
synthetic benchmarks including NPB [23] and Challenge [12].
Mallon et.al. [16] evaluated the performance of MPI, OpenMP,
and UPC on a machine with 142 HP Integrity rx7640
nodes interconnected via InfiniBand. The authors claim that
MPI is the best choice to use on multicore platforms, as
it takes the highest advantage of data locality. El-Ghazawi
and Cantonnet [8] discussed UPC performance and potential
advantage using NPB applications. With proper hand tuning
and optimized collective libraries, UPC delivered comparable
performance to MPI. Shan [27] and Jin [14] also compared
the performance of NPB on several different platforms and
found that UPC delivered comparable performance to MPI.
Nishtala and other researchers [22], [2] discussed the scaling
behavior and better performance of NAS FT for UPC on
several different platforms using the Berkeley UPC compiler
with GASNET communication system. The UPC version
is developed from scratch to take advantage of the lower
overhead of the one-sided communication and the overlap
of communication and computation. Recently, UPC has been
used to study the performance of NBODY problems [32], [7].

Porting MPI applications into CAF has also been the
subject of a lot of research publications. Preissl et al. [25]
ported a communication skeleton extracted from a Gyrokinetic
Fusion Application from MPI into CAF and showed the better
scalability of the new CAF algorithm. However, their focus is
to develop an efficient new communication algorithm by taking
advantage of the one-sided communication provided by CAF.
A radical approach has been taken which requires program-
mers to understand every detail of the algorithm. Critian et
al. examined the performance for MG, CG, BT, and SP from
the NAS parallel benchmark suite and the Sweep3D neutron

transport benchmark on several small clusters. The CAF
programs show nearly equal or slightly better performance
than their MPI counterparts [4], [5]. Recently, the Challenge
benchmark suite [12] has been converted into CAF programs
using CAF2.0 [17] and tested on a Cray XT4 platform [13].
The authors have scaled the benchmark applications to 4096
CPU cores and shown CAF2.0 is a viable PGAS programming
model for scalable parallel computing. Barrett [1] studied dif-
ferent Co-array Fortran implementations of Finite Differencing
Methods on Cray X1 and found that CAF exhibits better
performance for smaller grid sizes and similar results for larger
ones. Similarly, Worley and Levesque [31] also found using
CAF for latency sensitive communications for the Parallel
Ocean Program can improve the performance and scalability.

The principal difference of our study is that we focus on how
to modify real scientific applications written in the two-sided
MPI programming model into one-sided communication with
minimal programming effort. Secondly, we are more interested
in results on large-scaling computing platforms than on small
clusters to prepare us for the future exascale platforms.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we selected two real scientific applications,
MILC and IMPACT-T , and investigated the performance
benefits and the programming effort associated with replacing
their two-sided MPI communication with one-sided commu-
nication expressed by UPC and CAF. The results indicate that
naive implementations of the one-sided algorithms may not
perform as well as the corresponding MPI versions; the ex-
pense of the addition of global synchronization to ensure data
correctness outweighs the performance gain due to the one-
sided communication itself. However, by employing synchro-
nization strength reduction (replacing global synchronization
with cheaper point-to-point synchronization) the one-sided
versions outperform the MPI two-sided versions significantly,
especially at large-scale. For MILC we find that it performs
over 1.5 times better using one-sided communication via UPC
than the original MPI version running on 32K cores of a Cray
XE6. Our analysis of the MILC message sizes and the message
rate microbenchmark indicate that the optimized UPC MILC
code has the largest performance advantage over the MPI code
when the message sizes allow UPC to provide the greatest
increase in effective bandwidth. For IMPACT-T we find the
one-sided version performs 1.2 times better at 16K cores than
the original MPI one, and the transpose kernel of the code,
which is the dominant communication routine in the code,
performs 1.5 times faster.

The programming effort needed for partial adoption of UPC
or CAF is minimal. We changed fewer than 100 lines of the
source code for each application, both of which have over
70,000 lines of code in total. At this point in time it seems
that automating this process will be difficult. However, we
think that the process we have outlined, to identify the crucial
communication routines of an application and to replace those
with one-sided communication routines is straightforward.
This procedure should allow application developers to gain

performance benefits of one-sided communication today, as
well as allow them to begin to explore potentially greater per-
formance gains from moving to more fine-grained messaging
schemes [25].

