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ABSTRACT
Collective communication has been a part of the UPC
standard since having been introduced in 2005 with the
UPC Specification version 1.2. However, unlike MPI
collectives, UPC collectives have never caught on and
are rarely used.

In this paper we identify and discuss several funda-
mental limitations and important missing features in the
design of the existing UPC collectives that make them
inconvenient to use and unsuitable for performance op-
timization.

Next, we propose a new, consistent, portable and high
performance collectives library that is aimed to augment
UPC with a full complement of the collectives used by
MPI. Ours is a pure library based approach; we change
none of the functions in the existing UPC specification.

We discuss the implementation requirements for this
new UPC collectives library, and how our design at-
tempts to minimize the implementation effort by en-
abling the reuse of existing collective implementations.

1. INTRODUCTION
The notion of collective communication has been pop-

ularized by the MPI library [10]. MPI collective primi-
tives are able to express fairly complex combinations of
data movement, synchronization and computation op-
erations, and have become well understood tools, or
programming patterns, in the arsenal of people writ-
ing programs for large parallel machines [7, 15, 16, 14,
8]. Collective communication primitives are anchored
in the SPMD programming model, but transcend pro-
gramming languages. Variations on collective communi-
cation have found their way into most modern parallel
programming languages, including Partitioned Global
Address Space (PGAS) languages [18, 17, 13, 19, 6, 2,
5].

The UPC Specification Version 1.2 [17] contains a
number of collective communication operations. It is
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our contention, and the premise of this paper, that the
current standard is flawed and insufficient.

• The current UPC specification lacks equivalents to
some of the most popular MPI collectives. Canon-
ical examples include MPI_Allreduce (vector re-
duction with results propagated to every partic-
ipant) and MPI_Alltoallv (personalized commu-
nication with variable amount of data).

• The UPC specification lacks the concept of a team
(or, in MPI parlance, communicator. Teams are
used to denote subsets of UPC threads to run col-
lectives on. In MPI communicators are of crucial
importance: they allow code reuse, and therefore,
the development of MPI libraries. We anticipate
that a careful design of teams in UPC will help
achieve the same purpose.

• The UPC specification is unclear on the correct
use of synchronicity flags on collectives. We have
anecdotal evidence that the UPC synchronicity
flags seem to be hard to master for novice users,
and our experience with implementations of the
standard suggests that the complexity is not really
warranted by the putative improvement in perfor-
mance that it makes possible.

• The UPC specification has non-blocking barriers,
but no other non-blocking collectives. The (fairly
complicated) synchronizing flags specification is
supposed to allow for overlap of collectives, but
this turns out to be awkward for users and diffi-
cult for implementors.

The remainder of this work is our proposal to mitigate
these problems. In Section 2 we lay out the principles
of our approach. Section 3 lays out our new proposed
API: type definitions and function prototypes.

No performance results: we do not show any per-
formance results in this paper. Two separate implemen-
tations are underway, under the auspices of the authors’
host institutions, but neither implementation is ready
for in-depth performance testing at press time.

Since we expect implementors to reuse MPI collec-
tives to implement the UPC collectives library 2.0, the



expected performance profile of UPC collectives is not
substantially different from that of MPI collectives. ALL-
SYNC flags form a notable exception, as their presence
may add latency to execution.

2. GENERAL APPROACH
In this Section we describe our approach to define

a comprehensive collective communication library com-
patible with the UPC language.

We do not propose to change any existing UPC func-
tionality. We are not changing the semantics of any-
thing that is already defined in the UPC specification
1.2, including collective functionality.

Instead, we propose to define a new library of col-
lective communication primitives with a new API. This
API ought to be more familiar to those using collective
communication calls in MPI code, and in line with what
the MPI forum [9] is proposing for the MPI 3.0 stan-
dard [11]. Indeed, we are hoping to enable the reuse of
existing MPI collective libraries in UPC.

2.1 Teams
Teams are arbitrary named subsets of UPC threads

that collective communication operations can be invoked
on. In MPI they are called communicators. The current
UPC specification does not provide for team based col-
lective communication; we propose to add them to our
library.

We start with a small set of functions to manage the
life cycle (creation, destruction) of UPC teams. A UPC
team is either pre-defined (like UPC_TEAM_ALL, mean-
ing all threads) or created with a function like upc-

coll_team_split(), as defined in Section 3.4.
Just like in MPI, team life cycle functions are them-

selves collectives and have synchronizing properties, so
as to avoid situations in which e.g. a broadcast message
on a newly created team overtakes the message inform-
ing the target UPC thread about the creation of the
team.

2.2 Shared arrays and collectives
UPC Spec 1.2 collectives are ”single-valued”: all UPC

threads participating in a collective are required to sub-
mit the same buffer as argument; failure to do so results
in undefined behavior. Furthermore, while arguments to
collective calls are all typed as shared void * or simi-
lar, operation semantics interpret them as shared arrays
with finite (but variable) blocking factors.

The obvious limitation of this approach is that only a
single shared array can be involved in a collective at a
time, frequently necessitating local memory copies be-
fore and after the operation. The implicit type cast part
of most collective operations also complicates the writ-
ing of correct code, since what looks like a contiguous
index space to the user is broken up into strided accesses
in the collective and vice versa.

Our proposed API corrects this problem by relaxing
some of the requirements on user buffers, and moving

the interface closer to an “MPI-like feel.”

• We allow multi-valued arguments. In other words,
different threads can specify different pointers-to-
shared in a call to the same collective.

• We require that the buffers submitted in each col-
lective call be affine to the calling thread. Each
thread processes data that actually is affine to that
thread.

• UPC collectives operate on shared memory buffers.
We do not allow UPC collectives to operate on
thread-local memory.

