
Rajesh Nishtala, Yili Zheng, Paul Hargrove,
Katherine Yelick

Lawrence Berkeley National Lab

Berkeley UPC Group

• PI: Katherine Yelick

• Group members: Filip Blagojevic, Dan
Bonachea, Paul Hargrove, Costin Iancu, Seung-
Jai Min, Yili Zheng

• Former members: Christian Bell, Wei Chen,
Jason Duell, Parry Husbands, Rajesh Nishtala ,
Mike Welcome

• A joint project of LBNL and UC Berkeley

2/25/2010 2SIAM PP 10 -- UPC at Scale

Outline

• Partitioned Global Address Space
Programming Model

• Berkeley UPC and GASNet

• One-sided communication and Active
Messages

• Collective Communication

• Benchmarks

2/25/2010 3SIAM PP 10 -- UPC at Scale

Partitioned Global Address Space

Thread 1 Thread 2 Thread 3 Thread 4

 Global data view abstraction for productivity
 Vertical partitions among threads for locality control
 Horizontal partitions between shared and private

segments for data placement optimizations
 Friendly to non-coherent cache architecture

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

2/25/2010 4SIAM PP 10 -- UPC at Scale

PGAS Example: Global Matrix
Distribution

Global Matrix View Distributed Matrix Storage

1

3

2

4

9

11

10

12

5

7

6

8

13

15

14

16

1

9

5

13

3

11

7

15

2

10

6

14

4

12

8

16

2/25/2010 5SIAM PP 10 -- UPC at Scale

UPC Programming Models

SPMD Fork-Join

Synchronization

Bulk Synchronous Parallel with
Computation and Communication
Overlaps

2/25/2010 6SIAM PP 10 -- UPC at Scale

UPC Overview

• PGAS dialect of ISO C99

• Distributed shared arrays

• Dynamic shared-memory allocation

• One-sided shared-memory communication

• Synchronization: barriers, locks, memory
fences

• Collective communication library

• Parallel I/O library
2/25/2010 7SIAM PP 10 -- UPC at Scale

UPC PGAS Example

Thread 1 Thread 2 Thread 3 Thread 4

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

p = malloc(4) *pStandard C

UPC sp = upc_alloc(4) *sp*sp *sp

*p *p

int *p

shared int *sp

2/25/2010 8SIAM PP 10 -- UPC at Scale

Outline

• Partitioned Global Address Space
Programming Model

• Berkeley UPC and GASNet

• One-sided communication and Active
Messages

• Collective Communication

• Benchmarks

2/25/2010 9SIAM PP 10 -- UPC at Scale

Berkeley UPC Software Stack

UPC-to-C Translator

UPC Applications

UPC Runtime

GASNet Communication Library

Network Driver and OS Libraries

Translated C code with Runtime Calls

2/25/2010 10SIAM PP 10 -- UPC at Scale

H
ar

d
w

ar
e

D
ep

e
n

d
an

t Lan
gu

age D
ep

e
n

d
an

t

Translation and Call Graph Example
shared [] int * shared sp;
*sp = a;

UPC-to-C Translator

UPCR_PUT_PSHARED_VAL(sp, a);

gasnet_put(sp, a); memcpy(sp, a);

UPC Runtime

GASNet Memory load and store

Is *sp local?
Remote Local

2/25/2010 11SIAM PP 10 -- UPC at Scale

UPC Compiler Implementation

• Source-to-source translator based on the Open64
compiler infrastructure
– Portable: work with most popular back-end compilers;

support remote translation
– High performance: leverage existing Open64 program

analysis and optimizations

• UPC-specific Optimizations
– Message vectorization
– Message strip-mining
– Overlapping communication
– Data reshaping

See Berkeley UPC Publications (http://upc.lbl.gov/publications/#compiler) for further information
on compiler analysis and optimizations.

2/25/2010 12SIAM PP 10 -- UPC at Scale

UPC Runtime Implementation

• Modular design with a well-defined API
– Support multiple front-end compilers

– Enable runtime optimizations

• Light-weight implementation

• Efficient shared-memory management

• Fast intra-node communication via hardware
shared-memory
– Pthreads

– Processes with POSIX shared-memory

2/25/2010 13SIAM PP 10 -- UPC at Scale

GASNet Implementation

• Core API
– Active Messages

• Extended API
– Non-Blocking One-sided Communication

– Collective Communication

– Point-to-Point Synchronizations

– Vector, Indexed, Stride Data Transfer

• Portable tools
– timers, memory barriers, atomic ops and portable

data types

2/25/2010 14SIAM PP 10 -- UPC at Scale

Outline

• Partitioned Global Address Space
Programming Model

• Berkeley UPC and GASNet

• One-sided communication and Active
Messages

• Collective Communication

• Benchmarks

2/25/2010 15SIAM PP 10 -- UPC at Scale

Active Messages

• Active messages = Data + Action

• Key enabling technology for both
one-sided and two-sided
communications
– Software implementation of Put/Get

