
GASNet at UC Berkeley / LBNL

Paul Hargrove
Dan Bonachea, Michael Welcome, Katherine Yelick

UPC Review. July 22, 2009.

Porting GASNet to Portals:
Partitioned Global Address Space (PGAS)

Language Support for the Cray XT

GASNet at UC Berkeley / LBNL

What is GASNet?

• GASNet is:
- A high-performance, one-sided communication layer
- Portable abstraction layer for the network

- Can run over portable network interfaces (MPI, UDP)
- Native ports to a wide variety of low-level network APIs

- Designed as compilation target for PGAS languages
- UPC, Co-array Fortran, Titanium, Chapel,...
- On Cray XT, GASNet is targeted by 7 separate parallel compiler

efforts and counting:
– 3 UPC: Berkeley UPC, GCC UPC, Cray XT UPC
– 2 CAF: Rice CAF, Cray XT CAF
– Berkeley Titanium, Cray Chapel
– Numerous prototyping efforts

GASNet at UC Berkeley / LBNL

PGAS Compiler System Stack

Compiler-generated code (C, asm)

Language Runtime system

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Language-
independent

Compiler-
independent

PGAS Code
(UPC, Titanium, CAF, etc)

PGAS
Compiler

GASNet at UC Berkeley / LBNL

GASNet Design Overview:
System Architecture

• Two-Level architecture is mechanism for portability

• GASNet Core API
- Most basic required primitives, narrow and general
- Implemented directly on each network
- Based on Active Messages lightweight RPC paradigm

• GASNet Extended API
– Wider interface that includes higher-level operations

– puts and gets w/ flexible sync, split-phase barriers, collective operations, etc
– Have reference implementation of the extended API in terms of the core API
– Directly implement selected subset of interface for performance

– leverage hardware support for higher-level operations

Compiler-generated code

Compiler-specific runtime system

GASNet Extended API

GASNet Core API

Network Hardware

GASNet at UC Berkeley / LBNL

GASNet Design Progression on XT

• Pure MPI: mpi-conduit
- Fully portable implementation of GASNet over MPI-1
- “Runs everywhere, optimally nowhere”

• Portals/MPI Hybrid
- Replaced Extended API (put/get) with Portals calls
- Zero-copy RDMA transfers using SeaStar support

• Pure Portals: portals-conduit
- Native Core API (AM) implementation over Portals
- Eliminated reliance on MPI

• Firehose integration
- Reduce memory registration overheads

GASNet at UC Berkeley / LBNL

Portals Message Processing

- Lowest-level software interface to the XT network is Portals
- All data movement via Put/Get btwn pre-registered memory regions
- Provides sophisticated recv-side processing of all incoming messages

- Designed to allow NIC offload of MPI message matching
- Provides (more than) sufficient generality for our purposes

EQ

Application
Memory Region

Optional

Event
Queue

Portal Table

Portal Index

Match List

ME
<0001>

ME
<1100>

ME
<0110>

MD

Application
Memory Region

NIC Incoming Message

Memory
Descriptor

GASNet at UC Berkeley / LBNL

GASNet Put in Portals-conduit

Node 0 Memory

GASNet
segment

A

Node 1 Memory

GASNet
segment

B

Node 0’s gasnet_put of A to B becomes:

PortalsPut(RARSRC, offset(A),
RARME | op_id, offset(B))

RAR
MD

Portal Table

RAR PTE

Match List

RAR
ME

RARSRC
MD

SAFE
EQ

SEND_END

ACK

Local
completionRemote

completion

(No EQ)

Operation identifier
smuggled thru

ignored match bits

GASNet at UC Berkeley / LBNL

GASNet Get in Portals-conduit

Node 0 Memory

GASNet
segment

C

Node 1 Memory

GASNet
segment

B

Node 0’s gasnet_get of B to C becomes:

PortalsGet(TMPMD, 0,
RARME | op_id, offset(B))