• Pointer-to-shared arguments are always interpreted
as having indefinite blocking factors (in effect, point-
ing to contiguous areas of memory).

2.3 Non-blocking collectives
The Berkeley UPC compiler [1] provides an asyn-

chronous memory operator extensions (upc_memget_async
and friends). This extension is now being proposed as a
standard library for UPC [4]. Non-blocking operations
have been shown to be effective to improve application
performance [3, 12].

We propose similar syntax for non-blocking UPC col-
lectives. The idea is to allow the collective call to return
without having completed. The user receives a token for
the collective in progress. As in MPI, the token must
be checked for completion; the collective call completes
when the check function upc_wait returns true.

In order to keep the number of collective primitives
down, we use an extension of the SYNC flags, described in
detail in Section 3.1.2, to specify non-blocking collective
calls. We allow three flavors of collective calls: blocking
calls, non-blocking calls with explicit synchronization,
and non-blocking calls that are synchronized at next
invocation of upccoll_fence() (see Section 3.3 for a
complete description).

2.4 Buffer ownership rules
The MPI standard is very exact about the life cycle

and ownership of data buffers passed between users and
MPI functions. The principle on which MPI operates
is that any buffer passed to MPI cannot be touched by
the user (either read or write) until the MPI function is
complete. We adopt this principle for buffer ownership
for UPC collective calls.

UPC collective buffer ownership rule: owner-
ship of data involved in collective operations is consid-
ered transmitted to the collective upon invocation on
each thread, and returned to the user upon completion.
The violation of this rule can have unpredictable con-
sequences with respect to completion and results of the
collective calls.

The enforcement of the buffer ownership rule is typ-
ically left to users. In MPI, and without non-blocking



collectives, enforcement is relatively trivial because con-
trol is transferred in sync with buffer ownership, leav-
ing no opportunity for the user to execute any offending
code.

Non-blocking collectives permit users to violate the
ownership rule in multiple ways - by starting a second
collective or running other code that accesses memory
regions overlapping with buffers already given to the
non-blocking collective.

One-sided remote access to buffers in shared memory
also give third-party threads (not part of the team ex-
ecuting the collective) the ability to violate the buffer
ownership rule.

UPC collective synchronization flags affect the defini-
tion of the start and completion of collectives. IN_ALLSYNC
delays the transfer of buffer from the user to the collec-
tive to the point when all participants have started the
collective; OUT_ALLSYNC delays completion of the collec-
tive on any thread to the point where all other threads
are also finished. We discuss sync flags in detail in Sec-
tion 3.1.2.

2.5 Ordering and synchronization of col-
lective operations

Our proposed UPC collectives API supports both block-
ing and non-blocking collectives. We propose to allow
multiple non-blocking collectives, even of the same kind,
to be in progress on the same team at the same time.
This can lead to non-trivial problems regarding the com-
pletion and ordering of collectives, which we must now
examine.

The UPC specification introduces six synchronization
flags to control data access by collectives. In our expe-
rience only two of those six flags are really necessary:
UPC_IN_ALLSYNC and UPC_OUT_ALLSYNC. We describe the
proposed syntax in Section 3.1.2; in this section we ex-
amine the effect of synchronization flags on collective
ordering.

2.5.1 Ordering of blocking collective operations
A blocking collective operation is completed before

returning from the function call. Thus any one UPC
thread cannot have two blocking collectives in-flight at
the same time; for a single thread, program order defines
the order in which collectives are executed.

We thus have a simple definition for total order for
collectives executing on one thread. The situation is
less simple, however, when multiple partially overlap-
ping teams of threads are involved. We define ordering
of collectives by means of the directed graph G(V,E) as
follows:

• The vertices V of the graph are all collective op-
erations executed in a program.

• A directed edge v1 → v2 ∈ E is defined for any pair
of collectives where v1 precedes v2 on any thread
in the program.

Rule for correct ordering for collectives: With

the graph defined as above, a UPC program involving
collectives is correct only if the directed graph G(V,E)
described above has no cycles. The (acyclic) graph also
defines a partial order on the execution of collectives in
the program. On the other hand if the graph contains
any cycles, the corresponding program is faulty and will
deadlock.

Synchronization rules for blocking UPC collec-
tives: UPC collectives’ synchronization properties are
guided by synchronization flags. Execution of a UPC
collective on any one thread may be synchronized by
activity on other threads, especially when the ALLSYNC

flags are set.
Discussion: Most MPI collective library implemen-

tations have synchronizing properties beyond what is
necessary for correctly implementing a particular col-
lective. For example, in an MPI broadcast it is not nec-
essary to synchronize two participating non-root tasks
with each other, only with the root; however, most MPI
broadcast implementations fully synchronize every pair
of participating tasks. The MPI standard warns users
not to rely on this property, since it is not intrinsic to
the collectives themselves, only a property of the im-
plementation. We make the same stipulation for UPC
collectives, subject to synchronization flags.

Advice to users: do not rely on UPC collective calls
being synchronizing unless the appropriate sync flags
are set.

Advice to implementors: blocking collective imple-
mentations are allowed to synchronize the completion
of any collective on every executing thread. Correct
implementation of ALLSYNC flags requires this, but im-
plementors are free to synchronize threads even when
ALLSYNC flags are not specified by the user.

2.5.2 Ordering of non-blocking collective oper-
ations

Each non-blocking collective operation involves two
function calls: an initiation call and a completion wait
call. A non-blocking collective operation is in-flight
when the initiation call is invoked and is complete once
the completion wait call returns.

Ordering non-blocking collectives: We order non-
blocking collectives by their initiation calls. This ap-
proach is consistent with the MPI3 specification and
allows construction of the same graph described in Sec-
tion 2.5.1.

