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Motivation

There are many kernels/methods whose performance is key to good 
application performance.  
By optimizing performance we may achieve the same throughput for 
substantially reduced cost (time, hardware, energy)

The fastest code may vary with architecture or input.
The fastest data structure may vary with architecture or input.
The fastest algorithm may vary with architecture or input.
Architectures continue to rapidly evolve and diversify
(hand optimizing for one machine solves yesterday’s challenge)

We believe a solution that provides performance portability is well 
worth an up front productivity cost.
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Automatic Performance Tuning

auto-tuning is built on the premise that if one can test every 
possible implementation of a program, one can find the fastest.

Key steps:
enumeration of an optimization space
generation of test cases from that space
exploration of those test cases (results in database/history)

Additional Components:
interpolation of results to select best implementation for runtime problem
assessment of the quality of results.
packaging the auto-tuner with an interface the end programmer can productively 
exploit and/or modify

3
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Development Cycle

Production Quality Auto-tuners are built after substantial initial 
development work

4

initial
domain

research
•domain/kernel-specific
•invention and enumeration
of optimizations

•initial benchmarking

prototype
auto-tuner

•Proof of concept
•designed for experts
•restricted functionality
•inefficient search/history
•limited intelligence

production
auto-tuner

construction
•designed for end users
•improved search/history/interpolation

capabilities
•flexible implementation allows for

application to broad range of
data/kernels

Although this talk focuses on the initial research and construction of 
prototype auto-tuners for one particular domain, we’ve conducted 
research into other domains (noted later)
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Organization of this Talk

This talk is composed of four mini talks (by three 
speakers) discussing results to date as well as future 
research directions
For conciseness, we’ll focus on:

one particular domain: finite difference methods for PDEs.
only cache-based computers
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The Laplacian Operator
(Finite Difference Method)
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The Heat Equation Stencil

Consider Poisson’s Equation (common PDE)
∇2u(x,y,z) = f(x,y,z) ∇2 is the Laplacian differential operator
Solving this equation via the finite difference method (GS, GSRB, Jacobi)
devolves into performing iterative stencil sweeps over a 3D regular volume.
stencils are a linear combination a point’s nearest neighbors. 
many possible derivations with different finite difference representations.

We will apply auto-tuning to improve the performance of the
heat equation: ∇2u(x,y,z,t) =    u(x,y,z,t)
We will restrict ourselves to

optimizing the per sweep performance on a 2563 problem
single node performance (MPI extension is trivial)
Jacobi’s (iterative) method (even/odd grids for even/odd time steps) 
Employ a computational collective model
(all threads collective process one problem)

∂
∂t
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7-point Stencil

9
PDE grid

+Y

+Z

+X

stencil for heat equation PDE

y+1

y-1

x-1

z-1

z+1

x+1x,y,z

Simplest derivation of the Laplacian operator results in a 7-point 
stencil
for all x,y,z:

u(x,y,z,t+1) = alpha*u(x,y,z,t) + beta*(

u(x,y,z-1,t) + u(x,y-1,z,t) + u(x-1,y,z,t) 
+ 

u(x+1,y,z,t) + u(x,y+1,z,t) + u(x,y,z+1,t)

)

Clearly each stencil performs:
8 floating-point operations
8 memory references
all but 2 should be
filtered by an ideal
cache



F U T U R E   T E C H N O L O G I E S   G R O U P

10

Multicore SMPs
of Interest
(used throughout the rest of the talk)
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Multicore SMPs Used
(peak performance)

Intel Xeon X5355 (Clovertown)Intel Xeon X5550 (Nehalem)

Sun T2+ T5140 (Victoria Falls)Blue Gene/P
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Multicore SMPs Used
(peak performance)

Intel Xeon X5355 (Clovertown)Intel Xeon X5550 (Nehalem)

Sun T2+ T5140 (Victoria Falls)Blue Gene/P

85.33 Gflop/s
SIMD + mul/add

85.33 Gflop/s
SIMD + mul/add

13.6 Gflop/s
FMA + SIMD

18.66 Gflop/s
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Multicore SMPs Used
(pin bandwidth)

Intel Xeon X5355 (Clovertown)Intel Xeon X5550 (Nehalem)

