Simplified UPC Collectives

Two new forms of the standard UPC collective functions
offer higher productivity through more expressive interfaces

One-Sided Collectives Value-Based Collectives
Definition: Aone-sided collective is an operation Definition: Avalue-based collective is a wrapper that
Initiated by one thread that accesses or changes provides a “one-liner” for scalar collective operations.

memory In all threads’ partitions.
Value-based collectives are implemented as a generic header

Standard UPC contains one-sided collective library file that works with any UPC-1.2 compliant compiler.
operations, such as upc_global _alloc(). One-
sided alternatives to the standard data movement and Data Movement Collectives:

computational collectives are now being evaluated on

TYPE bupc _allv broadcast(TYPE, TYPE value,
several platforms..

INt rootthread)

x
Data Movement Collectives: TYPE “bupc_allv_gather_al I(R((PPE,*ggSPEa:F/?;;)e,

voild mupc_broadcast(shared void *src, TYPE may be scalar or aggregate (struct or union) type.

size_t n) Array parameters are pointer-to-local for the calling thread.
The n bytes at src are copied to corresponding areas of Also have variants for scatter, gather and permute.
shared memory on all threads. The broadcast Is “In . .
place”. src need not have affinity to the caller. The Computational Collectives:
broadcast is complete at the beginning of the next TYPE bupc allv reduce all(TYPE, TYPE value,
synchronization phase. B B ~upc op t op)
Computational Collectives: TYPE must be scalar. A reduction with operation op is

performed over the values provided by all threads. The
result Is returned to all threads. Also have variants for
reduce and prefix_reduce.

TYPE mupc reduceT(shared void *src,
size €t n, upc op t op)

A reduction with operation op Is performed over the n Performance of the Value-based collectives in Berkeley UPC
corresponding elements of src of type TYPE on all o 1587 st Lt o it 15t Brostast: vers g cros atr
threads. The result is available to the calling thread iiZ : il [———
upon return. g o ot 2" |

40

30

Time (microsecon

20

10

Myrinet InfiniBand InfiniBand CrayXT3/ 64 Elan3 Myrinet InfiniBand InfiniBand Elan3

Usage comparison: .
Find the min and max of shared array A:

Standard UPC collective library:

#define N 10000

shared [N] double A[N*THREADS];

shared [] double MinMax0[2]; // targets of reduction
shared [2] double MinMax[2*THREADS]; // targets of broadcast

upc_all reduceD(&MiInMaxO[0O], A, UPC MIN, N*THREADS, N, NULL, UPC _IN ALLSYNC | UPC OUT MYSYNC);
upc_all reduceD(& inMaxO[1], A, UPC MAX N*THREADS, N, NULL, UPC IN_MYSYNC | UPC_OUT MYSYNC);
upc_all _broadcast(MinMax, MlnMaxO 2*S|zeof(double) UPC IN_ MYSYNC | UPC_OUT_ALLSYNC);

One-sided collectives: Value-based collectives:

shared [2] double MinMax[2*THREADS]; shared [] double *1A = (shared [] double *)&AIN*MYTHREAD];
double localmin = IAJO], localmax = 1A[O];
upc_barrier;

1T (MYTHREAD==0) { // compute localmin & localmax over my data..

// one-sided reductions of min and max for (int 1=1; 1 < N; 1++) {

MinMax][O0] = mupc_reduceD(A, N, UPC MIN); localmin = MIN(IocaImin, 1A[1]);

MinMax[1] = mupc_reduceD(A, N, UPC MAX); localmax = MAX(localmax, 1A[1]);

}

// one-sided broadcast of min and max

mupc_broadcast(MinMax, 2*sizeof(double)); // perform the collective reduction

} double min = bupc _allv _reduce all(double, localmin, UPC MIN);
upc_barrier; double max = bupc _allv _reduce all(double, localmax, UPC MAX);

oy

http://upc.lbl_gov ﬁ\\ |.':;

EERKELEY LAB

(EiftEmiad) htetp://www . upc.mtu.edu

	Slide Number 1