Completion calls are then allowed to be in any order
(although they obviously have to follow the initiation
calls on the same thread).

Advice to users: A non-blocking collective operation
is guaranteed to be complete upon return from upc-

coll_wait or upon upccoll_test returning the value 1.
However, the collective can complete any time between
the initiation call and the completion call. The com-
pletion order of multiple in-flight collective operations
varies across implementations and different executions.
Users should not assume completion orders of collec-
tives beyond the semantics defined by their respective



definitions.
Synchronization rules for non-blocking collec-

tives: We clarify this by reusing the collective ordering
graph defined in Section 2.5.1. Let us consider the col-
lective start calls Si, i ∈ 0..P − 1 and completion calls
Wi, i ∈ 0..P − 1 for a particular collective invocation on
P threads. Both S and W are vertices in the collective
dependence graph G(V,E).

1. We allow edges from any Si to any Wj vertices
(only from S to W , obviously). On any one thread
i the initiation call has to precede the completion
call; the completion call is allowed to block waiting
for the initiation call on potentially all threads.

2. We disallow edges between any two Si vertices. In
vernacular, collective initiation calls should never
block waiting initiation of the same collective on
other threads. This is a common-sense require-
ment to allow multiple non-blocking collectives to
be launched simultaneously.

Advice to implementors: The initiation call of any
non-blocking collective should never block wait-
ing on any pending activity on some other thread,
not even when IN_ALLSYNC is specified in the call.
IN_ALLSYNC simply means that the execution of
the collective cannot begin until every thread has
started it; it does not constrain the return of the
initiation call.

3. We disallow edges between any two Wi vertices.
Collective completion calls do not block waiting
for completion calls on other threads: they only
block waiting for initiation calls on other threads.
This results from the common-sense definition of
barrier synchronization - the strongest synchro-
nization of all - which states: “a thread is free to
leave a barrier when every other thread has entered
the barrier”.

Advice to implementors: The completion call of
any non-blocking collective should never block wait-
ing for the corresponding completion call on any
other thread, not even when OUT_ALLSYNC is spec-
ified in the call. OUT_ALLSYNC simply means that
the collective is complete when the first completion
call returns, but this is not subject to completion
calls having been invoked on any other threads.

Discussion: First, we should note that the subgraph
corresponding to a single non-blocking collective invo-
cation is bipartite, as only edges between S and W are
allowed.

The strongest synchronization allowed corresponds to
an edge between every pair of Wi and Sj edges (a com-
plete bipartite graph). This synchronization corresponds
to a non-blocking barrier. As in the case of blocking col-
lectives, this type of synchronization is only required by
ALLSYNC flags, therefore users should not rely on it un-
less they specified ALLSYNC.

Advice to users: Do not rely on non-blocking collec-
tives fully synchronizing every thread, unless the ALL-

SYNC flags are specified.
Advice to users: The example code in Figure 1 should

not deadlock when executed on multiple threads, even
when the collective ALLSYNC flags are specified.

2.6 Issues not addressed by our approach
Our present effort to better integrate collective com-

munication into UPC is not complete. We prioritized
our approach based on the immediate usefulness of pro-
posed features, and stayed away from topics where dis-
cussion in the community is too widely divergent to give
us hope of agreement.

• We have not considered MPI-like persistent col-
lectives. We tried very hard to limit the amount
of syntax bloat we are adding to the library, and
persistent collective communication simply did not
make it to the list of included features.

• We have not provided any team management func-
tions other than split. We are well aware of the
comparative richness of e.g. MPI in creating new
teams by e.g. enumeration. We consider split

by far the most useful of all team creation primi-
tives, and we are open to further expansion of this
functionality in the future.

• We have not considered the effect of teams on UPC
index calculation and operations like
upc_global_alloc(). As we mentioned at the
beginning of this Section, our approach does not
allow us to change existing language semantics.
Even adding a new form of team-based global_alloc

would have invited the question of how to enumer-
ate (index) the new allocated data structure; this
would have been impossible without wide-ranging
changes in the semantics of the language.

• We have not considered user defined types such
as provided by type constructors in the MPI stan-
dard.

• We have not considered value-based collectives,
that is UPC collectives on private data. All col-
lectives presented in this paper operate on shared
data.

• We have not considered the oft-discussed and pub-
lished, but never agreed-on concept of one-sided
collectives.



/* EX1: lock across start */

upccoll_handle_t h;

upc_lock_t lock;

...

upc_lock (lock);

collective_start (... h ...);

upc_unlock (lock);

upccoll_wait (h);

/* EX2: lock across wait */

upccoll_handle_t h;

upc_lock_t lock;

...

collective_start (... h ...);

upc_lock (lock);

upccoll_wait (h);

upc_unlock (lock);

Figure 1: Code sequence EX1 executes a collective start in an atomic section, and will only execute
correctly if collective starts are non-blocking. Sequence EX2 executes collective completion in an
atomic section, and will only complete without deadlock if collective completions are not synchronized
to each other. Together the two examples enforce the bipartite nature of the dependency graph
between collective starts and completions.

3. THE UPC COLLECTIVES 2.0 API
In this section we describe the UPC Collectives API,

version 2.0. The API consists of constants, type defini-
tions and function prototypes.

3.1 Type definitions
The UPC Collectives 2.0 API extends types already

present in the current UPC specification, but also intro-
duces new types for new concepts.

3.1.1 Collective handles

Synopsis

typedef void* upccoll_handle_t;

#define UPCCOLL_INVALID_HANDLE 0

Description

1. We define the opaque type upccoll_handle_t to
represent ongoing collective operations. Handles
are returned by non-blocking collective calls, and
are also used to test and wait for collection com-
pletion (described in Section 3.3).