Sun T2+ T5140 (Victoria Falls)Blue Gene/P

51.2 GB/s
(NUMA)

21.33 GB/s
(aggregate FSB BW)

13.6 GB/s 42.66 GB/s (read)
21.33 GB/s (write)

(NUMA)
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Multicore SMPs Used
(in-order cores = sw/compiler must pick up the slack)

Intel Xeon X5355 (Clovertown)Intel Xeon X5550 (Nehalem)

Sun T2+ T5140 (Victoria Falls)Blue Gene/P
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Multicore SMPs Used
(thread-level parallelism)

Intel Xeon E5345 (Clovertown)Intel Xeon X5550 (Nehalem)

Sun T2+ T5140 (Victoria Falls)Blue Gene/P

16 threads 8 threads

4 threads
(SMP mode) 128 threads !!
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Auto-tuning 
the Heat Equation
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Stencil Performance
(reference code)

NOTE (for 7-point): 
1 GStencil/s = 8 Gflop/s

No scalability
Poor performance
VF performance peaks 
using ½ of one socket

Reference Implementation
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Greedy Search

Resulting Optimization space will be so large that 
exhaustive search (even knowing the problem size) is 
intractable.

Greedy search orders the optimizations
(with expert architecture knowledge) and
then searches them sequentially.
Essentially transforms complexity from an
O(ND) into a O(N×D) problem
Fast, but not guaranteed to be optimal

18
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Data Structure Transformations

NUMA SMPs are common.
It is essential the auto-tuner control 
data allocation to ensure maximum 
bandwidth
one malloc() with parallel initialization 
(exploit first touch)

19

= +

Caches have limited associativity
Also requires auto-tuner to control data 
structure allocation
avoids cache conflict misses
Explore paddings up to 32 in unit stride
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Code Transformations (1)

Register Blocking attempts to create locality 
in the register file/L1 cache
Many possible blockings (RX × RY × RZ)
avoids RF/L1 capacity misses
Explore all possible power of 2 blockings

20
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Code Transformations (2)

Prefetching initiates now the loads of points 
that will eventually be needed
Explore a number of prefetch distances
hides memory latency

Thread blocking adds a second level of 
parallelization for SMT architectures.
inter-thread locality via shared L1’s

Explicit SIMDization attempts to 
compensate for a compiler’s inability to 
generate good SIMD code.

Cache bypass exploits instructions 
designed to eliminate write allocate traffic

21
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Auto-tuned Stencil Performance
(full tuning, greedy search)

Dramatically better 
performance and scalability
Clearly cache blocking 
(capacity misses) were critical 
to performance despite these 
machines having 8-16MB of 
cache
XLC utterly failed to register 
block (unroll&jam)
Array padding was critical on 
VF (conflict misses)

+Explicit SIMDization

+SW Prefetching

+Register Blocking

+Cache Blocking

+Padding

+NUMA

+Cache bypass

Reference Implementation

+Thread Blocking

+2nd pass thru greedy search
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Algorithmic Transformations

Explore alternate finite difference method 
derivations.  
Subtly performance (stencils/s) can go 
down (more flops per stencil) but both 
performance (gflop/s) and time to solution 
can improve (fewer sweeps to converge)

Two approaches:
27-point stencil (~30 flops per stencil)
27-point stencil with inter-stencil common 
subexpression elimination
(~20+ flops/stencil)

23
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Auto-tuned 7-point Stencil 
(full tuning, greedy search)

When embedded in an 
iterative solver, 27-point 
should require fewer 
iterations to converge
However, performance 
(stencils/second) is lower, 
so one must tune for the 
right balance of 
performance per iteration 
and number of iterations

Observe Clovertown
performance didn’t change 
(bandwidth is so poor it’s 
the bottleneck in either 
case)

+Cache bypass

+Common Subexpression Elimination
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Auto-tuned 27-point Stencil 
(full tuning, greedy search)

When embedded in an 
iterative solver, 27-point 
should require fewer 
iterations to converge
However, performance 
(stencils/second) is lower, 
so one must tune for the 
right balance of 
performance per iteration 
and number of iterations

Observe Clovertown
performance didn’t change 
(bandwidth is so poor it’s 
the bottleneck in either 
case)

+Cache bypass

+Common Subexpression Elimination
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Summary of Stencil
Auto-tuning Efforts

We’ve shown that auto-tuning can provide performance portability 
across a wide range of cache-based processor architectures

6x on the most advanced architecture (Nehalem)
8x on the most parallel architecture (Victoria Falls)

Clearly, optimizations that control data structure, modify code, and 
change algorithms (different stencils) are required to attain the best 
performance.

