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Collectives Examples

One-to-Many
All processors communicate 
with a single root

Flat algorithm: O(T) messages

Broadcast
Scatter
Gather
Reduce-to-One

Many-to-Many
All processors communicate 
with all others

Flat algorithm: O(T2) messages

Barrier
Gather-to-All
Exchange (i.e. Transpose)
Reduce-to-All
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Operations that perform globally coordinated communication
Most modern parallel programming libraries and languages 
have versions of these operations
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Barrier (dissemination algorithm)
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Synchronization Construct
Can’t return from a Barrier until 
all other threads have called the 
Barrier

Complete Barrier in log2(T) stages
Each stage we learn about twice 
the number of processors
Dissemination required all threads 
to be active all the time

O(T log T) “messages” 
Time: L*(log T) (L = latency)

View from Thread 0 T0 T1 T2 T3 T4 T5 T6 T7

Who knows about T0 ✔

Who T0 knows about ✔

✔

✔

✔ ✔

✔ ✔

✔ ✔ ✔ ✔

✔ ✔ ✔ ✔



Barrier (tree algorithm)
Requires two passes of a tree

First (UP) pass tells parent 
subtree has arrived.
Second (DOWN) pass 
indicates that all threads have 
arrived
O(T) “messages”
Time: 2L*(log T)

Two ways to signal others: 
Push: write a remote variable 
and spin wait on a local 
variable
Pull: write a local variable and 
spin on a remote variable
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• Leads to 4 unique tree 
algorithms 

• Performance of each is 
dependent on how 
systems handle 
coherency and atomic 
ops



Example Tree Topologies
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Barrier Performance Results
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“Traditional pthread barriers” yield poor performance
Performance penalty for picking bad algorithm can be quite substantial
Same code base across all platforms
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Barrier Tuning Parameters
Algorithm
Signaling Mechanisms

(Previous Slide)

Tree Geometry
Tree Root
Tree Shape
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Autotuning and Synchronization
Tradeoff between Flat and Tree 
based topology exposes cost of 
synchronization vs. benefit of 
extra parallelism
Optimal algorithm choice is 
affected by the synchronization 
flags
Looser Synchronization enables 
trees to realize better 
performance at lower message 
sizes.
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AMD Opteron (32 threads) 
Reduction Performance
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Design Goals for GASNet Collectives
Interface

General collective interface that supports multiple PGAS 
languages

E.g. UPC and Chapel have different threading and execution 
models that we need to support
Have to support the many synchronization modes of UPC

Allow the collectives to be nonblocking
Support subset collectives (i.e. Teams)

Implementation
Leverage shared memory whenever it’s available
Collectives are automatically tuned

Infrastructure should be able to include hardware collectives on 
platforms where applicable 
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Nonblocking Collectives
• Uses state machines to control when certain actions can be 

taken
• Collective initiation creates a state machine and puts it on a 

“runnable” queue
• Instead of spin waiting at a state function returns control to 

poller
• gasnet_coll_trysync() polls all active collectives once
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0: all children reported?

1: Send a message to parent 
signaling subtree arrived

2: Has parent sent us data?

3: Nonblocking signaling 
put data to children

5: All nodes arrived at 
barrier?

6: Done!

4: Puts done?

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

no

no

no

no

sample state machine for broadcast



Taking Advantage of Shared Memory

Use one representative thread 
per node to handle 
communication

Minimize contention of 
communication resources

Perform memcpy to pack and 
unpack data for local collective

Increases size of messages 
on the wire
Incurs overhead for packing 
and unpacking data
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Broadcast on Ranger
(varying threads per node)

4 threads per process 
consistently yields best 
performance

One process per socket
Allows both network cards 
to be used effectively



Other Infrastructure Features
Distributed Scratch Space Management

Some optimal implementations of collectives require 
extra storage not visible to user
Need to manage the auxiliary space in  scalable and 
distributed way

Tree Construction
Optimal communication schedule is determined by 
network features
Native support for k-nary, k-nomial, and fork of 
various fanouts
Trees can be composed in arbitrary ways to produce 
more interesting communication topologies that best 
suit the network
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Autotuner Flowchart
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Write generator 
for all 

code variants

Create Performance
Models 

and Heuristics

Library Creation 
(offline, manual)
Time: O(weeks)

input data

Evaluate Models
and/or search

Select
Data Struct.

& Code

History

handle to execute code

Application Runtime
Time: O(min)

[Based on a slide from Vuduc, SciDAC’05 meeting]

Generated
code

variants

Benchmark 
library on target 

architecture

Benchmark
Data

Library Install
(offline, automated)

Time: O(hours)



Automatic Tuning Overview (1/2)
Portable Performance

Many factors that influence the optimal algorithm
Importance of different factors depend on the target 
platform
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INSTALL-TIME RUN-TIME

• Processor type/speed
• Memory system
• Number of cores per socket 
• Number of network cards
• Interconnect Latency
• Interconnect Bandwidth
• Interconnect Topology

• Processor connectivity
• Number of processors
• Sizes of the messages
• Synchronization mode
• Network load
• Mix of collectives and 
computation



Automatic Tuning Overview (2/2)
Each collective have many implementations in GASNet

Variants such as eager, rendezvous, direct put, direct get
Orthogonally, there are many possible trees that we can 
use

GASNet collective infrastructure indexes all the algorithms 
Hardware collectives for certain conduits go into this index
Special tester runs through all possible input combinations 
and a subset of the (many) possible algorithms to pick the 
best algorithm.
Like FFTW and other automatic tuning projects, the 
automatic tuning data is saved across runs
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Importance of Tuning
• Compare best algorithm v. a 