2. The value 0 is not valid for an ongoing collective.

3.1.2 Collective flag constants

Synopsis

typedef int upccoll_flag_t;

#define UPC_IN_NOSYNC 1 /* obsolete */
#define UPC_IN_MYSYNC 2 /* default */
#define UPC_IN_ALLSYNC 4
#define UPC_OUT_NOSYNC 8 /* obsolete */
#define UPC_OUT_MYSYNC 16 /* default */
#define UPC_OUT_ALLSYNC 32
#define UPC_ASYNC_FENCE 64

Description

1. This section describes a set of flags that can be
specified in the invocation of every collective. The
flags affect buffer ownership at the beginning and
at the end of a collective, as well as control over
the collective function’s termination.

2. While all flags defined by the current UPC speci-
fication are available in the collectives library, we
consider all but three of the flags obsolete and
discourage their use. In particular, we consider
UPC_IN_NOSYNC and UPC_OUT_NOSYNC obsolete and
to be avoided. We consider UPC_IN_MYSYNC and
UPC_OUT_MYSYNC to correspond to default behav-
ior and therefore do not encourage their explicit
use.

3. Buffer ownership is transferred from the user to
the system at the moment when a collective is in-
voked, and is transferred back to the user when the
collective terminates. Unless either of the ALL-
SYNC flags are specified, buffer ownership is trans-
ferred to and from the collective locally, without
regard to what other threads are doing. For ex-
ample, late completion of a collective on a remote
thread does not prohibit the local thread (where
the collective is already complete) from accessing
the results.

4. UPC_IN_ALLSYNC and UPC_OUT_ALLSYNC change buffer
ownership transfer. With IN_ALLSYNC buffer own-
ership is not transferred to the collective until ev-
ery participant has invoked the collective. With
OUT_ALLSYNC no collective is allowed to terminate
until all threads are ready to relinquish ownership
of buffers.

5. UPC_ASYNC_FENCE is the flag that marks a non-
blocking collective that will complete at the next
call to upccoll_fence() (Section 3.3).

6. Advice to users: Beware of improper access to
shared memory in collectives. There is no mech-
anism in this specification, or in UPC, to prevent
third-party threads from accessing and polluting
data processed by collectives. When a team col-
lective is executed on a proper subset of all UPC
threads, threads not participating in the collective
may inadvertently touch user buffers at the wrong
time, producing unexpected results.



7. Advice to implementors: The simplest way to im-
plement UPC_IN_ALLSYNC and UPC_OUT_ALLSYNC is
by a combined barrier synchronization and mem-
ory fence executed at the beginning or the end of
the collective, respectively.

8. Advice to implementors: Our list includes all flags
introduced in the UPC specification. These defi-
nitions, less UPC_ASYNC_FENCE, should already be
available from the standard include header file
upc_collectives.h. Judicious use of conditional
macro definitions could solve this problem.

3.1.3 Collective arithmetics

Synopsis

typedef enum {
UPC_ADD, /* Addition (all types) */
UPC_MULT, /* Multiplication (all types) */
UPC_AND, /* Bitwise AND (fixed-point values) */
UPC_OR, /* Bitwise OR (fixed-point values) */
UPC_XOR, /* Bitwise XOR (fixed-point values) */
UPC_LOGAND,/* Logical AND (all types) */
UPC_LOGOR, /* Logical OR (all types) */
UPC_MIN, /* Minimum value (all types) */
UPC_MAX, /* Maximum value (all types) */
UPC_MINLOC,/* Find the minimum value and its location */
UPC_MAXLOC,/* Find the maximum value and its location */
UPC_PREDEFINED_OPS /* Number of pre-defined UPC ops */

}
upccoll_op_t;

Description

1. Some of the constants introduced here will be fa-
miliar to current users of UPC. They are defined
in Section 7.3.2 of the UPC specification.

2. Just like in the UPC specification, the bitwise op-
erators are not defined for floating point operands.

3. New types introduced in this document include
UPC_MAXLOC and UPC_MINLOC. These operators work
like in MPI.

3.1.4 User-defined collective operations

Synopsis

typedef void
upccoll_user_fun (void * in,

void * inout,
size_t len,
upccoll_dtype_t dt);

upccoll_return_t
upccoll_op_create (upccoll_user_fun * function,

int commute,
upccoll_op_t * op);

upccoll_return_t
upccoll_op_free (upccoll_op_t op);

Description

1. The upccoll_op_create function creates a user-
defined operation that can be subsequently used in
computational collectives including upccoll_reduce,
upccoll_allreduce, upccoll_reduce_scatter and
upccoll_scan. The new operation bound to the
user-defined function is returned in *op.

2. The user-defined operation is always assumed to
be associative. If commute is 1, the operation is
commutative. If commute is 0, the operation is
non-commutative and the order of operands is fixed
as ascending UPC thread rank order in the team
participating the collective.