This work was submitted as:
K. Datta, S. Williams, V. Volkov, J. Carter, L. Oliker, J. Shalf, K. Yelick, "Auto-tuning the 27-point Stencil 
for Multicore", The Fourth International Workshop on Automatic Performance Tuning (iWAPT 2009), 
Tokyo, Japan, October 1-2, 2009.

K. Datta, S. Williams, V. Volkov, J. Carter, L. Oliker, J. Shalf, K. Yelick, "Auto-tuning Stencil 
Computations on Diverse Multicore Architectures", Parallel and Distributed Computing, ISBN 978-3-
902613-45-5, IN-TECH Publishers.

26
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Additional Auto-tuning Work

27
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Cell and GPU’s

All the stencil work was also implemented via an auto-
tuner on a QS22 CBE, and a direct optimized 
implementation on a GTX280.
Clearly, the new (DDR2) Cell is bandwidth-starved

28
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Auto-tuner for SpMV

We’ve also implemented a 
sparse matrix-vector 
multiply auto-tuner on 
multicore and Cell.

29

+Cache/LS/TLB Blocking

+Matrix Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve
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LBMHD Auto-tuner

and another for a key 
kernel extracted from a 
lattice-boltzmann
magneto-hydrodynamics 
code (LBMHD)
Essentially a variant on 
stencils/structured grids

30

+Explicit SIMDization

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Naïve+NUMA

+small pages
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Auto-tuning Distributed 
Applications

31

Additionally, we extended auto-
tuning to the distributed 
implementation of LBMHD
Implemented an auto-tuned hybrid 
version where we tune for the 
optimal balance between threads 
and processes.
+600 Gflop/s performance boost at 
128 nodes

Note each of the last 3 bars may have unique 
MPI decompositions as well as VL/unroll/DLP
Observe that for this large problem, auto-
tuning flat MPI delivered significant boosts 
(2.5x)
However, expanding auto-tuning to include 
the domain decomposition and balance 
between threads and processes provided an 
extra 17%
2 processes with 2 threads was best
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Particle Methods PIC, FMM, etc..

As Kamesh discussed yesterday, we’ve optimized a 
particle-in-cell (PIC), called GTC for multicore and are 
considering when/where/how auto-tuning is needed
Similarly, we’re (led by Aparna Chandramowlishwaran) 
conducting the initial research  into optimizing the 
Fast Multipole Method (FMM) for multicore.

32
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Limitations of Auto-tuning

33
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Limitations

Although we showed auto-tuning dramatically improved 
performance there are some critical limitations to our approach:

There are currently no absolutes when it comes to performance (only 
relative statements of better)
The designer must possess PhD-level architectural- and domain-
knowledge to both construct the code generator and search 
components.
Even with a greedy search algorithm the tuning 
time/resources/foreknowledge can be prohibitively high.
The auto-tuner is specific to one kernel.  Any changes to that kernel 
(changing 7pt to 27pt) requires constructing an entirely new auto-tuner.

Our latest research is focused on these problems and the 
results to date will be discussed parts II, III, and IV.

34
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Motivation for
Performance Assessment

We want to say more than simply performance improved by 147%
We want to be able to say that no matter how much additional work 
is poured into the tuner, performance can only increase by 5%.

With this information:
we can abort tuning early (when we reach a certain level of quality)
in conjunction with performance counters, dynamically select the 
optimization order of the greedy search.
pinpoint performance bottlenecks to motivate new optimizations
pinpoint performance bottlenecks so as to drive future procurements
provide feedback to architects and computational scientists as to how to 
design the next generation of architectures or algorithms.

