
1

Irregular Communication
Optimizations in PGAS

Jimmy Su and Katherine Yelick
Computer Science Division

UC Berkeley

2

Irregular Data Structures
• Irregular array accesses arise in

many scientific applications.
– Sparse matrix algorithms
– Particle in cell methods

• Array access pattern is not
known until runtime.
– Example: particle affects its

neighbor to the north where
particle’s location is not know until
runtime

– When the fluid cell is remote,
communication is required.

• Optimization space depends on
architecture: cluster, multicore,
GPU

2D Particle in Cell

3

Heart Simulation
• Problem: compute blood flow in the heart
• Performs well on large parallel machines

– Scalable up to 512 processors
– Close to achieving the 1 second per time step goal

• The code contains substantial amount of manual
optimizations

4

Reasons for Manual Optimization

• Lack of trust in the compiler to make the
right optimizations

• Programmers like to program in the way
that they are most familiar with

– Reluctant to learn a new parallel
programming model without significant gain
in productivity and/or performance.

5

Challenges in Heart Code

• Irregular data structures
• Communication optimizations

– Packing and unpacking
– Message aggregation and reduction
– Atomic updates to fluid values

• Fiber partitioning
– Balancing workload while minimizing

communication
• Correctness debugging

6

Spread Force

2D Example
• Each particle spreads its
force to its neighboring fluid
cells

• A fluid cell may have
multiple neighboring
particles

• Updates to a fluid cell
must be synchronized

7

SPMD Spread Force

for (int i=0; i<myParticleArray.length; i++){
Particle p = myParticleArray[i];
Point pos = [p.x, p.y];
synchronize on fluidLock{

fluid[pos+north] = fluid[pos+north] + p.force;
}

}

Many small messages

Each read or write may result in a
network roundtrip if the memory
location is remote

Global locking overhead

Lock and unlock result in two network
roundtrips on distributed backends

8

SPMD Spread Force with Manual
Optimization

FluidCache cache = new FluidCache();
for (int i=0; i<myParticleArray.length; i++) {

Particle p = myParticleArray[i];
Point pos = [p.x, p.y];
cache.add(pos+north, p.force);

}

send cache to the processor that owns the
underlying fluid

barrier;

increment fluid using values from incoming caches

Avoids global locking

Achieves synchronization by having the
owner to do the increments serially

Reduces the number of
messages by accumulating
updates locally

Aggregates messages
by sending all the
updates for a remote
processor together

9

Automatic Optimization

Manual optimization significantly increases performance, but greatly
increases the lines of code and makes debugging more difficult

Goal: to achieve the manual optimizations automatically using the
compiler

public class SpreadForce implements Apply<Particle, 1> {
public void apply(DistArray<Particle, 1> particleArray) {

Particle p = particleArray[0];
Point pos = [p.x, p.y];
synchronize on fluidLock{

fluid[pos+north] = fluid[pos+north] + p.force;
}

}
}

10

Synchronized Region Analysis
Informally, we need to verify that the synchronization obtained
by performing the updates serially at the remote processor is
sufficient to replace the use of the global lock.

Performing updates serially at the remote processor gives us:

1. Atomic write to the shared variable

2. Makes the increments from different processors atomic with respect to
each other

It does not:

1. Prevent data races between reads and writes to shared variables inside
the synchronized region with

a. Reads and writes outside the region protected by the same lock

b. Reads and writes inside the same region

11

Synchronized Region Analysis

synchronized region

s1
s2
s3
s4

write to shared variable

no write to shared variable

Put in canonical form, it must be in one of the following forms:
Let a be the shared variable
a = expr
a = a op expr
where a is not used in the evaluation of expr, and op is an
associative operator

12

Synchronized Region Analysis

s1
s2
s3
s4

s1
s3
s2
s4

synchronized region

s1
s3
s2
s4

s1
s3
s2
s4

conflict edge

Conditions 1 and 2 provides
the following properties:

a. Updates to shared
variables can be
accumulated and delayed
until the end

b. Write to shared
statements commute, so
they can be executed in
parallel

1

2

13

Synchronized Region Analysis

s1
s3

a=a op expr1
b=b op expr2

a and b are shared variables

s1
s3

a=a op val1
b=b op val2

Write to shared statements can be
executed in parallel, so expr1 and
expr2 can be evaluated independently.