3. The upccoll_op_free function frees a user-defined
operation.

3.1.5 Built-in collective data types

Synopsis

typedef enum {
UPC_BYTE, /* sizeof(unsigned char) */
UPC_CHAR, /* sizeof(char) */
UPC_UCHAR, /* sizeof(unsigned char) */
UPC_SHORT, /* sizeof(short) */
UPC_USHORT, /* sizeof(unsigned short) */
UPC_INT, /* sizeof(integer) */
UPC_UINT, /* sizeof(unsigned integer) */
UPC_LONG, /* sizeof(long) */
UPC_ULONG, /* sizeof(unsigned long) */
UPC_LONGLONG, /* sizeof(long long) */
UPC_ULONGLONG, /* sizeof(unsigned long long) */
UPC_FLOAT, /* sizeof(float) */
UPC_DOUBLE, /* sizeof(double) */
UPC_LONGDOUBLE, /* sizeof(long double) */
UPC_CPLX, /* 2*sizeof(float) */
UPC_DBLCPLX, /* 2*sizeof(double) */
UPC_LONGDBLCPLX, /* 2*sizeof(long double) */
UPC_FLOAT_INT, /* sizeof(float)+sizeof(int) */
UPC_DOUBLE_INT, /* sizeof(double)+sizeof(int) */
UPC_LONG_INT, /* sizeof(long)+sizeof(int) */
UPC_2INT, /* 2*sizeof(int) */
UPC_SHORT_INT, /* sizeof(short)+sizeof(int) */
UPC_LONG_DOUBLE_INT /* sizeof(long double)+sizeof(int) */

}
upccoll_dtype_t;

upccoll_return_t
upccoll_type_size (upccoll_dtype_t dt,

size_t * nbytes);

Description

1. In this section we list all pre-defined data types for
collective communication. As already mentioned
in Section 2.6, this version of the collective speci-
fication does not address user defined types.



3.1.6 Error codes

Synopsis

typedef enum {
UPCCOLL_SUCCESS=0, /* no error */
UPCCOLL_ERROR, /* generic error */
UPCCOLL_ERROR_TEAM, /* invalid team handle */
UPCCOLL_ERROR_SIZE, /* invalid team size */
UPCCOLL_ERROR_RANK, /* invalid team rank */
UPCCOLL_ERROR_HANDLE, /* invalid collective handle */
UPCCOLL_ERROR_SENDBUF, /* invalid send buffer (e.g. NULL) */
UPCCOLL_ERROR_RECVBUF, /* invalid recv buffer (e.g. NULL) */
UPCCOLL_ERROR_COUNT, /* invalid data count (e.g. 0) */
UPCCOLL_ERROR_DATATYPE,/* invalid data type specified */
UPCCOLL_ERROR_UPC_OP, /* invalid UPC operation specified */
UPCCOLL_ERROR_FLAGS, /* invalid combination of op. flags*/
UPCCOLL_ERROR_ROOT, /* invalid root in e.g. broadcast */
UPCCOLL_ERROR_SENDTYPE,/* invalid send data type */
UPCCOLL_ERROR_RECVTYPE,/* invalid receive data type */
UPCCOLL_ERROR_SENDCNTS,/* invalid send data count */
UPCCOLL_ERROR_RECVCNTS,/* invalid receive data count */
UPCCOLL_ERROR_SDISPLS, /* invalid send displacements */
UPCCOLL_ERROR_RDISPLS, /* invalid receive displacements */
UPCCOLL_ERROR_MALLOC, /* failure in malloc() */
UPCCOLL_ERROR_UNINITIALIZED /* un-initializeded parameter */

}
upccoll_return_t;

Description

1. Error codes are returned by every function in our
library. We expect a 0 return code to signify suc-
cess and anything non-zero to signal a failure of
some sort.

2. Advice to implementors: We supply these error
codes as suggestions. Library implementors are
not obliged to define or implement anything be-
yond UPCCOLL_SUCCESS and UPCCOLL_ERROR.

3.2 Initialization and termination functions
Synopsis

upccoll_return_t upccoll_initialize (int *argc, char ***argv);
upccoll_return_t upccoll_finalize ();

Description

1. The initialization function works in a manner sim-
ilar to MPI_Init in the MPI library. No UPC
Collectives 2.0 functions should be called before
initialization.

2. The initializer is allowed to change the contents of
the argv array presented to it, removing options
it interprets as addressed to the UPC Collectives
2.0 library.

3. The finalize function has barrier semantics. All
UPC Collectives 2.0 operations are considered ter-
minated upon return from this call. No UPC Col-
lectives 2.0 functions should be invoked after the
return of the finalize function.

3.3 Completion management for non-blocking
collectives

Synopsis

int upccoll_test (upccoll_handle_t h);
void upccoll_wait (upccoll_handle_t h);
void upccoll_fence (void);

Description

1. As described in Section 2.3, there are three ways to
ensure completion of a UPC Collectives 2.0 func-
tion call.

2. If the UPC_ASYNC_FENCE flag (see Section 3.1.2) is
specified in a UPC Collectives 2.0 call then the
call is considered to be non-blocking and will re-
turn immediately. Waiting for the call is not nec-
essary; it will complete upon the next invocation
of upccoll_fence or upccoll_finalize.

3. Existing UPC synchronization functions like upc_barrier
and upc_fence have no effect on the completion
of UPC_ASYNC_FENCE calls. This is in line with our
stated principle that we are not altering the se-
mantics of the existing UPC functions.

4. All UPC Collectives 2.0 calls have an out-parameter
called handle. If UPC_ASYNC_FENCE is not set and
the pointer supplied to hold the handle is NULL,
then the collective call is considered blocking and
will be complete upon return.

5. Finally, if UPC_ASYNC_FENCE is not set and the user
supplies a valid pointer to hold handle, the collec-
tive call is considered non-blocking and will return
a valid handle in that pointer. This operation will
not complete until the handle is waited on with
upccoll_wait.

6. upccoll_wait blocks until the operation represented
by a handle is complete. Non-blocking operations
with valid handles must be waited on by upccoll_wait.

7. upccoll_test can be used to check whether an
operation is complete, in a non-blocking manner.
However, upccoll_test is not a replacement for
upccoll_wait. The operation cannot be consid-
ered complete until the latter function is called.

8. upccoll_wait performs the same service for UPC
Collectives 2.0 as upc_wait does for the standard
UPC barrier. Our library approach prohibits us
from modifying existing UPC functionality, hence
the new name.

