
Parallel
Applications

Parallel
Hardware

Parallel
SoftwareIT industry

(Silicon Valley)
Users

Autotuning Collective Operations
in a Multicore Environment

Rajesh Nishtala, Paul Hargrove, Yili
Zheng, and Kathy Yelick

Berkeley UPC Group

Collectives Examples

One-to-Many
All processors communicate
with a single root

Flat algorithm: O(T) messages

Broadcast
Scatter
Gather
Reduce-to-One

Many-to-Many
All processors communicate
with all others

Flat algorithm: O(T2) messages

Barrier
Gather-to-All
Exchange (i.e. Transpose)
Reduce-to-All

2

Operations that perform globally coordinated communication
Most modern parallel programming libraries and languages
have versions of these operations

Parallel
Applications

Parallel
Hardware

Parallel
SoftwareIT industry

(Silicon Valley)
Users

Shared Memory Collectives

3

Barrier (dissemination algorithm)

4

1

0

5

4

3

26

7

Synchronization Construct
Can’t return from a Barrier until
all other threads have called the
Barrier

Complete Barrier in log2(T) stages
Each stage we learn about twice
the number of processors
Dissemination required all threads
to be active all the time

O(T log T) “messages”
Time: L*(log T) (L = latency)

View from Thread 0 T0 T1 T2 T3 T4 T5 T6 T7

Who knows about T0 ✔

Who T0 knows about ✔

✔

✔

✔ ✔

✔ ✔

✔ ✔ ✔ ✔

✔ ✔ ✔ ✔

Barrier (tree algorithm)
Requires two passes of a tree

First (UP) pass tells parent
subtree has arrived.
Second (DOWN) pass
indicates that all threads have
arrived
O(T) “messages”
Time: 2L*(log T)

Two ways to signal others:
Push: write a remote variable
and spin wait on a local
variable
Pull: write a local variable and
spin on a remote variable

0

8 2

312 10

4

6

1

11

9

7

5

14 13

15

5

• Leads to 4 unique tree
algorithms

• Performance of each is
dependent on how
systems handle
coherency and atomic
ops

Example Tree Topologies
0

8 23

12 10

4

6

1

11 9 7 5

14 1315
Radix 4 k-nomial tree

(quadnomial)

0

8 2

312 10

4

6

1

11

9

7

5

14 13

15
Radix 2 k-nomial tree

(binomial)
0

1

2

3

125

8

9

4 6 7 10 11 13 14

0

1

2

3

12

5

8

9

4

6

7

10

11

13

14

15
Binary Tree Fork Tree 6

0

1

2

3

4

5

6

7

Chain

Tree

Barrier Performance Results

7

“Traditional pthread barriers” yield poor performance
Performance penalty for picking bad algorithm can be quite substantial
Same code base across all platforms

G
O
O
D

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

Intel Clovertown (8) AMD Opteron (32) Sun Niagara2 (256)

Ti
m

e
(n

an
os

ec
on

ds
)

Pthread Lib

Dissemination

Tree Push/Push

Tree Push/Pull

Tree Pull/Push

Tree Pull/Pull

Barrier Tuning Parameters
Algorithm
Signaling Mechanisms

(Previous Slide)

Tree Geometry
Tree Root
Tree Shape

8

0

500

1000

1500

2000

2500

3000

packed spread rand

B
ar

ri
er

 E
xe

cu
ti

on
 T

im
e

(n
s)

Thread Layout

Thread 0
max
min

AMD Opteron (32 threads)
Barrier Performance (varying root)

best root: 24

best root: 4

best root: 18

Autotuning and Synchronization
Tradeoff between Flat and Tree
based topology exposes cost of
synchronization vs. benefit of
extra parallelism
Optimal algorithm choice is
affected by the synchronization
flags
Looser Synchronization enables
trees to realize better
performance at lower message
sizes.

9

AMD Opteron (32 threads)
Reduction Performance

Parallel
Applications

Parallel
Hardware

Parallel
SoftwareIT industry

(Silicon Valley)
Users

Collectives for Clusters of
Multicore Processors

10

Design Goals for GASNet Collectives
Interface

General collective interface that supports multiple PGAS
languages

E.g. UPC and Chapel have different threading and execution
models that we need to support
Have to support the many synchronization modes of UPC

Allow the collectives to be nonblocking
Support subset collectives (i.e. Teams)

Implementation
Leverage shared memory whenever it’s available
Collectives are automatically tuned

Infrastructure should be able to include hardware collectives on
platforms where applicable

11

Nonblocking Collectives
• Uses state machines to control when certain actions can be

taken
• Collective initiation creates a state machine and puts it on a

“runnable” queue
• Instead of spin waiting at a state function returns control to

poller
• gasnet_coll_trysync() polls all active collectives once

12

0: all children reported?

