
1

GASP: GASP: 
A Performance Tool Interface for A Performance Tool Interface for 
Global Address Space Global Address Space 
Languages & LibrariesLanguages & Libraries

Adam Leko1, Dan Bonachea2, Hung-Hsun Su1, 
Bryan Golden1, Hans Sherburne1, Alan D. George1

1 Electrical Engineering Dept., University of Florida
2 Computer Science Dept., UC Berkeley

2

Outline
Introduction

GASP Overview

GASP Interface

GASP Overhead

Conclusions

Future Directions



2

3

Global Address Space (GAS) Languages/Libraries

Unified Parallel C (UPC), Co-Array Fortran, Titanium, 
SHMEM, etc.
Properties:

Provides a shared address space abstraction
Includes one-sided communication operations (put/get)

Available for a wide range of system architectures (both 
shared-memory machines and distributed systems) in 
the form of compiler or library
Implementation’s internals may vary greatly from one 
system to another for the same language
Performance can be comparable with MPI code
But, generally requires hand-tuning

Performance tool support would help greatly

4

Motivation for Tool Interface (1)
Minimal performance tool support for GAS 
programs.  Why is that?

Newer languages/libraries
Complicated compilers

Take UPC for example, several different implementation 
strategies

Direct compilation (GCC-UPC, Cray UPC)
Translator + Library approach (Berkeley UPC w/GASNET, 
HP UPC)

One-sided memory operations tracking 
support
Shared-data tracking support



3

5

Motivation for Tool Interface (2)
Performance tool support strategies

Direct source instrumentation 
May prevent compiler optimizations/reorganization
How to deal with relaxed memory model? 

Binary instrumentation
Not available on some architectures
Difficult to relate back to source code

Intermediate libraries
Wrappers for functions/procedures
Does not work for “pure compilers”

Performance interface
Defines basic interaction between compiler and performance tool
Up to compiler developers to decide how to best incorporate the 
interface (wrapper, translation, etc.)

6

Overview (1)
Global Address Space Performance 
(GASP) interface
Event-based interface

GAS compiler/runtime communicate with 
performance tools using standard 
interface
Performance tool is notified when 
particular actions happen at runtime
Implementation-agnostic

Notification structure
Function “callback” to tool developer code
Use a single function name (gasp_event_notify)

Pass in event ID and source code location
Use varargs for rest of arguments (like printf)

Notifications can come from compiler/runtime (system events) or from code 
(user events)
Allows calls to the source language/library to make model-specific queries



4

7

Overview (2)

enum gasp_event_type {gasp_event_type_start, gasp_event_type_end,   
gasp_event_type_atomic}; 

void gasp_event_notify(
unsigned int event_id,
enum gasp_event_type event_type,
const char* source_file,
unsigned int source_line,
unsigned int source_col,
...);

Compiler

Performance 
tool 

Defines body of 
gasp_event_notify ()

Enable calls to 
gasp_event_notify ()

GASP

8

System Event Types (1)

All system events have symbolic names defined 
in gasp_[language].h
Startup and shutdown

Initialization called by each process after GAS runtime 
has been initialized
Exit called before all threads stop (two types of events: 
collective exit & non-collective exit)

Synchronization
Fence, notify, wait, barrier start/end
Lock functions



5

9

System Event Types (2)
Work sharing

Forall start/end
Collective events

Broadcast, scatter, gather, etc.
Shared variable access

Direct (through variable manipulations)
Indirect (through bulk transfer functions)
Non-blocking operations

User functions
Beginning and end of desirable user functions

10

User-Defined Event Type
Allow user to give context to performance data
Can be used for

Instrumenting individual loops or regions in user code
Phase profiling
Hand instrumentation

Simple language-independent API
gasp_create_event() creates an event with a description
gasp_event_start(), gasp_event_end() notify tool of region 
entry/exit
Event start/end functions also take a variable number of 
arguments (printf-style display) inside performance tool