3.4 Team operations

1. A UPC team is an ordered collection of unique
UPC threads. A team of size N ≤ THREADS can be
thought of as a one-to-one mapping team : 0..(N−
1)→ 0..(THREADS− 1)



2. Teams are created and destroyed by UPC func-
tions described in this section. These functions are
similar to MPI communicator management func-
tions. As described in Section 2.1, team creation
and destruction functions have collective seman-
tics. In our API teams are identified by team han-
dles, an opaque object defined as follows:

typedef void* upccoll_team_t;

3. Team handles have local semantics only. That is,
team IDs should not be stored in shared variables
and used across processors. Doing so will result in
unpredictable system behavior.

4. Advice to implementors: the API is compati-
ble with team handles being local pointers to team
objects. There is no guarantee that team objects
have the same addresses across different UPC threads.

5. Default team: Every collective function call in
our library has a team handle argument. The con-
stant value UPC_TEAM_ALL can be used in any of
these function calls; UPC_TEAM_ALL means all UPC
threads will participate in the collective.

6. Advice to implementors: UPC_TEAM_ALL might
be implemented as a constant value or a macro
with value NULL.

3.4.1 The upccoll_team_rank function

Synopsis

upccoll_return_t
upccoll_team_rank (upccoll_team_t team, int *rank);

Description

1. The upccoll_team_rank function returns the call-
ing thread’s rank in a team, a value between 0 and
N − 1 for a team of size N .

2. Since team handles are always local, it follows that
only members of a team can query their rank. Dif-
ferent members of a team cannot have the same
rank.

3. The value returned by upccoll_team_rank when
UPC_TEAM_ALL is queried is the same as MYTHREAD.

3.4.2 The upccoll_team_size function

Synopsis

upccoll_return_t upccoll_team_size (upccoll_team_t team, int *size);

Description

1. The upccoll_team_size function returns the size
of a team (the number of UPC threads in the
team). This will always be a value between 1 and
THREADS, and always be THREADS for the default
team UPC_TEAM_ALL. Every team has to have at
least one member. All threads in a team will get
back the same value for team size.

3.4.3 The upccoll_team_split function

Synopsis

upccoll_return_t upccoll_team_split (upccoll_team_t team,
int color,
int key,
upccoll_team_t * newteam);

Description

1. Create a set of mutually disjoint new teams from
the parent team. This is a collective function,
called by every thread in the team.

2. As many new teams are created as the number of
distinct color identifiers submitted by all threads.
Each thread will belong to the team specified by
the color argument and will have thread ID key

in that team.

3. Two participating threads in the call cannot spec-
ify the same key and color combination (this leads
to undefined behavior).

4. For each newly created team, all keys from 0 to
size(team)-1 have to be covered by exactly one
participant. Failure to do so will result in dys-
functional teams, i.e. undefined behavior when
collectives are called on the broken teams.

5. The team handle returned by the operation is a
strictly local object. It should not be copied into
a shared object and dereferenced by any thread
other than the one it was created for.

3.4.4 The upccoll_team_free function

Synopsis

void upccoll_team_free (upccoll_team_t team);

Description

1. Free the argument team. The function has collec-
tive barrier semantics (that is, has to be invoked
by every thread in the team at the same time).
After the call the team handle cannot be used any-
more for any purpose.



3.5 Collective functions
In this section we describe the proposed API for the

collective calls themselves. We first enumerate rules
that govern all collective calls.

1. In collectives with a root argument, all partici-
pating threads have to agree on the identity of the
root.

2. Data buffer lengths: In all collectives the par-
ticipating threads have to pairwise agree on the
size of exchanged data; failure to agree on will
cause upredictable results. As in MPI, the size
of a buffer is defined as the size associated with
the UPC data type of the buffer multiplied by the
element count.

3. Collective flags are as described in Section 3.1.2.
These flags govern buffer ownership rules and col-
lective termination.

4. Fence semantics: Collective calls’ fence seman-
tics is determined by the flags used in the call,
consistent with Section B.3.2.2 in the UPC Speci-
fication V1.2.

5. Start and completion order of overlapping collec-
tives is governed by the rules laid down in Sec-
tion 2.5.

6. Overlapping send and receive buffers can yield
unpredictable results. The implementation is not
required to allocate additional buffer space for hold-
ing intermediate results.

7. Return codes are detailed in Section 3.1.6.

3.5.1 The upccoll_barrier function

Synopsis

upccoll_return_t upccoll_barrier (upccoll_team_t team,
upccoll_flag_t flags,
upccoll_handle_t * handle);

Description

1. This is a barrier function on the UPC team called
team.

2. Buffer ownership flags will be ignored, as there are
no buffers to exchange.

3. In the non-blocking form of this operation the bar-
rier is complete on any one thread as soon as every
thread in the team has entered the barrier.

3.5.2 The upccoll_bcast function

Synopsis

upccoll_return_t
upccoll_bcast (shared void * sendbuf,

size_t sendcount,
upccoll_dtype_t sendtype,
shared void * recvbuf,
size_t recvcount,
upccoll_dtype_t recvtype,
int root,
upccoll_team_t team,
upccoll_flag_t flags,
upccoll_handle_t * handle);

Description

1. This is a broadcast function.
(sendcount*size(sendtype) bytes of the send buffer
(sendbuf) are copied from the root UPC thread to
all the threads, including itself.

2. The sendbuf, sendcount and sendtype values are
ignored by all but the root thread.

3. Every thread (including the root thread) is re-
quired to specify the receive buffer recvbuf. Every
thread receives size(recvtype) * recvcnt bytes.