RAR
MD

Portal Table

RAR PTE

Match List

RAR
ME

TMPMD
MD

SAFE
EQ

REPLY_END

Get
completion

(No EQ)

Dynamically-created
MD for large out-of-
segment reference

GASNet at UC Berkeley / LBNL

ReqRB
MDReqRB

MD

GASNet AM Request
in Portals-conduit

Node 0 Memory

GASNet
segment

Node 1 Memory

GASNet
segment

Node 0’s gasnet_AMRequestMedium becomes:

PortalsPut(ReqSB_MD, offset(sendbuffer),
Req_ME | op_id | <AM metadata>, 0)

ReqRB
MD

Portal Table

AM PTE
ReqSB

MD

SAFE
EQ

AM
EQ

PUT_END

AM Request
Handler

executed

AM Request

AM Request
Send Buffers

AM Request

AM Request
Recv Buffers

Match List

Req
ME

(Triple
buffered)

ReqRB has a
Locally-managed

offset

GASNet at UC Berkeley / LBNL

GASNet AM Reply
in Portals-conduit

Node 0 Memory

GASNet
segment

Node 1 Memory

GASNet
segment

Node 1’s gasnet_AMReplyMedium becomes:

PortalsPut(RplSB_MD, offset(sendbuffer),
Rpl_ME | op_id | <AM metadata>, request_offset)

RplSB
MD

Portal Table

AM PTE

Match List

Rpl
ME

ReqSB
MD

SAFE
EQ

PUT_END

AM Reply
Handler

executed

SAFE
EQAM Reply

AM Request
Send Buffers

AM Reply

AM Reply
Send Buffers

GASNet at UC Berkeley / LBNL

Portals-conduit Data Structures

• RAR PTE: covers GASNet segment with 3 MD’s with diff EQs
• AM PTE: Active Message buffers

- 3 MD’s: Request Send/Reply Recv, Request Recv, and Reply Send
- EQ separation for deadlock-free AM

• TMPMD’s created dynamically for transfers with out-of-segment local side

MD PTE
Match
Bits

Ops
Allowed

Offset
Mgt.

Event
Queue Description

RAR RAR 0x0 PUT/GET REMOTE NONE Remote segment: dst of Put, src of Get

RARAM
RAR 0x1 PUT REMOTE AM_EQ

Remote segment: dst of RequestLong payload

RARSRC
RAR 0x2 PUT REMOTE SAFE_EQ

Remote segment: dst of ReplyLong payload
Local segment: src of Put/Long payload, dst of Get

ReqRB AM 0x3 PUT LOCAL AM_EQ Dest of AM Request Header (double-buffered)

ReqSB
AM 0x4 PUT REMOTE SAFE_EQ

Bounce buffers for out-of-segment Put/Long/Get,
AM Request Header src, AM Reply Header dst

RplSB
none none N/A N/A SAFE_EQ

Src of AM Reply Header

TMPMD
none none N/A N/A SAFE_EQ

Large out-of-segment local addressing:
Src of Put/AM Long payload, dest of Get

GASNet at UC Berkeley / LBNL

Performance: Small Put Latency

• All performance results taken on Franklin, quad-core XT4 @ NERSC
• Portals-conduit outperforms GASNet-over-MPI by about 2x

- Semantically-induced costs of implementing put/get over message passing
- Leverages Portals-level acknowledgement for remote completion

• Outperforms a raw MPI ping/pong by eliminating software overheads

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256 512 1024
Payload Size (bytes)

La
te

nc
y

of
 B

lo
ck

in
g

Pu
t (

µs
)

mpi-conduit Put
MPI Ping-Ack
portals-conduit Put

(d
ow

n
is

 g
oo

d)

GASNet at UC Berkeley / LBNL

Performance: Large Put Bandwidth

• Portals-conduit exposes the full zero-copy RDMA bandwidth of the SeaStar
- Meets or exceeds achievable bandwidth of a raw MPI flood test
- Mpi-conduit bandwidth suffers due to 2-copy of the payload