1: Send a message to parent
signaling subtree arrived

2: Has parent sent us data?

3: Nonblocking signaling
put data to children

5: All nodes arrived at
barrier?

6: Done!

4: Puts done?

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

no

no

no

no

sample state machine for broadcast

Taking Advantage of Shared Memory

Use one representative thread
per node to handle
communication

Minimize contention of
communication resources

Perform memcpy to pack and
unpack data for local collective

Increases size of messages
on the wire
Incurs overhead for packing
and unpacking data

13

Broadcast on Ranger
(varying threads per node)

4 threads per process
consistently yields best
performance

One process per socket
Allows both network cards
to be used effectively

Other Infrastructure Features
Distributed Scratch Space Management

Some optimal implementations of collectives require
extra storage not visible to user
Need to manage the auxiliary space in scalable and
distributed way

Tree Construction
Optimal communication schedule is determined by
network features
Native support for k-nary, k-nomial, and fork of
various fanouts
Trees can be composed in arbitrary ways to produce
more interesting communication topologies that best
suit the network

14

Autotuner Flowchart

1515

Write generator
for all

code variants

Create Performance
Models

and Heuristics

Library Creation
(offline, manual)
Time: O(weeks)

input data

Evaluate Models
and/or search

Select
Data Struct.

& Code

History

handle to execute code

Application Runtime
Time: O(min)

[Based on a slide from Vuduc, SciDAC’05 meeting]

Generated
code

variants

Benchmark
library on target

architecture

Benchmark
Data

Library Install
(offline, automated)

Time: O(hours)

Automatic Tuning Overview (1/2)
Portable Performance

Many factors that influence the optimal algorithm
Importance of different factors depend on the target
platform

16

INSTALL-TIME RUN-TIME

• Processor type/speed
• Memory system
• Number of cores per socket
• Number of network cards
• Interconnect Latency
• Interconnect Bandwidth
• Interconnect Topology

• Processor connectivity
• Number of processors
• Sizes of the messages
• Synchronization mode
• Network load
• Mix of collectives and
computation

Automatic Tuning Overview (2/2)
Each collective have many implementations in GASNet

Variants such as eager, rendezvous, direct put, direct get
Orthogonally, there are many possible trees that we can
use

GASNet collective infrastructure indexes all the algorithms
Hardware collectives for certain conduits go into this index
Special tester runs through all possible input combinations
and a subset of the (many) possible algorithms to pick the
best algorithm.
Like FFTW and other automatic tuning projects, the
automatic tuning data is saved across runs

17

Importance of Tuning
• Compare best algorithm v. a

“standard” algorithm used to
implement the collectives
• Importance of tuning varies

based on platform and
message size

• Same code base runs on both
BlueGene/P and Ranger

• Data also show best algorithm
changes at 16k bytes on Ranger
• From Direct Put to Rendez-

Vous Get
• Much wider range of optimal trees

• Varies from Nary to Recursive
trees

• Binary Tree best on BG/P
18

Broadcast Speedup

Conclusions
Significant progress on GASNet
Collectives

Added Teams
Added automatic tuning
infrastructure and tests
Many performance bug fixes
Test collectives and
infrastructure at large scale

Future Work
Continue to build out automatic
tuner
Explore more hardware
collectives
Add more algorithms to search
space

19

Comparison of MPI and GASNet Broadcast

Parallel
Applications

Parallel
Hardware

Parallel
SoftwareIT industry

(Silicon Valley)
Users

Backup Slides

20

Case Study: Barrier
This talk outlines Barrier as a case study

Our software automatically tunes all the aforementioned
collectives

Synchronization Construct
Can’t return from a Barrier until all other threads have
called the Barrier

Why does a fast barrier help us?
Synchronous programs are a lot easier to understand and
debug than their asynchronous counterparts
If the barriers separating different phases are slow,
Amdahl's law limits benefits from parallelism
Faster barriers enable finer-grained parallelism without
resorting to asynchronous, and error prone, code

21

Experimental Platforms
Sun Niagara2 (256 threads)

Intel Clovertown (8 threads)

AMD Opteron (32 threads)

22[Diagrams Courtesy of Sam W. Williams]