The performance of the naively programmed PGAS versions
was comparable (or worse) than the MPI two-sided versions.
However, by applying good PGAS programming practices
we achieved significantly greater performance. Thus although
some performance tuning was required, the effort was not
significant, and certainly no greater than that required to tune
the performance of an MPI two-sided application.

In future work we plan to focus upon developing better
communication optimizations based on one-sided communi-
cation to address problems such as load imbalance, as well
as to apply the techniques we have outlined here to more
applications. Also we plan to monitor the progress of the MPI-
3 one-sided standard, and revisit the question of whether MPI
one-sided can achieve similar performance to that of PGAS
when appropriate.

IX. ACKNOWLEDGEMENTS

We would like to thank Nathan Wichmann of Cray for
useful comments and suggestions. All authors from Lawrence
Berkeley National Laboratory were supported by the Office of
Advanced Scientific Computing Research in the Department
of Energy Office of Science under contract number DE-AC02-
05CH11231. This research used resources of the National En-
ergy Research Scientific Computing Center (NERSC), which
is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] BARRETT, R. Co-Array Fortran Experiences with Finite Differencing
Methods. In The 48th Cray User Group meeting, Lugano, Italy (May
2006).

[2] BELL, C., BONACHEA, D., NISHTALA, R., AND YELICK, K. Opti-
mizing Bandwidth Limited Problems Using One-Sided Communication
and Overlap. In 20th International Parallel and Distributed Processing
Symposium IPDPS (April 2006).

[3] CARLSON, W. W., DRAPER, J. M., CULLER, D. E., YELICK, K.,
BROOKS, E., AND WARREN, K. Introduction to UPC and language
specification. In Tech. Rep. CCS-TR-99-157 May (May 1999).

[4] COARFA, C., DOTSENKO, Y., ECKHARDT, J., AND CRUMMEY, J. M.
Co-Array fortran performance and potential: An NPB experimental
study. In In Proc. of the 16th Intl. Workshop on Languages and
Compilers for Parallel Computing (2003).

[5] COARFA, C., DOTSENKO, Y., AND MELLOR-CRUMMEY, J. Experi-
ences with sweep3d implementations in co-array fortran. In The Journal
of Supercomputing, 36:101-121 (May 2006).

[6] CrayPat. http://docs.cray.com/books/S-2315-50/html-S-2315-50/
z1055157958smg.html.

[7] DINAN, J., BALAJI, P., LUSK, E., SADAYAPPAN, P., AND THAKUR,
R. Hybrid Parallel Programming with MPI and Unified parallel C. In
Proceedings of the 7th ACM International Conference on Computing
Frontiers (2010).

[8] EL-GHAZAWI, T., AND CANTONNET, F. UPC performance and poten-
tial: A NPB experimental study. In In Supercomputing (2002).

[9] ASCAC Subcommittee Report: The Opportunities and Challenges of
Exascale Computing. http://science.energy.gov/∼/media/ascr/ascac/pdf/
reports/Exascale subcommittee report.pdf.

[10] GEIST, A. Sustained Petascale: The Next MPI Challenge. In Eu-
roPVMMPI (October 2007).

[11] HOCKNEY, R. W., AND EASTWOOD, J. W. Computer Simulation Using
Particles. Taylor & Francis, Jan. 1989.

[12] HPC Challenge Benchmark. http://icl.cs.utk.edu/hpcc/index.html.
[13] JIN, G., MELLOR-CRUMMEY, J., ADHIANTO, L., III, W. N. S., AND

YANG, C. Implementation and Performance Evaluation of the HPC
Challenge Benchmarks in Coarray Fortran 2.0. In 25th IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS),
Anchorage, AK. May 16-20, (2011).

[14] JIN, H., HOOD, R., AND MEHROTA, P. A practical study of UPC with
the NAS parallel benchmarks. In Partitioned Global Address Space
Languages (Oct., 2009).