0

200

400

600

800

1000

1200

1400

1600

1800

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Payload Size (bytes)

B
an

dw
id

th
 o

f N
on

-B
lo

ck
in

g
Pu

t (
M

B
/s

)

portals-conduit Put
OSU MPI BW test
mpi-conduit Put

(u
p

is
 g

oo
d)

GASNet at UC Berkeley / LBNL

Portals-conduit Flow Control
• Most significant challenge in the AM implementation

- Prevent overflowing recv buffers at the target
- Prevent overflowing EQ space at either end

• Local-side resources managed using send tokens
- Request injection acquires EQ and buffer space for send and Reply recv
- Still need to prevent overflows at remote (target) end

• Initial approach: statically partition recv resources between peers
- Reserve worst-case space at target for each sender to get full B/W
- Initiator-managed, per-target credit system

- Requests consume credits (based on payload sz), Replies return them
- Downside: Non-scalable buffer memory utilization

• Final approach: Dynamic credit redistribution
- Reserve space for each receiver to get full B/W
- Each peer starts with minimal credits, rest banked at the target
- Target loans additional credits to “chatty” peers

GASNet at UC Berkeley / LBNL

Performance: Active Message Latency

• Shows the benefit of implementing AM natively
• Portals-conduit AM’s outperform mpi-conduit

- Less per-message metadata, big advantage under 1 packet
- Beyond one packet, less software overheads w/o MPI

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256 512 1024

Payload Size (bytes)

A
M

 M
ed

iu
m

 R
ou

nd
-tr

ip
 L

at
en

cy
 (µ

s)

mpi-conduit
portals-conduit

(d
ow

n
is

 g
oo

d)

GASNet at UC Berkeley / LBNL

Performance:
Out-of-segment Put Bandwidth (Firehose)

• Blocking put test (no overlap), exaggerates software overheads
• TMPMD pays synchronous MD create/destroy every transfer

- Incurs a pinning cost linear in the page count (on CNL)
• Firehose exploits spatial/temporal locality to reuse local MDs

- LRU algorithm with region coalescing – quickly discovers the working set
- Provides 4% to 8% bandwidth improvement

0

200

400

600

800

1000

1200

1400

1600

1800

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Payload Size (bytes)

B
an

dw
id

th
 o

f B
lo

ck
in

g
Pu

t (
M

B
/s

)

portals-conduit w/Firehose

portals-conduit w/TMPMD

(u
p

is
 g

oo
d)

GASNet at UC Berkeley / LBNL

Conclusions

• Portals-conduit delivers good GASNet performance on Cray XT
- Outperforms generic GASNet-over-MPI by about 2x
- Microbenchmark performance competitive with raw MPI
- Solid comm. foundation for many PGAS compilers

• Future Work
- Expand Firehose integration to include remote memory

• Funding / Machine acknowledgements:
- Office of Science DOE Contract DE-AC02-05CH11231.
- NERSC, DOE Contract DE-AC02-05CH11231.
- ORNL, DOE Contract DE-AC05-00OR22725.
- NSF TeraGrid & PSC http://gasnet.cs.berkeley.edu

http://upc.lbl.gov

	Porting GASNet to Portals:�Partitioned Global Address Space (PGAS)�Language Support for the Cray XT
	What is GASNet?
	PGAS Compiler System Stack
	GASNet Design Overview: System Architecture
	GASNet Design Progression on XT
	Portals Message Processing
	GASNet Put in Portals-conduit
	GASNet Get in Portals-conduit
	GASNet AM Request� in Portals-conduit
	GASNet AM Reply� in Portals-conduit
	Portals-conduit Data Structures
	Performance: Small Put Latency
	Performance: Large Put Bandwidth
	Portals-conduit Flow Control
	Performance: Active Message Latency
	Performance: �Out-of-segment Put Bandwidth (Firehose)
	Conclusions