Potential Synchronization
Problem

1. Broadcast variable x from root
2. Have proc 1 set a new value

for x on proc 4

broadcast x=1 from proc 0
if(myid==1) {

put x=5 to proc 4
} else {

/* do nothing*/
}

pid: 0
x: 1

pid: 1
x: Ø

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: Ø

pid: 1
x: 1

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: 1

pid: 4
x: 5

pid: 0
x: Ø

pid: 1
x: Ø

pid: 4
x: Ø

pid: 0
x: 1

pid: 1
x: Ø

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: Ø

pid: 1
x: 1

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: Ø

pid: 4
x: Ø

pid: 0
x: 1

pid: 1
x: Ø

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: Ø

pid: 1
x: 1

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: 1

pid: 4
x: Ø

pid: 0
x: 1

pid: 1
x: Ø

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: Ø

pid: 1
x: 1

pid: 2
x: 1

pid: 3
x: Ø

pid: 4
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: Ø

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: Ø

pid: 1
x: 1

pid: 2
x: 1

pid: 3
x: 1

pid: 4
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: Ø

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: Ø

pid: 1
x: 1

pid: 2
x: 1

pid: 3
x: 1

pid: 4
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: 1

pid: 4
x: 1

Put of x=5 by proc 1 has been lost
Proc 1 observes locally complete but globally incomplete collective

Proc 1 thinks
collective is
done

23

Strict v. Loose Synchronization
A fix to the problem

Use synchronization
before/after the collective
Enforce global ordering of
the operations

Is there a problem?
We want to decouple
synchronization from data
movement
Let user specify the
synchronization
requirements

Potential to aggregate
synchronization
Done by the user ora smart
compiler

How can we realize these
gains in applications?
What’s the best way to
expose all this?

Sun Niagara2 (256 threads)
Reduction Performance

24

Autotuning and Synchronization (cont.)

25

Sun Niagara 2 (256 threads)
Reduction Performance

Intel Clovertown (8 threads)
Reduction Performance

Different platforms have different
crossover points between the
algorithms
On Intel Clovertown, flat
algorithms always beat out the
trees

However on Sun Niagara2 the
trees always win

High thread count implies
that scalable collectives must
be implemented for all sizes

Auto-tuned Conjugate Gradient
Incorporate tuned collectives into an
important kernel
Sparse Conjugate Gradient

Part of Sparse Motif
Iteratively solve Ax=b for x given
A and b
Relies heavily on optimized SPMV
and tuned BLAS1 operations
Matrix Partitioned Row-wise for
our application

Automatic tuning for a parallel
system

Kernels tuned for parallel and
serial performance
Previous related work have
focused on serial tuning only

A x b

=

26

Collectives Used:
Scalar Reduce-To-All for
Dot Products
Barriers

Conjugate Gradient Performance
Auto-tuned SPMV from Sam
Williams [Williams et. al, SC’07]
Sun Performance Library for
local BLAS1 operations
Incorporate aforementioned
tuned barrier and tuned Reduce-
to-All for inter-thread
communication
Matrix parallelized row-wise

reductions are performed
across all 128 threads

Best Speedup: 21%
Median Speedup: 3%
Auto-tuning took a few seconds
to search for best barrier and
best

G
O
O
D

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

G
Fl

op
s

Matrix Name (sorted by nonzero count)

W/ Tuned Collectives

W/o Tuned Collectives

27

CG Performance Breakdown
(untuned)

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 (

U
nt

un
ed

)
Ex

ec
ut

io
n

Ti
m

e

Matrix Name (sorted by nonzero count)

Barriers

Reductions

BLAS1

SPMV

28

CG Performance Breakdown
(tuned)

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 (

U
nt

un
ed

)
Ex

ec
ut

io
n

Ti
m

e

Matrix Name (sorted by nonzero count)

Barriers

Reductions

BLAS1

SPMV

29

Conclusions
As thread/core counts continue to grow rapidly

Collective tuning will become very important
Poor collective choice leads to dramatic performance penalties

Optimal algorithms are dependent on many factors that are hard to
model a priori

Often based on runtime factors such as synchronization
requirements of the application
Thread layout on the machine affects the optimal algorithm

We use auto-tuners to pick the best algorithm
Show up to 21% gains in overall application performance in
Conjugate Gradient
Auto-tuned collectives will soon be incorporated into runtime system
for Berkeley UPC compiler

30

	Autotuning Collective Operations in a Multicore Environment
	Collectives Examples
	Shared Memory Collectives
	Barrier (dissemination algorithm)
	Barrier (tree algorithm)
	Example Tree Topologies
	Barrier Performance Results
	Barrier Tuning Parameters
	Autotuning and Synchronization
	Collectives for Clusters of Multicore Processors
	Design Goals for GASNet Collectives
	Nonblocking Collectives
	Taking Advantage of Shared Memory
	Other Infrastructure Features
	Autotuner Flowchart
	Automatic Tuning Overview (1/2)
	Automatic Tuning Overview (2/2)
	Importance of Tuning
	Conclusions
	Backup Slides
	Case Study: Barrier
	Experimental Platforms
	Potential Synchronization� Problem
	Strict v. Loose Synchronization
	Autotuning and Synchronization (cont.)
	Auto-tuned Conjugate Gradient
	Conjugate Gradient Performance
	CG Performance Breakdown (untuned)
	CG Performance Breakdown (tuned)
	Conclusions