We believe that this information can be easily visualized with a 
model we call the Roofline Model

36
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Key Concepts…
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Arithmetic Intensity in HPC

True Arithmetic Intensity (AI) ~ Total Flops / Total DRAM Bytes
Some HPC kernels have an arithmetic intensity that scales with problem 
size (increased temporal locality), but remains constant on others
Arithmetic intensity is ultimately limited by compulsory traffic
Arithmetic intensity is diminished by conflict or capacity misses.

O( N )O( log(N) )O( 1 )

SpMV, BLAS1,2

Stencils (PDEs)

Lattice Methods

FFTs
Dense Linear Algebra

(BLAS3)
Particle Methods
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Categorization of 
Software Optimizations
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Optimization Categorization

Maximizing (attained)
In-core Performance

Minimizing (total)
Memory Traffic

Maximizing (attained)
Memory Bandwidth
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Optimization Categorization

Minimizing
Memory Traffic

Maximizing
Memory Bandwidth

Maximizing
In-core Performance

•Exploit in-core parallelism
(ILP, DLP, etc…)

•Good (enough)
floating-point balance
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Optimization Categorization

Minimizing
Memory Traffic

Maximizing
Memory Bandwidth

Maximizing
In-core Performance

•Exploit in-core parallelism
(ILP, DLP, etc…)

•Good (enough)
floating-point balance

unroll &
jam

explicit
SIMD

reorder

eliminate
branches
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Optimization Categorization

Maximizing
In-core Performance

Minimizing
Memory Traffic

•Exploit in-core parallelism
(ILP, DLP, etc…)

•Good (enough)
floating-point balance

unroll &
jam

explicit
SIMD

reorder

eliminate
branches

Maximizing
Memory Bandwidth

•Exploit NUMA

•Hide memory latency

•Satisfy Little’s Law

memory
affinity SW

prefetch

DMA
lists

unit-stride
streams

TLB
blocking
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Optimization Categorization

Maximizing
In-core Performance

Maximizing
Memory Bandwidth

•Exploit in-core parallelism
(ILP, DLP, etc…)

•Good (enough)
floating-point balance

unroll &
jam

explicit
SIMD

reorder

eliminate
branches

•Exploit NUMA

•Hide memory latency

•Satisfy Little’s Law

memory
affinity SW

prefetch

DMA
lists

unit-stride
streams

TLB
blocking

Minimizing
Memory Traffic

Eliminate:
•Capacity misses
•Conflict misses
•Compulsory misses
•Write allocate behavior

cache
blockingarray

padding

compress
data

streaming
stores
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Optimization Categorization

Maximizing
In-core Performance

Minimizing
Memory Traffic

Maximizing
Memory Bandwidth

•Exploit in-core parallelism
(ILP, DLP, etc…)

•Good (enough)
floating-point balance

unroll &
jam

explicit
SIMD

reorder

eliminate
branches

•Exploit NUMA

•Hide memory latency

•Satisfy Little’s Law

memory
affinity SW

prefetch

DMA
lists

unit-stride
streams

TLB
blocking

Eliminate:
•Capacity misses
•Conflict misses
•Compulsory misses
•Write allocate behavior

cache
blockingarray

padding

compress
data

streaming
stores
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Introduction to the 
Roofline Model
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Roofline Model
Basic Concept

47

Synthesize communication, computation, and locality into a single 
visually-intuitive performance figure using bound and bottleneck 
analysis.

where optimization i can be SIMDize, or unroll, or SW prefetch, …
Given a kernel’s arithmetic intensity (based on DRAM traffic after 
being filtered by the cache), programmers can inspect the figure, 
and bound performance.

Moreover, provides insights as to which optimizations will potentially 
be beneficial.

