
BLCR: Berkeley Lab
Checkpoint/Restart for Linux

Paul H. Hargrove
Work with Eric Roman and Jason Duell
checkpoint@lbl.gov
http://ftg.lbl.gov/checkpoint

mailto:checkpoint@lbl.gov

Introduction

• Checkpoint. Save a process's state to a file.
• Restart. Reconstruct the process from a file.
• BLCR. Berkeley Lab Checkpoint Restart for Linux.

Project goals. What is BLCR's approach to C/R?
Why use checkpoint/restart?

System design. How does BLCR work?

Current status. What does BLCR do now?

Plans. Where is BLCR going?

Jul 23 20092 BLCR: Berkeley Lab Checkpoint/Restart for Linux

Project Goals

• Provide checkpoint/restart for Linux clusters running scientific
workloads.
Checkpoint and restart jobs (shell scripts) running MPI applications.
Support a wide variety of networks.

• Fit easily into production systems.
Run unmodified application source.
Run unmodified binaries where possible. No special compile/link in most cases.
Run on unpatched kernels (as a kernel module).
Run with unmodified system libraries (e.g. libc).

• Unrelated features have low implementation priority.
ptrace, Unix domain sockets, etc.

• Why would our users checkpoint?
We see three main scenarios: scheduling, fault tolerance and debugging.

Jul 23 20093 BLCR: Berkeley Lab Checkpoint/Restart for Linux

Usage Scenarios
• Batch Scheduling

C/R can be used to pre-empt and/or migrate running jobs.
Drain queues quickly for maintenance.
Increase system throughput by switching job mix between long jobs and wide jobs.
Increase system utilization by allowing the scheduler to correct for bad decisions.
Gang scheduling. Divide system time up into slots.
Priority scheduling. Run jobs with the highest priority.

• Fault Tolerance
Not every application can checkpoint itself.
Periodic checkpoints can reduce lost work in case of failure (but adds cost to

normal fault-free execution).
Proactive checkpoints can respond to non-yet-fatal problems (like loss of a fan).

• Debugging
Rollback execution to a checkpoint taken before a fault, restart with a debugger.
“Forks” or “Branchpoints” to (re)run with multiple inputs.

Jul 23 20094 BLCR: Berkeley Lab Checkpoint/Restart for Linux

Implementation Approach

• BLCR provides single node checkpoint/restart through kernel modules
and a runtime library.
Full or Stub run library:

Full: can register callbacks, request checkpoints and restarts, etc.
Stub: tiny library with only a default checkpoint handler

Kernel module: coordinates the process checkpoints, saves/restores kernel
data structures, interfaces with library and command line tools.

• BLCR does not provide built-in support for distributed runtime features
TCP sockets, bproc namespaces, etc.

• Instead, BLCR provides ability to register “callbacks”
Apps and libs may coordinate checkpoint/restart of distributed processes
So, the MPI library must know how to checkpoint;

but the user application does not.

Jul 23 20095 BLCR: Berkeley Lab Checkpoint/Restart for Linux

Basic Operation of a Checkpoint Request

• Rough idea
Send a signal that gets handled in BLCR library.
The signal handler “coordinates” and then calls the kernel code.

• Refinements
A request can come from the same process, or from another.
By default, user code doesn’t need to do anything to handle it.
If desired, user code may register a callback to handle it.
If desired, user code may block requests (critical sections).

Jul 23 20096 BLCR: Berkeley Lab Checkpoint/Restart for Linux

Status Highlights

• Processes, process groups and sessions
Shell scripts (bash, tcsh, python, perl, ruby, ...) .
Multithreaded processes (pthreads with standard NPTL) .
Resources shared between processes are restored.
Restore PID and parent PID.

• Files
Reopen files during restart: open, truncate, and seek.
Pipes and named FIFOs.
Files may exist in same location in the filesystem,

or may use option for file path relocation.
Memory mapped files are remapped

or may use option to save in the context file
(e.g. to migrate shared libraries and executable).

Jul 23 20097 BLCR: Berkeley Lab Checkpoint/Restart for Linux

Supported Platforms and Software

• Linux kernel 2.6 kernels
Test with kernels from kernel.org,

Fedora, SuSE, Debian, etc.
Support of custom patched

kernels through autoconf

• MPI Implementations
MVAPICH2 (InfiniBand)
LAM/MPI 7.x (sockets and GM)
MPICH-V 1.0.x (sockets)
Open MPI 1.3 (multiple)
Cray (portals)

• Architectures
x86/x86-64, ppc/ppc64 & ARM
Xen dom0 and domU

• Batch Queue Systems
Ship w/ BLCR support:

TORQUE and SLURM 2.0
Community-provided HOWTOs:

SGE, LSF and Condor+Parrot

• Debuggers
Allinea DDT (w/ Open MPI)

Jul 23 2009 BLCR: Berkeley Lab Checkpoint/Restart for Linux8

User Communities

• HPC (our target audience)
Serial and MPI jobs

• Task-farm and cycle-stealing
Using Condor + Parrot

• Military applications
Australian Defence Organisation

Ported BLCR to the ARM embedded processor
US Army TRADOC Analysis Center

Advanced Warfighting Simulation (AWARS)

Jul 23 20099 BLCR: Berkeley Lab Checkpoint/Restart for Linux

Future Work
• Near Future (target SC09)

“In-place” rollback (parent never sees the process exit)
In-kernel compression of checkpoints
Incremental checkpoint (via MMU H/W)
Differential checkpoint (via page hashes)
Increased ease of integration with MPI, batch system, etc.

• FY2010
Interested in other batch systems (e.g. PBSPro, RMS...)
More MPI implementations (ANL working on MPICH-2)
MPI support for partial/live migration
Ship support with distributions (ROCKS, OSCAR)
BG/P porting and testing

• Continuous
Track Linux kernel development
Expand application coverage (e.g. more file behaviors, shm, etc.)

Jul 23 200910 BLCR: Berkeley Lab Checkpoint/Restart for Linux

For More Information

• http://ftg.lbl.gov/checkpoint
For Docs, Downloads, Papers, etc.

• CIFTS
Coordinated Infrastructure for Fault Tolerant Systems
Parent project. Building a notification infrastructure for BLCR.
http://www.mcs.anl.gov/research/cifts/

Jul 23 200911 BLCR: Berkeley Lab Checkpoint/Restart for Linux

	BLCR: Berkeley Lab Checkpoint/Restart for Linux
	Introduction
	Project Goals
	Usage Scenarios
	Implementation Approach
	Basic Operation of a Checkpoint Request
	Status Highlights
	Supported Platforms and Software
	User Communities
	Future Work
	For More Information

