Overview of Berkeley UPC

Kathy Yelick

Christian Bell, Dan Bonachea, Wei Chen, Jason Duell, Paul Hargrove, Parry Husbands, Costin Iancu, Mike Welcome
Goals of the Berkeley UPC Project

• Make UPC Ubiquitous on
 - Parallel machines
 - Workstations and PCs for development
 - A portable compiler: for future machines too

• Components of research agenda:
 1. Runtime work for Partitioned Global Address Space (PGAS) languages in general
 2. Compiler optimizations for parallel languages
 3. Application demonstrations of UPC
Where Does Berkeley UPC Run?

- Runs on most SMPs, clusters & supercomputers

- Support Operating Systems:
 - Linux, FreeBSD, Tru64, AIX, IRIX, HPUX, Solaris, MSWindows(cygwin), MacOSX, Unicos, SuperUX

- Supported CPUs:
 - x86, Itanium, Alpha, Sparc, PowerPC, PA-RISC

- GASNet communication:
 - Myrinet GM, Quadrics Elan, Mellanox Infiniband VAPI, IBM LAPI, Cray X1, SGI Altix, Cray/SGI SHMEM

- Specific supercomputer platforms:
 - Cray T3e, Cray X1, IBM SP, NEC SX-6, Cluster X (Big Mac), SGI Altix 3000
Recent Progress on Runtime

• Runtime portability, interoperability [Jason]
 - New pthread version runs on SGI Altix, SMPs, clusters of SMPs
 - Support for Intrepid, C++, mixed MPI

• GASNet communication layer [Dan]
 - Previously existing ports: IBM LAPI, Myrinet GM, Quadrics Elan-3
 - FY04 Ports: Infiniband, UDP, Shmem, GM+threads, Elan-4
 - Research on support for pinning-based networks such as Infiniband and Myrinet
 - Third party ports: SCI by UFL
Recent Progress on Compiler

- Enabled optimizations in Open64 base
- Static analyses for parallel code
 - Understand when code motion is legal without changing views from other processors
 - Extended cycle detection to arrays with three different algorithms
- Message Coalescing
 - Replacing small messages with larger ones [Wei]
- Message strip-mining
 - Find optimal message size for pipelining [Costin]
- Experiments with vectorization on the X1
 - [Christian and Wei]
Recent Progress on Applications

• NAS PB-size problems
 - Berkeley NAS MG avoids most global barriers and relies on UPC relaxed memory model [Parry]
 - Berkeley NAS CG has several versions, including simpler, fine-grained communication
 - Berkeley NAS FT [Christian]
 - Sparse triangular solve [Rajesh]

• Algorithms that are challenging in MPI
 - 2D Delauney Triangulation [SIAM PP ‘04] [Parry]
 - AMR in UPC: Chombo Poisson solver [Mike]
 - Investigation into AMR potential
Progress on the Language

• Specification of UPC memory model in progress
 - Joint with MTU
 - Behavioral spec [Dagstuhl03]
• UPC IO nearly finalized
 - Joint with GWU and ANL
• UPC Collectives V 1.0 finalized
 - Effort led by MTU
 - Optimized version on GASNet underway [Paul]
 - Investigation of automatic tuning [Rajesh]
• Improvements to UPC Language Spec
 - Led by IDA
External Activities

- Participation in UPC bi-annual consortium meeting
- 4 Tutorials: PSC, SIAM PP04, SC02/SC03, IPDPS03
- UCB Parallel Computing course
 - Assignment using 4 problems in 2 PGAS languages
 - Slides used at elsewhere (UCSB,...)
- 10 Presentations at workshops, conferences, and panels, poster sessions
- 11 Publications
 - 7 in refereed conferences/journals
 - 4 are language or runtime interface specifications
Presentation Details

1. **Evaluating Support for Global Address Space Languages on the Cray X1**

2. **Message Strip Mining Heuristics for High Speed Networks**

3. **Problems with using MPI 1.1 and 2.0 as compilation targets for parallel language implementations**
D. Bonachea and J. Duell. 2nd Workshop on Hardware/Software Support for High Perf. Scientific and Engineering Computing, SHPSEC-PACT03. (Also to appear in IJHPCN.)

4. **Polynomial-time Algorithms for Enforcing Sequential Consistency in SPMD Programs with Arrays**

5. **A Performance Analysis of the Berkeley UPC Compiler**

6. **A New DMA Registration Strategy for Pinning-Based High Performance Networks**
C. Bell and D. Bonachea. Communication Architecture for Clusters (CAC'03), 2003.

7. **An Evaluation of Current High-Performance Networks**

8. **Proposal for Extending the UPC Memory Copy Library Functions, v0.7**

9. **A Proposal for a UPC Memory Consistency Model, v1.0**

10. **UPC-IO: A Parallel I/O API for UPC, v1.0pre10**

11. **GASNet Specification, v1.1**
Schedule

Introduction
8:15 Coffee
8:30 Overview of Berkeley UPC

Runtime Session
8:40 Runtime (Duell)
9:00 Gasnet (Bonachea)
9:40 Collectives (Hargrove, Nishtala)

10:00 - Break (15 min)

Compiler Session
10:15 Berkeley UPC on the X1 (Bell, Chen)
11:00 Message Coalescing (Chen)
11:30 Message Stripmining (Iancu)

12:00 - Lunch (45 Minutes)

12:00 - Lunch (45 Minutes)
12:45 AMR in UPC (Welcome)
1:10 FFT (Bell)
1:20 Sparse Triangular Solve (Nishtala)
1:30 Scaling UPC Applications (Husbands)

Summary
1:45 Future Directions (Kathy Yelick)
2:30 Break and move to 50F conference room
2:45 Discussion