3.5.3 The upccoll_scatter function

Synopsis

upccoll_return_t
upccoll_scatter (shared void * sendbuf,

size_t sendcnt,
upccoll_dtype_t sendtype,
shared void * recvbuf,
size_t recvcnt,
upccoll_dtype_t recvtype,
int root,
upccoll_team_t team,
upccoll_flag_t flags,
upccoll_handle_t * handle);

Description

1. This is a scatter function. Different parts of the
buffer sendbuf specified by the root thread are
copied to recvbuf buffers on each thread.

2. Specifically, for every thread t ∈ 0..|team| − 1 in
the participating team, size(sendtype)*sendcnt
bytes are copied from offset t*size(sendtype)*sendcnt
of the send buffer to the receive buffer of the thread.

3. The sendbuf, sendcount and sendtype values are
ignored by all but the root thread.

4. Every thread (including the root thread) receives
size(recvtype) * recvcnt bytes into the receive
buffer recvbuf.



3.5.4 The upccoll_scatterv function

Synopsis

upccoll_return_t
upccoll_scatterv (shared void * sendbuf,

size_t * sendcnts,
size_t * sdispls,
upccoll_dtype_t sendtype,
shared void * recvbuf,
size_t recvcnt,
upccoll_dtype_t recvtype,
int root,
upccoll_team_t team,
upccoll_flag_t flags,
upccoll_handle_t * handle);

Description

1. This is a scatter function with variable buffer sizes.
Portions of the buffer sendbuf specified by the
root thread are copied to the recvbuf specified
by all threads.

2. Operational semantics are similar to upccoll_scatter,
except for the amount of data transferred to each
participant. The root thread sends
sendcnts[t]*size(sendtype) bytes from address
sendbuf + sdispls[t]*size(sendtype) to each
thread t ∈ 0..|team| − 1.

3. Every thread t receives size(recvtype) * recvcnt

bytes into the receive buffer recvbuf. This amount
has to correspond to the sendcnts[t]*size(sendtype)
bytes sent by the root.

3.5.5 The upccoll_gather function

Synopsis

upccoll_return_t
upccoll_gather (shared void * sendbuf,

size_t sendcnt,
upccoll_dtype_t sendtype,
shared void * recvbuf,
size_t recvcnt,
upccoll_dtype_t recvtype,
int root,
upccoll_team_t team,
upccoll_flag_t flags,
upccoll_handle_t * handle);

Description

1. This is a gather function with fixed buffer sizes.
The receive buffer recvbuf specified by the root

thread receives a fixed number of bytes from each
of the participating threads in the team (including
itself).

2. Data sent by thread t ∈ 0..|team|−1 is received at
location recvbuf + t*recvcnt*size(recvtype) on
the root thread.

3. On threads other than the root the arguments
recvbuf, recvcnt and recvtype are ignored.

4. The number of bytes sent by every thread in the
team is size(sendtype)*sendcnt. This value must
correspond to size(recvtype)*recvcnt specified
by the root thread.

3.5.6 The upccoll_gatherv function

Synopsis

upccoll_return_t
upccoll_gatherv (shared void * sendbuf,

size_t sendcnt,
upccoll_dtype_t sendtype,
shared void * recvbuf,
size_t * recvcnts,
size_t * rdispls,
upccoll_dtype_t recvtype,
int root,
upccoll_team_t team,
upccoll_flag_t flags,
upccoll_handle_t * handle);

Description

1. This is a gather function with variable buffer sizes.
The receive buffer recvbuf specified by the root

thread receives variable number of bytes from each
of the participating threads (as specified by the
team argument).

2. Data sent by thread t ∈ 0..|team|−1 is received at
offset rdispls[t]*size(recvtype) in the receive
buffer on the root thread.

3. On threads other than the root the arguments
recvbuf, recvcnts, rdispls and recvtype are ig-
nored.

4. The number of bytes sent by every thread t in
the team is size(sendtype)*sendcnt. This value
must correspond to size(recvtype)*recvcnt[t]

specified by the root thread.

3.5.7 The upccoll_allgather function

Synopsis

upccoll_return_t
upccoll_allgather (shared void * sendbuf,

size_t sendcnt,
upccoll_dtype_t sendtype,
shared void * recvbuf,
size_t recvcnt,
upccoll_dtype_t recvtype,
upccoll_team_t team,
upccoll_flag_t flags,
upccoll_handle_t * handle);

Description

1. This is an allgather (or all-broadcast) function with
fixed buffer sizes. There is no designated root
thread: every participant disseminates their send
buffer sendbuf to every other participant.



2. Data from thread t ∈ 0..|team|−1 arrives to offset
recvcnt*size(recvtype) in the receive buffer.

3. At the end of the collective the receive buffers on
all threads are identical (hence “all-broadcast”).

3.5.8 The upccoll_allgatherv function

Synopsis

upccoll_return_t
upccoll_allgatherv (shared void * sendbuf,

size_t sendcnt,
upccoll_dtype_t sendtype,
shared void * recvbuf,
size_t * recvcnts,
size_t * displs,
upccoll_dtype_t recvtype,
upccoll_team_t team,
upccoll_flag_t flags,
upccoll_handle_t * handle);

Description

1. This is an allgather function with variable buffer
sizes: the participants in the team broadcast vari-
able amounts of data.

2. sendcnt*size(sendtype) bytes are broadcast by
each thread to every other thread.

3. Data from thread t ∈ 0..|team|−1 arrives to offset
rdispls[t]*size(recvtype) in the receive buffer.

4. The number of bytes received from thread t is
recvcnts[t]*size(recvtype); this has to corre-
spond to the number of bytes actually sent by
thread t.