6

11

Instrumentation & Measurement Control
Provide finer instrumentation and measurement control
--profile flag

Instructs compiler to instrument all events for use with performance tool
Compiler should instrument all events, except

Shared local accesses
Accesses that have been privatized through optimizations

--profile-local flag
Instruments everything as in --profile, but also includes shared local 
accesses

#pragma pupc [on / off] directive
Controls instrumentation during compile time, only has effect when 
--profile or --profile-local have been used
Instructs compiler to avoid instrumentation for specific regions of code, if 
possible

pupc_control(int on); function call
Controls measurement during runtime done by performance tool

12

Vendor Support
UPC

Berkeley UPC
GASP implemented within runtime library 
Supported with Berkeley UPC 2.4+

--enable-profile configure-time option

HP UPC
HP verbally agreed to support GASP at UPC ’05 workshop
Unfortunately, GASP work has been pushed back at the moment

Cray UPC, MuPC, GCC-UPC
GASP support pending

Others
Titanium GASP support is in the pipeline
Support for other languages/libraries pending



7

13

Berkeley UPC GASP Tracing Overhead
(Splash-2 LU)

0
5

10
15
20
25
30

I I (Local) I+M I+M (PAPI)

%
 O

ve
rh

ea
d

I – instrumentation only, empty calls (with or without instrumentation for local events)

I+M – actual events are recorded through a preliminary measurement layer

PAPI – measurement layer records PAPI hardware counter events
* Overhead expected to be much lower when replacing gettimeofday() with a high-performing timer

All test executed on dual 
2.4GHZ opteron cluster (32 
nodes) with Quadrics 
interconnect

14

Berkeley UPC GASP Profiling Overhead

0

0.5

1

1.5

2

2.5

3

CG EP FT IS

%
 O

ve
rh

ea
d

I I (local) I+M I+M (PAPI) I+M (PAPI, Class C)

*All results are for NAS benchmark 2.4 class A unless noted otherwise



8

15

Conclusions
GASP specifies a standard event-based performance interface for GAS 
languages/libraries
Preliminary version of GASP includes UPC support (w/ low overhead, 
working implementation available for Berkeley UPC)
Performance interface should be an integral part of a language/library 
design & implementation effort

Fairly straightforward for compiler developers to add support
Avoid interference with compiler optimization
But how do we get language/library implementer’s support?

GASP is integrated with a new performance analysis tool (Parallel 
Performance Wizard) we are currently developing for UPC and SHMEM
Specifications for other GAS languages/libraries are forthcoming

May even extend beyond GAS languages/libraries to include other parallel 
languages/libraries such as OpenMP, MPI-2, X10, Fortress, Chapel, etc.

For more info, see
http://docs.hcs.ufl.edu/upc/gasp/
http://docs.hcs.ufl.edu/upc/gasp/ChangeLog

16



9

17

Future Directions
GASP serves as a starting point for generic parallel performance
analysis
We are currently investigating the possibility of a generic parallel 
performance analysis approach that deals with event types rather 
than language constructs/library functions

Execution model does not differ significantly between parallel 
languages/libraries
Once a generic set of analyses is developed, it should be applicable 
to all languages/libraries
Adding performance analysis support for a new language/libraries
simplifies to

Enabling instrumentation and measurement of events (i.e. GASP)
Creating a mapping of language constructs/library functions to event types
Small modification to visualizations to better present the result

Analysis of program involving multiple languages/libraries is possible

18

Language construct /
Library function

(ex: upc_memget)

Event Type 
(ex: Data transfer: asyn.)

Analysis result

Visualization/User interface

Mapping of constructs /functions to 
pre-defined even t types

Perform analysis base d on 
event type only

Substitute back -in the
language construct /library function

Programming model 
independent

Programming model 
specific

Event type
(ex: data transfer )

Sub-event type
(ex: asyn. get) Flags

Event ID



10

19

Q&A


