
Two new forms of the standard UPC collective functions
offer higher productivity through more expressive interfaces

Simplified UPC Collectives

Definition: A one-sided collective is an operation
initiated by one thread that accesses or changes
memory in all threads’ partitions.

Standard UPC contains one-sided collective library
operations, such as upc_global_alloc(). One-
sided alternatives to the standard data movement and
computational collectives are now being evaluated on
several platforms..

Data Movement Collectives:
void mupc_broadcast(shared void *src,

size_t n)

The n bytes at src are copied to corresponding areas of
shared memory on all threads. The broadcast is “in
place”. src need not have affinity to the caller. The
broadcast is complete at the beginning of the next
synchronization phase.

Computational Collectives:
TYPE mupc_reduceT(shared void *src,

size_t n, upc_op_t op)

A reduction with operation op is performed over the n
corresponding elements of src of type TYPE on all
threads. The result is available to the calling thread
upon return.

One-Sided Collectives Value-Based Collectives
Definition: A value-based collective is a wrapper that

provides a “one-liner” for scalar collective operations.

Value-based collectives are implemented as a generic header
file that works with any UPC-1.2 compliant compiler.

Data Movement Collectives:
TYPE bupc_allv_broadcast(TYPE, TYPE value,

int rootthread)
TYPE *bupc_allv_gather_all(TYPE, TYPE value,

TYPE *destarray)

TYPE may be scalar or aggregate (struct or union) type.
Array parameters are pointer-to-local for the calling thread.
Also have variants for scatter, gather and permute.

Computational Collectives:
TYPE bupc_allv_reduce_all(TYPE, TYPE value,

upc_op_t op)

TYPE must be scalar. A reduction with operation op is
performed over the values provided by all threads. The
result is returned to all threads. Also have variants for
reduce and prefix_reduce.

One-sided collectives:
shared [2] double MinMax[2*THREADS];

upc_barrier;
if (MYTHREAD==0) {

// one-sided reductions of min and max
MinMax[0] = mupc_reduceD(A, N, UPC_MIN);
MinMax[1] = mupc_reduceD(A, N, UPC_MAX);

// one-sided broadcast of min and max
mupc_broadcast(MinMax, 2*sizeof(double));
}

upc_barrier;

Value-based collectives:
shared [] double *lA = (shared [] double *)&A[N*MYTHREAD];
double localmin = lA[0], localmax = lA[0];

// compute localmin & localmax over my data…
for (int i=1; i < N; i++) {
localmin = MIN(localmin, lA[i]);
localmax = MAX(localmax, lA[i]);

}

// perform the collective reduction
double min = bupc_allv_reduce_all(double, localmin, UPC_MIN);
double max = bupc_allv_reduce_all(double, localmax, UPC_MAX);

Usage comparison:
Find the min and max of shared array A:

16 Byte Broadcast: Latencies Across Platforms

0

20

40

60

80

100

120

140

160

180

200

Myrinet
Itanium2 / 16

InfiniBand
G5 / 256

InfiniBand
Opteron / 64

CrayXT3 / 64 Elan3
Alpha / 64

Network / Processor / Node Count

Ti
m

e
(m

ic
ro

se
co

nd
s) bupc_allv_broadcast

MPI broadcast

298
us

16 Byte Broadcast: Inverse Throughput Across Platforms

0

10

20

30

40

50

60

70

80

Myrinet
Itanium2 / 16

InfiniBand
G5 / 256

InfiniBand
Opteron / 64

Elan3
Alpha / 64

Network / Processor / Node Count

Ti
m

e
(m

ic
ro

se
co

nd
s)

bupc_allv_broadcast

MPI broadcast

147
us

http://www.upc.mtu.edu http://upc.lbl.gov

Performance of the Value-based collectives in Berkeley UPC

Standard UPC collective library:
#define N 10000
shared [N] double A[N*THREADS];
shared [] double MinMax0[2]; // targets of reduction
shared [2] double MinMax[2*THREADS]; // targets of broadcast

upc_all_reduceD(&MinMax0[0], A, UPC_MIN, N*THREADS, N, NULL, UPC_IN_ALLSYNC | UPC_OUT_MYSYNC);
upc_all_reduceD(&MinMax0[1], A, UPC_MAX, N*THREADS, N, NULL, UPC_IN_MYSYNC | UPC_OUT_MYSYNC);
upc_all_broadcast(MinMax, MinMax0, 2*sizeof(double), UPC_IN_MYSYNC | UPC_OUT_ALLSYNC);

	Slide Number 1