Attainable
Performanceij

= min
FLOP/s with Optimizations1-i

AI * Bandwidth with Optimizations1-j
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Roofline Model
Basic Concept

48

Plot on log-log scale
Given AI, we can easily 
bound performance
But architectures are much 
more complicated

We will bound performance 
as we eliminate specific 
forms of in-core parallelism
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Roofline Model
computational ceilings

49

Opterons have dedicated 
multipliers and adders.
If the code is dominated by 
adds, then attainable 
performance is half of peak.
We call these Ceilings
They act like constraints on 
performance 
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Roofline Model
computational ceilings

50

Opterons have 128-bit 
datapaths.
If instructions aren’t 
SIMDized, attainable 
performance will be halved
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Roofline Model
computational ceilings

51

On Opterons, floating-point 
instructions have a 4 cycle 
latency.
If we don’t express 4-way 
ILP, performance will drop 
by as much as 4x
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Roofline Model
communication ceilings

52

We can perform a similar 
exercise taking away 
parallelism from the 
memory subsystem
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Roofline Model
communication ceilings

53

Explicit software prefetch 
instructions are required to 
achieve peak bandwidth
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Roofline Model
communication ceilings

54

Opterons are NUMA
As such memory traffic 
must be correctly balanced 
among the two sockets to 
achieve good Stream 
bandwidth.

We could continue this by 
examining strided or 
random memory access 
patterns
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Roofline Model
computation + communication ceilings

55

We may bound 
performance based on the 
combination of expressed 
in-core parallelism and 
attained bandwidth.
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Roofline Model
locality walls

56

Remember, memory traffic 
includes more than just 
compulsory misses.
As such, actual arithmetic 
intensity may be 
substantially lower.
Walls are unique to the 
architecture-kernel 
combination
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Roofline Model
locality walls
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Remember, memory traffic 
includes more than just 
compulsory misses.
As such, actual arithmetic 
intensity may be 
substantially lower.
Walls are unique to the 
architecture-kernel 
combination
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Roofline Model
locality walls
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Remember, memory traffic 
includes more than just 
compulsory misses.
As such, actual arithmetic 
intensity may be 
substantially lower.
Walls are unique to the 
architecture-kernel 
combination
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Roofline Model
locality walls
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Remember, memory traffic 
includes more than just 
compulsory misses.
As such, actual arithmetic 
intensity may be 
substantially lower.
Walls are unique to the 
architecture-kernel 
combination
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Ceiling-Optimization Interplay

Ceilings act to constrain performance coordinates
ceilings limit performance
walls limit AI

Optimizations target specific ceilings and remove them 
as (potential) constraints to performance.
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Roofline Model
locality walls

61

Optimizations remove 
these walls and ceilings 
which act to constrain 
performance.
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Roofline Model
locality walls
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Optimizations remove 
these walls and ceilings 
which act to constrain 
performance.
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Roofline Model
locality walls

63

Optimizations remove 
these walls and ceilings 
which act to constrain 
performance.
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Roofline Model
locality walls
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Optimizations remove 
these walls and ceilings 
which act to constrain 
performance.
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Application of the 
Roofline Model

to the 7-point Stencil
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Roofline Model

66

DRAM-FP roofline models 
for the architectures of 
interest.

NOTE: as VF is an inorder
dual-issue CMT 
architecture, its ceilings 
are floating-point mix.



F U T U R E   T E C H N O L O G I E S   G R O U P

Roofline Model

67

Overlay of range in arithmetic 
intensity and corresponding 
performance bound
(in Gflop/s)
Clearly, performance will be 
heavily memory bound on 
some architectures, but will 
require varying degrees of in-
core optimizations.
Arithmetic intensity is the ideal 
compulsory limit for either case
capacity misses, conflict 
misses, padding, prefetching 
will further decrease it.

NOTE:
red = write 

allocate
green = cache bypass
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Roofline Model

68

Reference performance.
Note, the x-coordinate is 
not well defined without 
accurate performance 
counters and is shown 
based on an ideal write-
allocate cache.



F U T U R E   T E C H N O L O G I E S   G R O U P

Roofline Model

69

Auto-tuned performance is 
shown in green.
x-coordinate should be 
much more accurate but 
still an upper bound.
Cleary, performance is 
close to the roofline limit
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Roofline Summary

Roofline clearly enumerates the performance bound.
We observe that after auto-tuning, performance is very close to the 
bound

The roofline model could be extended to the 27-point stencil, but 
one should implement a hierarchical model as cache bandwidth can 
also be a bottleneck.

