UPC and GASNet Collectives

Paul H. Hargrove
LBNL
UPC Community Background

• UPC Collectives Spec v1.0 completed
 - Broadcast, Scatter & Gather
 - Gather All & Exchange
 - Permute
 - Reduce & Prefix Reduce
 - Sort

• Semantics are very unlike MPI collectives

• UPC-level reference implementation (MTU)
 - Not designed for performance
 - No portable use of hardware support
Overview of the work

• Overall goal
 - Tuned implementation of UPC Collectives in GASNet
 - Platform for collectives research

• The steps
 - Extensions to GASNet specification
 - Reference implementation in GASNet
 - Extensible, customizable, & tunable
 - Tuned implementations for specific networks
GASNet Extensions

- Forward-looking design
 - Split-phase (a.k.a. non-blocking)
 - Teams (subsets of UPC threads)
 - Aggregation hints (for optimizations)
- Inclusive Design
 - Titanium, CAF and even MPI
- Status: Interface design nearly complete
 - Now implementing to validate
 - Target is Summer
Reference Implementation

- General applicability
 - A portable default implementation
 - A layer over the remainder of GASNet
- Tunable
 - Compile-time and/or run-time selection of algorithms and parameters
- Customizable
 - Easy to override with network-specific implementations
- Status: Early stages (framework + bcast)
 - Target is end of FY04
Optimization Opportunities

• Network-specific support
 - Choice of algorithms and parameters
 - Use direct hardware support
 - e.g. Quadrics barrier & broadcast

• Aggregation
 - Amortizes synchronization (barriers)

• Automatic tuning
 - Build “optimal” schedule
 - LogP or LogGP model
 - Lottery Scheduler (Rajesh’s talk)
Preliminary Results

Latency of 8-byte Broadcast (elan-conduit)

- UPC (blocking)
- UPC (non-blocking)
- GASNet
- - - Hardware (estimated)

Latency (us)

Number of UPC Threads

10000
1000
100
10
1

7.4us
13.8us
296us
936us
1009us