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Irregular Data Structures
• Irregular array accesses arise in 

many scientific applications.
– Sparse matrix algorithms
– Particle in cell methods

• Array access pattern is not 
known until runtime.
– Example: particle affects its 

neighbor to the north where
particle’s location is not know until 
runtime

– When the fluid cell is remote, 
communication is required.

• Optimization space depends on 
architecture: cluster, multicore, 
GPU

2D Particle in Cell
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Heart Simulation
• Problem: compute blood flow in the heart
• Performs well on large parallel machines

– Scalable up to 512 processors
– Close to achieving the 1 second per time step goal

• The code contains substantial amount of manual 
optimizations
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Reasons for Manual Optimization

• Lack of trust in the compiler to make the 
right optimizations 

• Programmers like to program in the way 
that they are most familiar with 

– Reluctant to learn a new parallel 
programming model without significant gain 
in productivity and/or performance.
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Challenges in Heart Code

• Irregular data structures
• Communication optimizations

– Packing and unpacking
– Message aggregation and reduction
– Atomic updates to fluid values

• Fiber partitioning
– Balancing workload while minimizing 

communication 
• Correctness debugging 
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Spread Force

2D Example
• Each particle spreads its 
force to its neighboring fluid 
cells

• A fluid cell may have 
multiple neighboring 
particles

• Updates to a fluid cell 
must be synchronized
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SPMD Spread Force

for (int i=0; i<myParticleArray.length; i++){
Particle p = myParticleArray[i];
Point pos = [p.x, p.y];
synchronize on fluidLock{

fluid[pos+north] = fluid[pos+north] + p.force;
}

}

Many small messages

Each read or write may result in a 
network roundtrip if the memory 
location is remote

Global locking overhead

Lock and unlock result in two network 
roundtrips on distributed backends
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SPMD Spread Force with Manual 
Optimization

FluidCache cache = new FluidCache();
for (int i=0; i<myParticleArray.length; i++) {

Particle p = myParticleArray[i];
Point pos = [p.x, p.y];
cache.add(pos+north, p.force);

}

send cache to the processor that owns the 
underlying fluid

barrier;

increment fluid using values from incoming caches  

Avoids global locking

Achieves synchronization by having the 
owner to do the increments serially

Reduces the number of 
messages by accumulating 
updates locally

Aggregates messages 
by sending all the 
updates for a remote 
processor together
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Automatic Optimization

Manual optimization significantly increases performance, but greatly 
increases the lines of code and makes debugging more difficult

Goal: to achieve the manual optimizations automatically using the 
compiler

public class SpreadForce implements Apply<Particle, 1> {
public void apply(DistArray<Particle, 1> particleArray) {

Particle p = particleArray[0];
Point pos = [p.x, p.y];
synchronize on fluidLock{

fluid[pos+north] = fluid[pos+north] + p.force;
}

}
}
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Synchronized Region Analysis
Informally, we need to verify that the synchronization obtained 
by performing the updates serially at the remote processor is 
sufficient to replace the use of the global lock.

Performing updates serially at the remote processor gives us:

1. Atomic write to the shared variable

2. Makes the increments from different processors atomic with respect to 
each other

It does not:

1. Prevent data races between reads and writes to shared variables inside 
the synchronized region with

a. Reads and writes outside the region protected by the same lock

b. Reads and writes inside the same region
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Synchronized Region Analysis

synchronized region

s1
s2
s3
s4

write to shared variable

no write to shared variable

Put in canonical form, it must be in one of the following forms:
Let a be the shared variable
a = expr
a = a op expr
where a is not used in the evaluation of expr, and op is an
associative operator
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Synchronized Region Analysis

s1
s2
s3
s4

s1
s3
s2
s4

synchronized region

s1
s3
s2
s4

s1
s3
s2
s4

conflict edge

Conditions 1 and 2 provides 
the following properties:

a. Updates to shared 
variables can be 
accumulated and delayed 
until the end

b. Write to shared 
statements commute, so 
they can be executed in 
parallel 

1

2
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Synchronized Region Analysis

s1
s3

a=a op expr1
b=b op expr2

a and b are shared variables

s1
s3

a=a op val1
b=b op val2

Write to shared statements can be 
executed in parallel, so expr1 and 
expr2 can be evaluated independently.

Processor 1 Processor 2

s1
s3

a=a op val1
b=b op val2

s1
s3

a=a op val3
b=b op val4

partial order

Partial order enforced by the 
remote processor that processes 
the updates serially.
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Message Aggregation

s1
s3

a=a op val1

s1
s3

a=a op val3
b=b op val2 b=b op val4

Processor 1

a=a op (val1 op val3)

b=b op (val2 op val4)

Update aggregation at each processor uses the associative 
property of op.

Assume processor 1 works on n elements of the distributed 
array.  Reduces 2n messages to 1.

Processor 1 accumulates the 
updates locally
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Prevent Data Races
Performing updates serially at the remote processor does not:

1. Prevent data races between reads and writes to shared variables inside 
the synchronized region with

a. Reads and writes outside the region protected by the same lock

Solution:

Have all processors start executing the optimized synchronized region 
together and exit together.  This prevents all data races between reads and 
writes in the synchronized region and code outside of the region.

Titanium’s textually aligned barriers make analysis simple to determine 
whether the synchronized region will be executed by all processors.  
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Communication Methods
• Pack

– Communicate only elements 
that are needed without 
duplicates.  

– List of array indexes  
• Bound

– Compute a bounding box that 
contains the needed data 

– Fill the gaps with identity 
elements

– Communicate the box using 
one-sided bulk operation

• Multiple Bounding Boxes

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

1 3 4

1 2 3 4

Pack and bound are two extreme cases of multiple bounding boxes.  
Performance tuning is on whether to include a gap in the current 
bounding box or to start a new bounding box.  

6

6

6



Performance Model
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Use greedy algorithm to decide whether to include the gap 
in the current bounding box or start a new bounding box

Cost of including the gap in the current bounding box:
gapSize*(α+1/bw+2α)

Cost of starting a new bounding box:
descriptorSize*(α+1/bw+α)

α=α1+(1/L1line)*(α2-α1)+(1/L2line)*(αmem-α2)
bw is the network bandwidth for a given size message



Experimental Results
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Experiments were done on a cluster of Opterons connected by 
Infiniband.



Message Reduction

19

Upper bound on the total number of remote messages

Without optimization:
Histogram: sampleTotal*(p-1)/p
Particle gravitation: particleNum^2*(p-1)/p
Spread Force: particleNum*(p-1)/p 

With optimization:
At most two messages between each processor pair 
assuming each processor has some updates for every other 
processor

Since the input size is much larger than the number of 
processors, we see several orders of magnitude reduction in 
message count.



Conclusion

• Using automatic compiler optimization, we 
are able to achieve significant speedups 
on the fine grain code
– Avoids global locking
– Achieve aggregation by caching the updates 

locally
– Overlap communication by sending non-

blocking update requests to multiple remote 
processors

20
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• Titanium has textual barriers: all threads must 
execute the same textual sequence of barriers
– This example is illegal:
if (Ti.thisProc() % 2 == 0)

Ti.barrier(); // even ID threads
else

Ti.barrier(); // odd ID threads

• Compiler proves where in the program a barrier can 
be inserted safely
– We label those program points as in single context

Textual Barrier Alignment
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