Unfortunately the biggest limitation of the model is its reliance on 
accurately knowing/measuring arithmetic intensity.
Without accurate performance counters, this is extremely difficult.
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Sam Williams Shoaib Kamil

Auto-tuning
the Laplacian

Roofline
Model

Productive
Auto-tuner

Construction

Quality of Results
Portability to
other kernels

Sam Williams

III
Accelerating Tuning via Machine Learning

Application of
Machine
Learning

Resource-, Time-, and 
Knowledge-efficient Tuning

Kaushik Datta
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Motivation

For the 7-point stencil:

There are more than 40 million different configurations for this 
simple stencil auto-tuner
This problem continues to get worse when:

More cores are added to a die
More kernels are combined to form an application

Our previous method for traversing the search space required 
significant expert knowledge
How can non-experts search this space efficiently and effectively?

72

Optimization Parameters Total Configurations
Thread Count 1 4

Domain Decomposition 4 36

Software Prefetching 2 18

Padding 1 32

Inner Loop 8 480

Total 16 4x107
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Solution: Machine Learning

We propose that machine learning:
Efficiently traverses auto-tuning’s vast parameter space
Produces faster search to high-quality solution
Requires little domain knowledge
Allows us to handle problems with even larger search spaces

Image courtesy of: www.onlinelearningbooks.com
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Platforms
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-Cache-based, x86 Architectures
-2 sockets x 4 cores/socket x 1 HW thread/core
-gcc on Barcelona, icc on Clovertown
-PAPI for performance counter data
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Experimental Methodology 

1. Sample 1500 data points from configuration space

2. Run stencil with chosen configurations

3. Identify relationship between optimization configurations and 
performance

4. Manipulate this relationship to find the best performing configuration

Goal: Find best value for configuration parameters to optimize performance

Stencil Code

Platform
Optimization 

Configurations Performance
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Finding Correlations
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Configuration features Performance Features
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3 Challenges in using ML

1. How to represent configuration 
parameters and performance metrics as 
feature vectors

2. How to compare similarity of two feature 
vectors

3. How to leverage existing ML techniques 
to find optimal configuration
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Configuration Parameters

Optimization
Parameter

Parameter Range Number of 
ConfigurationsType Name

Thread Count Number of Threads NThreads {20…23} 4

Domain 
Decomposition

Block Size

CX {27…NX}

36
CY {21…NY}

CZ NZ

Chunk Size

Software Prefetching
Prefetching Type {register block, plane, pencil} 3

Prefetching Distance {0, 25…29} 6

Padding Padding Size {0…31} 32

Inner Loop 
Optimizations

Register Block Size

RX {20…21}

10RY {20…21}

RZ {20…23}

Statement Type {complete, individual} 2

Read From Type {array, variable} 2

Pointer Type {fixed, moving} 2

Neighbor Index Type {register block, plane, pencil} 3

FMA-like Instructions {yes, no} 2

XFeature Vector
Threads Block 

Size CX
Block 
Size CY

Block 
Size CZ

Padding 
Size

Prefetch 
type

Prefetch 
distance

Statement 
Type

4 32 128 256 32 Plane 64 individual
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Performance Metrics

Total 
Cycles

L1_DCM L2_DCM TLB_DCM CA_SHR CA_CLN CA_ITV Energy 
Efficiency

1.9E7 2.4E5 1.5E5 1.2E4 1.2E5 1.4E4 1.2E3 2.3E4

Counter Description
PAPI_TOT_CYC Cycles per thread per job
PAPI_L1_DCM L1 data cache misses per thread
PAPI_L2_DCM L2 data cache misses per thread
PAPI_TLB_DCM TLB misses per thread
PAPI_CA_SHR Accesses to shared cache lines
PAPI_CA_CLN Accesses to clean cache lines
PAPI_CA_ITV Cache interventions
Power meter Watts consumed

YFeature Vector (total cycles * # of flops) / (clk rate * # of watts)
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3 Challenges in using ML

1. How to represent configuration 
parameters and performance metrics as 
feature vectors

2. How to compare similarity of two feature 
vectors

3. How to leverage existing ML techniques 
to find optimal configuration
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Kernel functions

