_ A
f(rrereee ﬂ

Process-Based SMP Runtime

Filip Blagojevic, Paul Hargrove,
Costin lancu and Kathy Yelick

~

rrerrrer

Outline

Introduction

Technical overview

Evaluation on conventional CPUs
Evaluation on accelerators
Conclusions and Future Work

e
(rerree |m

Introduction

e Qur goal:

— Improve performance of UPC on multi-core shared memory
machines

— Improve interoperability (Hybrid Execution: MPIl, OMP, UPC)
MPI

 Our work:
— Investigate mapping of the UPE

Language threads to the OS threads

— We implemented Process with Shared Memory (ProcSM) execution
model in the UPC runtime

* Focus of the talk:
— UPC execution on top of Pthreads
— UPC execution on top of Processes (using ProcSM)

N

Introduction

R EEEEE |
e 48888
:

% I many-l

Kernel Tasks ; é

HARDWARE)]

I many-many

« PGAS execution model:
— PGAS Language Threads <> User Threads (or Processes)
— User Threads <> Kernel Tasks
— Kernel Tasks <> Hardware Execution Contexts

Threads VS Processes on Multicore

« Language threads map to threads or processes ?

 Threads:

— Share address space
— Easy and fast communication
— Lighter than processes (in terms of context switching)

* Processes:

— Require Kernel mechanisms or external libs for
communication

— Heavy Context Switch
— Do not share TLB

UPC: Threads VS Processes

UPC Threads map to Pthreads or processes

UPC =)>Pthreads recommended on shared memory nodes

— Communication performed through shared memory (processes use
loopback)

Pthreads/Processes Performance

— Infiniband hardware allows 1 connection per process
— Scheduling and CPU/Memory affinity?

— Thread local data

Pthreads disadvantage: Interoperability

— Many libraries are not thread safe (Example: FFTW,
C++ stl not thread safe, C I/O functions on certain OSs)

— Hybrid Execution

Pthreads Alternative: Processes + Shared Memaory

LanguageThM_iéi_
ProcSM <§:\(} é é é

* Use ProcSM to improve interoperability
 Increase performance

* ProcSM implementation currently supported for SMPs
and cluster execution with Infiniband and MPI networks

ProcSM UPC implementation

* Pthreads, ProcSM — Heap Implementation

Pthreads: TLIT2|T3|T4|T5 ProcSM: [P1 J [P2] [P3 J [P4J [P3 J
Heap resides in a single addr. space Heap distributed across multiple addr. spaces

* Implementation details
— Total of N+1 shared segments required
— ProcSM network segment is allocated and attached to all processes
— All threads allocate one memory segment; size is user controlled
— Each thread mmaps segments of all other threads

P1 P2 Pn

=== E

ProcSM - UPC implementation

* Proc SM shared segment mapping
— POSIX or SYSV
— Anonymous mapping not possible with SYSV

— POSIX SM does not create a file on disk — data written to a
shared memory region is not disk-synchronized

* Shared memory network (SMNet)
— Resides in a single SM region attached to all processes
— Active Messages sent through the SMNet

— Handler parameters exchanged directly among shared
memory segments

« Shared pointers on the same physical node are accessed
directly, without involving the network

Evaluation

AMD Barcelona

— 4 Sockets — 4 core, NUMA
Intel Tigerton

— 4 Sockets — 4 core, UMA

— 2 Nodes, Infiniband connection
Ranger

— Up to 64 cores
Microbenchmarks

— Shared memory access

— Communications

NAS Benchmarks

— UPC Implementation

— CG, EP, MG, IS, BT, SP, FT

10

Shared Memory Access

« AMD Barcelona

— 4 Socket, 4 Cores
e Microbenchmark:

— Shared global memory access — streaming
 Num of threads: 16

Process speedup

o)
o
X

40%

30%

20%

10%

0%

/ N—

500

5000 50000 500000 5000000 50000000
Num of Accesses

11

messages

messages

Communication Performance — Ranger 16 Cores

Blocking Comm.

#do'ublé;s se.h"c' N

Pipelined Comm.

3

-

H

;# d(‘)ubl";es sénf _

H# messages

« Blocking and Pipelined comm. use rdma()
« Strided comm. use active messages

« For Blocking and Pipelined comm.
performance similar

* ProcSM behavior more predictable

1D Strided Comm. 2D Strided Comm.

H# messages

] EERmmE U '-|__| RN L

doubles sent # doubles sent

messages

messages

Communication Performance — Ranger 64 __

Blocking Comm.

