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Introduction

e Qur goal:

— Improve performance of UPC on multi-core shared memory
machines

— Improve interoperability (Hybrid Execution: MPIl, OMP, UPC)
MPI

 Our work:
— Investigate mapping of the UPE

Language threads to the OS threads

— We implemented Process with Shared Memory (ProcSM) execution
model in the UPC runtime

* Focus of the talk:
— UPC execution on top of Pthreads
— UPC execution on top of Processes (using ProcSM)
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« PGAS execution model:
— PGAS Language Threads <> User Threads (or Processes)
— User Threads <> Kernel Tasks
— Kernel Tasks <> Hardware Execution Contexts



Threads VS Processes on Multicore

« Language threads map to threads or processes ?

 Threads:

— Share address space
— Easy and fast communication
— Lighter than processes (in terms of context switching)

* Processes:

— Require Kernel mechanisms or external libs for
communication

— Heavy Context Switch
— Do not share TLB



UPC: Threads VS Processes

UPC Threads map to Pthreads or processes

UPC =)>Pthreads recommended on shared memory nodes

— Communication performed through shared memory (processes use
loopback)

Pthreads/Processes Performance

— Infiniband hardware allows 1 connection per process
— Scheduling and CPU/Memory affinity?

— Thread local data

Pthreads disadvantage: Interoperability

— Many libraries are not thread safe (Example: FFTW,
C++ stl not thread safe, C I/O functions on certain OSs)

— Hybrid Execution



Pthreads Alternative: Processes + Shared Memaory
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* Use ProcSM to improve interoperability
 Increase performance

* ProcSM implementation currently supported for SMPs
and cluster execution with Infiniband and MPI networks




ProcSM UPC implementation

* Pthreads, ProcSM — Heap Implementation

Pthreads: TLIT2|T3|T4|T5 ProcSM: [ P1 J [ P2 ] [ P3 J [ P4J [ P3 J
Heap resides in a single addr. space Heap distributed across multiple addr. spaces

* Implementation details
— Total of N+1 shared segments required
— ProcSM network segment is allocated and attached to all processes
— All threads allocate one memory segment; size is user controlled
— Each thread mmaps segments of all other threads

P1 P2 Pn

=== E




ProcSM - UPC implementation

* Proc SM shared segment mapping
— POSIX or SYSV
— Anonymous mapping not possible with SYSV

— POSIX SM does not create a file on disk — data written to a
shared memory region is not disk-synchronized

* Shared memory network (SMNet)
— Resides in a single SM region attached to all processes
— Active Messages sent through the SMNet

— Handler parameters exchanged directly among shared
memory segments

« Shared pointers on the same physical node are accessed
directly, without involving the network



Evaluation

AMD Barcelona

— 4 Sockets — 4 core, NUMA
Intel Tigerton

— 4 Sockets — 4 core, UMA

— 2 Nodes, Infiniband connection
Ranger

— Up to 64 cores
Microbenchmarks

— Shared memory access

— Communications

NAS Benchmarks

— UPC Implementation

— CG, EP, MG, IS, BT, SP, FT
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Shared Memory Access

« AMD Barcelona

— 4 Socket, 4 Cores
e Microbenchmark:

— Shared global memory access — streaming
 Num of threads: 16

Process speedup
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# messages
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Communication Performance — Ranger 16 Cores

Blocking Comm.
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« Blocking and Pipelined comm. use rdma()
« Strided comm. use active messages

« For Blocking and Pipelined comm.
performance similar

* ProcSM behavior more predictable

1D Strided Comm. 2D Strided Comm.

H# messages
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Communication Performance — Ranger 64 __

Blocking Comm.
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Pipelined Comm.
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* ProcSM perform significantly better

1D Strided Comm.

# doubles sent :

2D Strided Comm.

H# messages

# doubles sent g
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NAS Benchmarks — Intel Tigerton '

Performance improvement of ProcSM over Pthreads
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NAS Benchmarks — Intel Tigerton

Performance improvement of ProcSM over Pthreads
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SYSV Speedup on multicore

* Possible reasons for performance improvement:
— Thread Local data
— Memory Allocation
— Infiniband Hardware

UPC_all_alloc() called in a large loop
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ProcSM on Accelerators

« Common execution model: off-loading

* Not everything can be processed on
accelerators (example: inter-node
communication)
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Better

ProcSM - Accelerator Performance
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PPE-SPE Synchronization Overhead

ProcSM enables all-to-all mapping of processes to accelerators

All-to-all mapping enables work stealing execution model

Main Core <-> Accelerators synchronization latencies:
— Work-Steal (UPC) 3us

— SLED 7us

— YNR 10us

— MBOX 19us
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Conclusions and Future Work

We implemented Process/shared memory support for UPC runtime! (This
work started before | joined the lab)

ProcSM outperforms Pthreads in many cases!!
ProcSM improves interoperability

ProcSM currently supported within an SMP node, and in a distributed
environment for Infiniband and MPI networks

Future Work

— Merge ProcSM with new collectives

— Pinpoint the reasons for performance increase with ProcSM

— Investigate UPC_all_alloc() behavior

— Investigate hybrid execution: Processses + Pthreads, MPI+UPC ...

— Confirm ProcSM performance on various architectures using additional benchmarks
— Extend Language/Runtime support for accelerators
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Thank You!
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