– Eager and Rendezvous protocols

• Remote Procedural Calls
– Facilitate “owner-computes”

– Spawn asynchronous tasks

Request

Reply

A B

Request
handler

Reply
handler

2/25/2010 16SIAM PP 10 -- UPC at Scale

One-Sided vs. Two-Sided Messaging

• Two-sided messaging
– Message does not contain information about the final

destination; need to look it up on the target node
– Point-to-point synchronization implied with all transfers

• One-sided messaging
– Message contains information about the final destination
– Decouple synchronization from data movement

dest. addr.

message id

data payload

data payload

one-sided put (e.g., UPC)

two-sided message (e.g., MPI)

network

interface

memory

host

CPU

2/25/2010 17SIAM PP 10 -- UPC at Scale

GASNet Bandwidth on BlueGene/P

• Torus network
– Each node has six 850MB/s*

bidirectional links

– Vary number of links from 1 to 6

• Consecutive non-blocking puts
on the links (round-robin)

• Similar bandwidth for large-size
messages

• GASNet outperforms MPI for
mid-size messages
– Lower software overhead

– More overlapping

* Kumar et. al showed the maximum
achievable bandwidth for DCMF
transfers is 748 MB/s per link so we
use this as our peak bandwidth
See “The deep computing messaging
framework: generalized scalable
message passing on the blue gene/P
supercomputer”, Kumar et al. ICS08

G
O
O
D

See “Scaling Communication Intensive Applications on
BlueGene/P Using One-Sided Communication and
Overlap”, Rajesh Nishtala, Paul Hargrove, Dan Bonachea,
and Katherine Yelick, IPDPS 2009

2/25/2010 18SIAM PP 10 -- UPC at Scale

GASNet Latency on Cray XT4

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256 512 1024

Payload Size (bytes)

L
a
te

n
c
y
 o

f
B

lo
c
k
in

g
 P

u
t

(µ
s
)

mpi-conduit Put

MPI Ping-Ack

portals-conduit Put

(d
o

w
n

 is
 g

o
o

d
)

Slide source: Porting GASNet to Portals: Partitioned Global Address Space (PGAS) Language Support for the
Cray XT, Dan Bonachea, Paul Hargrove, Michael Welcome, Katherine Yelick, CUG 2009

2/25/2010 19SIAM PP 10 -- UPC at Scale

GASNet Bandwidth on Cray XT4

0

200

400

600

800

1000

1200

1400

1600

1800

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Payload Size (bytes)

B
a

n
d

w
id

th
 o

f
N

o
n

-B
lo

c
k

in
g

 P
u

t
(M

B
/s

)

portals-conduit Put

OSU MPI BW test

mpi-conduit Put

(u
p

 is
 g

o
o

d
)

Slide source: Porting GASNet to Portals: Partitioned Global Address Space (PGAS) Language Support for the
Cray XT, Dan Bonachea, Paul Hargrove, Michael Welcome, Katherine Yelick, CUG 2009

2/25/2010 20SIAM PP 10 -- UPC at Scale

GASNet vs. MPI on InfiniBand (Jul ‘05)

2/25/2010 21SIAM PP 10 -- UPC at Scale

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

10 100 1,000 10,000 100,000 1,000,000 10,000,000

Size (bytes)

B
a

n
d

w
id

th
 (

K
B

/s
)

gasnet_put_nbi_bulk

gasnet_put_bulk

MPI Flood

MPI Ping/Ack

Relative BW (put_nbi_bulk/MPI_Flood)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

10 1000 100000 10000000

Size (bytes)

(u
p

 i
s

 g
o

o
d

)

Slide source: Experiences Implementing
Partitioned Global Address Space (PGAS)
Languages on InfiniBand, Paul Hargrove et al