“standard” algorithm used to 
implement the collectives
• Importance of tuning varies 

based on platform and 
message size

• Same code base runs on both 
BlueGene/P and Ranger

• Data also show best algorithm 
changes at 16k bytes on Ranger
• From Direct Put to Rendez-

Vous Get 
• Much wider range of optimal trees 

• Varies from Nary to Recursive 
trees

• Binary Tree best on BG/P
18

Broadcast Speedup 



Conclusions
Significant progress on GASNet 
Collectives

Added Teams
Added automatic tuning 
infrastructure and tests
Many performance bug fixes
Test collectives and 
infrastructure at large scale

Future Work
Continue to build out automatic 
tuner 
Explore more hardware 
collectives
Add more algorithms to search 
space
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Comparison of MPI and GASNet Broadcast
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Case Study: Barrier
This talk outlines Barrier as a case study

Our software automatically tunes all the aforementioned 
collectives

Synchronization Construct
Can’t return from a Barrier until all other threads have 
called the Barrier

Why does a fast barrier help us?
Synchronous programs are a lot easier to understand and 
debug than their asynchronous counterparts
If the barriers separating different phases are slow, 
Amdahl's law limits benefits from parallelism
Faster barriers enable finer-grained parallelism without 
resorting to asynchronous, and error prone, code 
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Experimental Platforms
Sun Niagara2 (256 threads)

Intel Clovertown (8 threads)

AMD Opteron (32 threads)

22[Diagrams Courtesy of Sam W. Williams]



Potential Synchronization
Problem

1. Broadcast variable x from root
2. Have proc 1 set a new value 

for x on proc 4

broadcast x=1 from proc 0
if(myid==1) {

put x=5 to proc 4
} else {

/* do nothing*/
}

pid: 0
x: 1

pid: 1
x: Ø

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: Ø

pid: 1
x: 1

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: 1

pid: 4
x: 5

pid: 0
x: Ø

pid: 1
x: Ø

pid: 4
x: Ø

pid: 0
x: 1

pid: 1
x: Ø

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: Ø

pid: 1
x: 1

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: Ø

pid: 4
x: Ø

pid: 0
x: 1

pid: 1
x: Ø

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: Ø

pid: 1
x: 1

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: 1

pid: 4
x: Ø

pid: 0
x: 1

pid: 1
x: Ø

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: Ø

pid: 1
x: 1

pid: 2
x: 1

pid: 3
x: Ø

pid: 4
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: Ø

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: Ø

pid: 1
x: 1

pid: 2
x: 1

pid: 3
x: 1

pid: 4
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: Ø

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: Ø

pid: 1
x: 1

pid: 2
x: 1

pid: 3
x: 1

pid: 4
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: 1

pid: 4
x: 1

Put of x=5 by proc 1 has been lost
Proc 1 observes locally complete but globally incomplete collective

Proc 1 thinks 
collective is 
done
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Strict v. Loose Synchronization
A fix to the problem

Use synchronization 
before/after the collective
Enforce global ordering of 
the operations

Is there a problem?
We want to decouple 
synchronization from data 
movement
Let user specify the 
synchronization 
requirements

Potential to aggregate 
synchronization
Done by the user ora smart 
compiler

How can we realize these 
gains in applications?
What’s the best way to 
expose all this?

Sun Niagara2 (256 threads) 
Reduction Performance
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Autotuning and Synchronization (cont.)

25

Sun Niagara 2 (256 threads) 
Reduction Performance

Intel Clovertown (8 threads) 
Reduction Performance

Different platforms have different 
crossover points between the 
algorithms
On Intel Clovertown, flat 
algorithms always beat out the 
trees

However on Sun Niagara2 the 
trees always win

High thread count implies 
that scalable collectives must 
be implemented for all sizes



Auto-tuned Conjugate Gradient
Incorporate tuned collectives into an 
important kernel
Sparse Conjugate Gradient

Part of Sparse Motif 
Iteratively solve Ax=b for x given 
A and b
Relies heavily on optimized SPMV 
and tuned BLAS1 operations
Matrix Partitioned Row-wise for 
our application

Automatic tuning for a parallel 
system

Kernels tuned for parallel and 
serial performance
Previous related work have 
focused on serial tuning only 

A x b

=

26

Collectives Used:
Scalar Reduce-To-All for 
Dot Products
Barriers



Conjugate Gradient Performance
Auto-tuned SPMV from Sam 
Williams [Williams et. al, SC’07]
Sun Performance Library for 
local BLAS1 operations
Incorporate aforementioned 
tuned barrier and tuned Reduce-
to-All for inter-thread 
communication 
Matrix parallelized row-wise

reductions are performed 
across all 128 threads

Best Speedup: 21%
Median Speedup: 3%
Auto-tuning took a few seconds 
to search for best barrier and 
best 
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CG Performance Breakdown 
(untuned)
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CG Performance Breakdown 
(tuned)
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Conclusions
As thread/core counts continue to grow rapidly

Collective tuning will become very important
Poor collective choice leads to dramatic performance penalties

Optimal algorithms are dependent on many factors that are hard to 
model a priori

Often based on runtime factors such as synchronization 
requirements of the application 
Thread layout on the machine affects the optimal algorithm

We use auto-tuners to pick the best algorithm
Show up to 21% gains in overall application performance in 
Conjugate Gradient
Auto-tuned collectives will soon be incorporated into runtime system 
for Berkeley UPC compiler
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