~ #doublessent
Pipelined Comm.

w

‘|II

doubles sent ;

I 10050
1008
o BRI

=R

=

H# messages

* ProcSM perform significantly better

1D Strided Comm.

doubles sent :

2D Strided Comm.

H# messages

doubles sent g

40%

30%

20%

10%

0%

25%
20%
15%
10%
5%
0%

NAS Benchmarks — Intel Tigerton '

Performance improvement of ProcSM over Pthreads

IS
4 8 16 32
Threads
BT
4 16 25
Threads

10%

5%

0%

15%

10%

5%

0%

SP

16 25
Threads
FT
8 16 32

Threads 4

NAS Benchmarks — Intel Tigerton

Performance improvement of ProcSM over Pthreads

40% 0.5%
30% CG EP
20% 0.0% |- |
10% I 4 .# Thr
0% | e 0.5%
10% 4 8 16 32
Threads 300 0%

25% MG

20%

15%

10%

5%

0% -—

5% 4 8 16 32

Threads

SYSV Speedup on multicore

* Possible reasons for performance improvement:
— Thread Local data
— Memory Allocation
— Infiniband Hardware

UPC_all_alloc() called in a large loop

Exec. Time (s)
o = N w H (6] <)} N

100
90
PDROC
e AN TAS Aso
. < 70
°E’60 /
= 50
g 40
£ 30
w20
10 -
0 . T+ 1T 1+ T+ 1T " T "1 1T 1T T T T ™1
© O O O O O O O O O O O o ©o o
——— — — ©C O O O O O O O 0O O O o o o o
T T T T T ! © O O O O O O O O O O O © o o
o 1n O 1n ©O n O n O Nn O n O In o
5000 10000 15000 20000 25000 30000 m o T T NN OL ORI QG

Num of allocations Num of allocations

ProcSM on Accelerators

« Common execution model: off-loading

* Not everything can be processed on
accelerators (example: inter-node
communication)

) 'U'U'Ul'ul'u-ol'ul
OochlLrll-bwlwl—\

S ———— \)
\;
\&&i
§:

\

APU1

APU2

APU3

APU4

APU5

APUG6

APU7

APUS8

Better

ProcSM - Accelerator Performance

20 T4 PBPI Speedup
18
16
-— 20.00%
o 14
% 12 15.00%
g 10 - 10.00%
c 8
o 5.00%
8 67
A 0.00% o . . . : -
i so 3333883333833 383533
I‘\.| : - ~ ~N m g ﬂ m 9 5 :
0 10.00% B S ~ ~ ~ B T Y
FrFrErFrg88g88g8g8g8gg8sgse88¢gzs
S T, e B PREYEEEEEEEECEEEEEEEE
Taskl-ength{usecl M ® M @M ® ™~ @ OO M~ ©OO MmO "™
=——=SLED ——YNR Work-Steal =——PPE ——MBOX ~—=SLED-user —SLED-kernel Work-Steal

PPE-SPE Synchronization Overhead

ProcSM enables all-to-all mapping of processes to accelerators

All-to-all mapping enables work stealing execution model

Main Core <-> Accelerators synchronization latencies:
— Work-Steal (UPC) 3us

— SLED 7us

— YNR 10us

— MBOX 19us

18

Conclusions and Future Work

We implemented Process/shared memory support for UPC runtime! (This
work started before | joined the lab)

ProcSM outperforms Pthreads in many cases!!
ProcSM improves interoperability

ProcSM currently supported within an SMP node, and in a distributed
environment for Infiniband and MPI networks

Future Work

— Merge ProcSM with new collectives

— Pinpoint the reasons for performance increase with ProcSM

— Investigate UPC_all_alloc() behavior

— Investigate hybrid execution: Processses + Pthreads, MPI+UPC ...

— Confirm ProcSM performance on various architectures using additional benchmarks
— Extend Language/Runtime support for accelerators

19

Thank You!

	Process-Based SMP Runtime
	Outline
	Introduction
	Introduction
	Threads VS Processes on Multicore
	UPC: Threads VS Processes
	Pthreads Alternative: Processes + Shared Memory
	ProcSM UPC implementation
	ProcSM - UPC implementation
	Evaluation
	Shared Memory Access
	Communication Performance – Ranger 16 Cores
	Communication Performance – Ranger 64 Cores
	NAS Benchmarks – Intel Tigerton
	NAS Benchmarks – Intel Tigerton
	SYSV Speedup on multicore
	ProcSM on Accelerators
	ProcSM - Accelerator Performance
	Conclusions and Future Work
	Slide Number 20