X1
X2

Are X1 and X2 more similar than X2 and X3?
Euclidian distance does not suffice

Non-numeric data
Custom measure of similarity
Numeric Columns: Gaussian Kernel

K(xi,xj) = exp(-||xi-xj||2 /τ)
Non-numeric Columns: 

K(xi,xj) = {1 if xi=xj, 0 if xi≠xj }
Similarity(X1, X2) = average(K(X1i, X2i))

X3

Threads Block 
Size CX

Block 
Size CY

Block 
Size CZ

Padding 
Size

Prefetch 
type

Prefetch 
distance

Statement 
Type

4 32 128 256 32 Plane 64 Individual
2 64 128 256 32 Plane 64 Individual
2 64 128 256 32 Pencil 64 complete
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X Y

1  … N
1
:
N

1  … N
1
:
NKX KY

kernel function kernel function

Stencil Code

Platform
Optimization 

Configurations Performance
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3 Challenges in using ML

1. How to represent configuration 
parameters and performance metrics as 
feature vectors

2. How to compare similarity of two feature 
vectors

3. How to leverage existing ML techniques 
to find optimal configuration
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X Y

Finding Optimal Configurations
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Finding Optimal Configurations
R
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Configuration features
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“No Optimization”: running naïve code
“Expert Optimized”:

ordered the optimizations
applied them consecutively
this was explained previously

“Random Raw Data”: best performing point in raw data
“Genetic on Raw Data”: permute configs for top three 
best performing points in raw data

Evaluation Benchmarks

Opt. #1 Parameters

O
pt

. #
2 

P
ar

am
et

er
s
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AMD Barcelona
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Intel Clovertown
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Auto-tuning Time

Exhaustive Search:
4x107 configs x 0.08 s/trial x 5 trials > 180 days

Expert Optimized:
Ordering optimizations: Cannot be quantified
Applying optimizations consecutively: 570 configs x 0.08 s/trial x 
5 trials = 3.8 min

Our Technique:
Training data: 1500 configs x 0.08 s/trial x 5 trials = 10 minutes
Training time using KCCA: 90 minutes
Genetic algorithm: 243 configs x 0.08 s/trial x 5 trials = 1.6 min
Total Time < 2 hrs

Our performance results are up to 18% faster 
than expert-optimized!
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Machine Learning Future Work

Reduce the model training time (currently performed on a laptop)
Try other architectures
Try other motifs (e.g. sparse matrices)
Expand the search space:

Tuning optimization parameters AND compiler flags
Tuning for multiple metrics of merit
Tuning for composition of multiple kernels

ML:
KCCA + kernel regression + gradient descent to find optimal 
configurations
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Sam Williams Kaushik Datta

Auto-tuning
the Laplacian

Roofline
Model

Application of
Machine
Learning

Resource-, Time-, and 
Knowledge-efficient TuningQuality of Results

Sam Williams
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Productive
Auto-tuner

Construction

Portability to
other kernels

Shoaib Kamil

IV
Productive Construction of

Domain-Specific Auto-tuners
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Problem

So far have built kernel-specific auto-tuners
For each kernel, requires PhD-level architectural- and 
domain-knowledge
For each kernel, requires months or years of 
development effort

Can we productively build auto-tuners for a class of 
kernels: provide performance portability across 
architectures and kernels

93
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Why not a BLAS for Stencils?

Unlike dense linear algebra, many different variants of 
stencils

variants in data structure
variants in grid topology
etc

Better solution: represent stencils in an abstract 
representation

based on the application’s implementation
basis for code generation and transformation
express optimizations as code transformations

94
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Proof-of-Concept Auto-tuner

Built a proof-of-concept auto-tuner for stencil kernels

Given a Fortran application with stencil kernels:
1. Programmer annotates stencil loops
2. Auto-tuning system automatically

converts stencils into internal representation
generate candidate versions of stencil & test harness
discover best implementation of each stencil
produce library of best implementations

3. Programmer updates application to call optimized 
library

95
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Benchmark Stencils
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Studied Kernels
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Gradient