[15] Extrascale Programming Challenges Workshop Report.
http://science.energy.gov/∼/media/ascr/pdf/program-documents/docs/
ProgrammingChallengesWorkshopReport.pdf.

[16] MALLON, D. A., TABOADA, G. L., TEIJEIRO, C., TOURINO, J.,
FRAGUELA, B. B., GOMEZ, A., DOALLO, R., AND MOURINO, J. C.
Performance evaluation of MPI, UPC, and OpenMP on multicore
architectures. In Euro PVM/MPI 2009 (Sept 7-10, 2009).

[17] MELLOR-CRUMMEY, J., ADHIANTO, L., III, W. N. S., AND JIN, G. A
new vision for Coarray Fortran. In In Proceedings of the 3rd Conference
on Partitioned Global Address Space Programming Models, PGAS ’09,
pages 5:1-5:9, New York, NY, USA (2009).

[18] MIMD Lattice Computation (MILC) Collaboration. http://physics.
indiana.edu/∼sg/milc.html.

[19] MONTVAY, I., AND MUNSTER, G. Quantum Fields on a Lattice. In
Cambridge University Press, Cambridge (1994).

[20] MPI-2: Extensions to the Message Passing Interface. http://www.
mpi-forum.org/docs/mpi-20-html/mpi2-report.html.

[21] Osu micro-benchmark. http://mvapich.cse.ohio-state.edu/benchmarks/.
[22] NISHTALA, R., HARGROVE, P., BONACHEA, D., AND YELICK, K.

Scaling Communication-Intensive Applications on BlueGene/P Using
One-Sided Communication and Overlap. In 23rd International Parallel
and Distributed Processing Symposium (IPDPS) (2009).

[23] NAS Parallel Benchmarks. http://www.nas.nasa.gov/Resources/
Software/npb.html.

[24] NUMRICH, R. W., AND REID, J. Co-array Fortran for parallel program-
ming. In ACM SIGPLAN Fortran Forum, vol. 17, no. 2, pp. 1-31 (August
1998).

[25] PREISSL, R., WICHMANN, N., LONG, B., SHALF, J., ETHIER, S., AND
KONIGES, A. Multithreaded Global Address Space Communication
Techniques for Gyrokinetic Fusion Applications on Ultra-Scale Plat-
forms. In SC ’11 Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (November
2011).

[26] QIANG, J., LIDIA, S., RYNE, R. D., AND LIMBORG-DEPREY, C.
Three-dimensional quasistatic model for high brightness beam dynamics
simulation. Phys. Rev. ST Accel. Beams 9 (Apr 2006), 044204.

[27] SHAN, H., BLAGOJEVIC, F., MIN, S. J., HARGROVE, P., JIN, H.,
FUERLINGER, K., KONIGES, A., AND WRIGHT, N. J. A Programming
Model Performance Study Using the NAS Parallel Benchmarks. In
Scientific Programming-Exploring Languages for Expressing Medium
to Massive On-Chip Parallelism, Vol. 18, Issue 3-4 (August 2010).

[28] SHAN, H., WRIGHT, N. J., SHALF, J., YELICK, K., WAGNER, M., AND
WICHMANN, N. A preliminary evaluation of the hardware acceleration
of the cray gemini interconnect for PGAS languages and a comparison
with MPI. In In SIGMETRICS Performance Evaluation Review 40(2)
(2012).

[29] UNDERWOOD, K. D., LEVENHAGEN, M. J., AND BRIGHTWELL, R.
Evaluating NIC hardware requirements to achieve high message rate
PGAS support on multi-core processors. In SC07: Proceedings of the
2007 ACM/IEEE conference on Supercomputing. New York, NY, USA
(2007).

[30] Challenges for the Message Passing Interface in the Petaflops Era. www.
cs.uiuc.edu/homes/wgropp/bib/talks/tdata/2007/mpifuture-uiuc.pdf.

[31] WORLEY, P., AND LEVESQUE, J. The Performance Evolution of the
Parallel Ocean Program on the Cray X1. In Cray User Group Conference
(CUG) (2004).

[32] ZHANG, J., BEHZAD, B., AND SNIR, M. Optimizing the Barnes-
Hut algorithm in UPC. In SC ’11 Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis (2011).