5. At the end of the collective the receive buffers on
all threads are identical.

3.5.9 The upccoll_alltoall function

Synopsis

upccoll_return_t
upccoll_alltoall (shared void * sendbuf,

size_t sendcnt,
upccoll_dtype_t sendtype,
shared void * recvbuf,
size_t recvcnt,
upccoll_dtype_t recvtype,
upccoll_team_t team,
upccoll_flag_t flags,
upccoll_handle_t * handle);

Description

1. This is a personalized communication function with
fixed buffer sizes. Every participating thread sends
|team| buffers, one each to every thread in the
team, and in turn receives buffers from the same
threads. The buffers are all the same size.

2. Data is sent to every thread t ∈ 0..|team|−1 from
offset t*sendcnt*size(sendtype) of the send buffer
sendbuf.

3. Data received from thread t is deposited at offset
t*recvcnt*size(recvtype) of the receive buffer
recvbuf.

3.5.10 The upccoll_alltoallv function

Synopsis

upccoll_return_t
upccoll_alltoallv (shared void * sendbuf,

size_t * sendcnts,
size_t * sdispls,
upccoll_dtype_t sendtype,
shared void * recvbuf,
size_t * recvcnts,
size_t * rdispls,
upccoll_dtype_t recvtype,
upccoll_team_t team,
upccoll_flag_t flags,
upccoll_handle_t * handle);

Description

1. This is a personalized communication function with
variable buffer sizes. Its behavior is similar to that
of alltoall but the sizes of the exchanged buffers
vary.

2. Data destined for thread t ∈ 0..|team|−1 is of size
sendcnts[t]*size(sendtype) and is sent from off-
set sdispls[t]*size(sendtype) of the send buffer
sendbuf.

3. Data received from thread t is expected to be of
size recvcnts[t]*size(rectype) and is deposited
at offset rdispls[t]*size(recvtype) of the re-
ceive buffer recvbuf.

3.5.11 The upccoll_reduce function

Synopsis

upccoll_return_t
upccoll_reduce (shared void * sendbuf,

shared void * recvbuf,
size_t count,
upccoll_dtype_t dt,
upccoll_op_t op,
int root,
upccoll_team_t team,
upccoll_flag_t flags,
upccoll_handle_t * handle);

Description

1. This is a reduction function with results accu-
mulated in the receive buffer of the root thread
({root ∈ 0..|team| − 1}).

2. Every participant provides count data items of
size size(dt) bytes each in the send buffer sendbuf.
The operation op is executed on every data ele-
ment across all participants.



3. Results are available in the receive buffer recvbuf
provided by the root thread. recvbuf is disre-
garded by all other threads.

4. All participant threads have to agree on the count,
dt and op arguments, or else the outcome of the
collective function is undefined.

3.5.12 The upccoll_allreduce function

Synopsis

upccoll_return_t
upccoll_allreduce (shared void * sendbuf,

shared void * recvbuf,
size_t count,
upccoll_dtype_t dt,
upccoll_op_t op,
upccoll_team_t team,
upccoll_flag_t flags,
upccoll_handle_t * handle);

Description

1. This is a reduction function with results distributed
to every participant.

2. Every participant provides count data items of
size size(dt) bytes each in the send buffer sendbuf.
The operation op is executed on every data ele-
ment across all participants.

3. Results are copied to the receive buffers recvbuf

of every thread.

4. All participant threads have to agree on the count,
dt and op arguments, or else the outcome of the
collective function is undefined.

3.5.13 The upccoll_reduce_scatter func-
tion

Synopsis

upccoll_return_t
upccoll_reduce_scatter (shared void * sendbuf,

shared void * recvbuf,
size_t * recvcounts,
upccoll_dtype_t dt,
upccoll_op_t op,
upccoll_team_t team,
upccoll_flag_t flags,
upccoll_handle_t * handle);

Description

1. This is a reduction function with results distributed
across the threads.

2. Every participant provides
|team|−1P

t=0

recvcounts[t]

data items of size size(dt) bytes each in the send
buffer sendbuf. The operation op is executed on
every data element across all participants.

3. Results are distributed in sequence across the re-
ceive buffers recvbuf provided by all threads, ac-
cording to the recvcounts argument. Thread {t ∈
0..|team| − 1} receives recvcounts[t]*size(dt)

bytes of the end result.

4. All participant threads have to agree on the dt, op
and tt recvcounts arguments, or else the outcome
of the collective function is undefined.

3.5.14 The upccoll_scan function

Synopsis

upccoll_return_t
upccoll_scan (shared void * sendbuf,

shared void * recvbuf,
size_t count,
upccoll_dtype_t dt,
upccoll_op_t op,
upccoll_team_t team,
upccoll_flag_t flags,
upccoll_handle_t * handle);

Description

1. This is a parallel scan (partial reduction) opera-
tion: for a given operator

L
determined by the

value of op, and contributions
sendbuft[i], t ∈ 0..|team| − 1}, i ∈ 0..count− 1,
the result on thread l is

resultl[i] =
l−1L
k=0

sendbufk[i], i ∈ 0..count− 1.

2. Every participant provides count data items of
size size(dt) bytes each in the send buffer sendbuf.
Results are copied to the receive buffers recvbuf

of every thread.

3. All participant threads have to agree on the count,
dt and op arguments, or else the outcome of the
collective function is undefined.

4. CONCLUSION AND FUTURE WORK
The proposed UPC collectives API described in this

paper is by its very nature somewhat of a compromise.
Our purpose is to introduce a vision of collective com-
munication to the UPC community. We do not claim
our approach to be comprehensive. We have picked the
collective operations we consider most important and
useful to actual users and lay a groundwork that is rea-
sonably self-contained and open to future expansion.
We have self-consciously abstained from a number of
features (Section 2.6).

Our hope is that our work may form the kernel of a
broad consensus. However, the most important goal is
to move the collectives standard in the right direction,
whether by our own efforts or someone else’s.
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