Processor 1 Processor 2

s1
s3

a=a op val1
b=b op val2

s1
s3

a=a op val3
b=b op val4

partial order

Partial order enforced by the
remote processor that processes
the updates serially.

14

Message Aggregation

s1
s3

a=a op val1

s1
s3

a=a op val3
b=b op val2 b=b op val4

Processor 1

a=a op (val1 op val3)

b=b op (val2 op val4)

Update aggregation at each processor uses the associative
property of op.

Assume processor 1 works on n elements of the distributed
array. Reduces 2n messages to 1.

Processor 1 accumulates the
updates locally

15

Prevent Data Races
Performing updates serially at the remote processor does not:

1. Prevent data races between reads and writes to shared variables inside
the synchronized region with

a. Reads and writes outside the region protected by the same lock

Solution:

Have all processors start executing the optimized synchronized region
together and exit together. This prevents all data races between reads and
writes in the synchronized region and code outside of the region.

Titanium’s textually aligned barriers make analysis simple to determine
whether the synchronized region will be executed by all processors.

16

Communication Methods
• Pack

– Communicate only elements
that are needed without
duplicates.

– List of array indexes
• Bound

– Compute a bounding box that
contains the needed data

– Fill the gaps with identity
elements

– Communicate the box using
one-sided bulk operation

• Multiple Bounding Boxes

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

1 3 4

1 2 3 4

Pack and bound are two extreme cases of multiple bounding boxes.
Performance tuning is on whether to include a gap in the current
bounding box or to start a new bounding box.

6

6

6

Performance Model

17

Use greedy algorithm to decide whether to include the gap
in the current bounding box or start a new bounding box

Cost of including the gap in the current bounding box:
gapSize*(α+1/bw+2α)

Cost of starting a new bounding box:
descriptorSize*(α+1/bw+α)

α=α1+(1/L1line)*(α2-α1)+(1/L2line)*(αmem-α2)
bw is the network bandwidth for a given size message

Experimental Results

18
Experiments were done on a cluster of Opterons connected by
Infiniband.

Message Reduction

19

Upper bound on the total number of remote messages

Without optimization:
Histogram: sampleTotal*(p-1)/p
Particle gravitation: particleNum^2*(p-1)/p
Spread Force: particleNum*(p-1)/p

With optimization:
At most two messages between each processor pair
assuming each processor has some updates for every other
processor

Since the input size is much larger than the number of
processors, we see several orders of magnitude reduction in
message count.

Conclusion

• Using automatic compiler optimization, we
are able to achieve significant speedups
on the fine grain code
– Avoids global locking
– Achieve aggregation by caching the updates

locally
– Overlap communication by sending non-

blocking update requests to multiple remote
processors

20

21

• Titanium has textual barriers: all threads must
execute the same textual sequence of barriers
– This example is illegal:
if (Ti.thisProc() % 2 == 0)

Ti.barrier(); // even ID threads
else

Ti.barrier(); // odd ID threads

• Compiler proves where in the program a barrier can
be inserted safely
– We label those program points as in single context

Textual Barrier Alignment

	Irregular Communication Optimizations in PGAS
	Irregular Data Structures
	Heart Simulation
	Reasons for Manual Optimization
	Challenges in Heart Code
	Spread Force
	SPMD Spread Force
	SPMD Spread Force with Manual Optimization
	Automatic Optimization
	Synchronized Region Analysis
	Synchronized Region Analysis
	Synchronized Region Analysis
	Synchronized Region Analysis
	Message Aggregation
	Prevent Data Races
	Communication Methods
	Performance Model
	Experimental Results
	Message Reduction
	Conclusion
	Textual Barrier Alignment