Bilateral
Filter

write_array[ ][ ]

x dimensionread_array[ ]

xy product

x
y
z

u

write_array[ ]

x dimensionread_array[ ]

u’

u

filter_array[ ]
lookup



F U T U R E   T E C H N O L O G I E S   G R O U P

3D Bilateral Filtering

MRI images need edge-preserving smoothing to remove 
artifacts from instruments
Normal Gaussian filters smooth images, 
but destroy sharp edges.
This kernel performs anistropic filtering thus preserving 
edges.
For each neighboring voxel, must lookup filter value based 
on photometric difference between center point and 
neighbor

98
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Studied Kernels
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Studied Kernels

100



F U T U R E   T E C H N O L O G I E S   G R O U P

Results Key
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Auto-tuning

Auto-
parallelization

serial
reference

OpenMP
Comparison

Auto-NUMA

STREAM 
Predicted

Original code in Fortran

Auto-parallelized using the stencil framework (no tuning)

Auto-parallelized plus NUMA optimization

Auto-tuned and auto-parallelized using the stencil framework

Memory-bound performance predicted using OpenMP STREAM
benchmark

Performance of a NUMA-aware auto-parallelized with OpenMP
version of the original code
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Laplacian Results
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Auto-tuning

Auto-
parallelization

serial
reference

OpenMP
Comparison

Auto-NUMA STREAM
Predicted

• Auto-parallelization by itself does not scale well on CPUs
• requires NUMA-aware alloc to get decent performance
• our auto-parallelizer gets equal or better performance 
than OpenMP

•Overall speedups of up to 22x on Nehalem (vs. serial reference)
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Divergence Results
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Auto-tuning

Auto-
parallelization

serial
reference

OpenMP
Comparison

Auto-NUMA STREAM 
Predicted

• Less benefit from auto-tuning on cache-based architectures 
here

• As we expect based on arithmetic intensity

• Overall speedups of up to 13x on Victoria Falls



F U T U R E   T E C H N O L O G I E S   G R O U P

Gradient Results
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Auto-tuning

Auto-
parallelization

serial
reference

OpenMP
Comparison

Auto-NUMA STREAM
Predicted • Heavily memory-bound, so architectures with high memory BW 

get higher performance

• Overall speedups of up to 8.1x on Nehalem
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Bilateral Filter Results (r=3)
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Auto-tuning

Auto-
parallelization

serial
reference

OpenMP
Comparison

Auto-NUMA

• Heavily compute-bound, plus lookup for filter weights
• Most of auto-tuning benefit comes from better innermost-
loop

• Overall speedups of 14.8x for Barcelona, 20.7x for Nehalem
• Near linear speedup as cores increase
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Productivity Results

Building this auto-tuning system 
similar in terms of time & size (LoC) to single-kernel tuners
but embeds knowledge gained from single-kernel tuners 
into an auto-tuning system

Running the auto-tuning system
few seconds to generate candidate versions
few hours to find best implementation

• with better search (as covered in Kaushik’s talk) this could be 
reduced dramatically

simple enough for application developers to use: no 
specialized understanding of the architecture required

106
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Summary

Proof-of-concept shows we can build an auto-tuner for a 
class of stencil kernels
Performance is excellent: equal to single-kernel auto-
tuning with the same optimizations
Research goal: now that proof-of-concept shows it is 
possible

build a usable auto-tuning system for stencils
add in optimizations from single-kernel auto-tuners
make sure components can be re-used for other auto-
tuning systems or compilers

Huge step forward for auto-tuning: users no longer need 
highly-specialized knowledge to auto-tune their stencil 
kernels
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Auto-tuning
Summary
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Summary

Auto-tuning has been shown to benefit a large number of scientific 
and high performance codes across a large number of domains
On-going research is allowing us to expand into other domains and 
apply auto-tuning to novel architectures (e.g. Cell)

Recent research progress has allowed us to
quantify our auto-tuning success
accelerate/simplify the tuning search process
provide a means of productive auto-tuner construction for the structured 
grid domain

Requested Feedback: future research directions?
outside scientific computing what are the kernels/problems of interest ? 
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