Outline

• Partitioned Global Address Space
Programming Model

• Berkeley UPC and GASNet

• One-sided communication and Active
Messages

• Collective Communication

• Benchmarks

2/25/2010 22SIAM PP 10 -- UPC at Scale

Collective Communication Topologies

0

8 2

312 10

4

6

1

11

9

7

5

14 13

15 binomial tree

0

1

2

3

125

8

9

4 6 7 10 11 13 14

0

1

2

3

12

5

8

9

4

6

7

10

11

13

14

15

Binary Tree

Fork Tree

0

2

34

6

17

5

Radix 2 Dissemination

2/25/2010 23SIAM PP 10 -- UPC at Scale

GASNet Collectives Organization

GASNet Collectives API

Portable
Collectives

Point-to-point
Comm. Driver

Interconnect/Memory

Native Collectives

Collective
Comm. Driver

UPC Collectives Other PGAS Collectives

Auto-Tuner of Algorithms and Parameters

Shared-Memory
Collectives

2/25/2010 24SIAM PP 10 -- UPC at Scale

Auto-tuning Collective Communication

2/25/2010 SIAM PP 10 -- UPC at Scale 25

Offline tuning

 Optimize for platform
common characteristics

 Minimize runtime
tuning overhead

Online tuning

 Optimize for application
runtime characteristics

 Refine offline tuning
results

Performance
Influencing Factors

Performance
Tuning Space

Hardware
 CPU
 Memory system
 Interconnect

Software
 Application
 System software

Execution
 Process/thread

layout
 Input data set
 System workload

Algorithm selection
 Eager vs. rendezvous
 Put vs. get
 Collection of well-

known algorithms
Communication topology
 Tree type
 Tree fan-out

Implementation-specific
parameters
 Pipelining depth
 Dissemination radix

Broadcast on Sun Constellation
(1024 cores)

• 4-nomial is consistently a “good”
performer

• 8-nomial is best at < 2k bytes

Broadcast on Cray XT4 (2048 cores)

• 4-nomial is best < 2k

• choosing 4-nomial at 32k leads to
2x degradation in performance

Broadcast

2/25/2010 26SIAM PP 10 -- UPC at Scale

Nonblocking Broadcast
• Benchmark overlaps collectives with each other

– Collectives pipelined so that the network resources are more effectively used

– 100-200 microsecond difference

– We show later how this can be incorporated into a real application

– All collectives built as state machines

Cray XT4 Nonblocking Broadcast Performance (1024 Cores)

2/25/2010 27SIAM PP 10 -- UPC at Scale

Reduce

8-byte Reduce on Sun Constellation

• 8-nomial tree delivers best or
close to optimal performance

• GASNet outperforms vendor-MPI
by 18% at 1k cores and 25% at 2k
cores

Reduce on Cray XT4 (2048 cores)

• 4-nomial consistently gives a
good algorithm

• Average of 25% better
performance over 8-nomial

• GASNet out performs MPI by >
factor of 2x in most cases

2/25/2010 28SIAM PP 10 -- UPC at Scale

Scatter/Gather
Scatter on 1536 cores of Cray XT5

• Loose synch. offers 4x performance
improvement at low sizes

• Difference decreases at higher
message sizes

• GASNet is able to deliver better
performance for both modes
compared to vendor MPI library

Gather on 1536 cores of Cray XT5

• Similar results as Scatter

• Looser synchronization continues to
deliver good performance upto 4k
bytes

• GASNet is able to consistently
outperform vendor MPI library

2/25/2010 29SIAM PP 10 -- UPC at Scale

Exchange (Alltoall)
• Dissemination algorithm by Bruck et al. (1997)

– Send the data multiple times through the network before it reaches the final destination

– Uses less messages at the cost of more bandwidth

• Highlights a tradeoff between algorithmic choice

– Intuition suggests there is a crossover point between the algorithms

• Finding the best algorithm is a tuning question that we will address in the automatic tuner
section

• Penalty for picking bad algorithm is
high

 Radix-2 is best at 8 bytes but
worst at 16k bytes

 Flat algorithm becomes the
best between 512 and 1k byte
exchange

• order of magnitude worse at
8 bytes

• 28% (~73 ms) faster at 16
Kbytes Exchange on Sun Constellation (256 cores)

2/25/2010 30SIAM PP 10 -- UPC at Scale

Outline

• Partitioned Global Address Space
Programming Model

• Berkeley UPC and GASNet

• One-sided communication and Active
Messages

• Collective Communication

• Benchmarks

2/25/2010 31SIAM PP 10 -- UPC at Scale

Matrix-Multiplication on Cray XT4

2/25/2010 SIAM PP 10 -- UPC at Scale 32

0

1000

2000

3000

4000

0 50 100 150 200 250 300 350 400

G
Fl

o
p

s

Cores

DGEMM Peak

UPC (nonblocking collectives)

UPC (flat point-to-point)

UPC (blocking collectivs)

MPI / PBLAS

Matrix size: (8K X 8K doubles) per node

Choleskey Factorization on Sun
Constellation (Infiniband)

3118

3757

4097

0 1000 2000 3000 4000 5000

Naïve UPC
(get-based)

Hand-coded
UPC

UPC team
collectives

GFlops

2048 cores on Ranger
Matrix size: 240K

2/25/2010 33SIAM PP 10 -- UPC at Scale

FFT Performance on Cray XT4

3-D FFT (1024 Cores)

G
O
O
D

2/25/2010 34SIAM PP 10 -- UPC at Scale

FFT Performance on BlueGene/P
HPC Challenge Peak as of July 09 is ~4.5 TFlops
on 128k Cores

 PGAS implementations
consistently outperform MPI

 Leveraging communication and
computation overlaps yields best
performance

• More collectives in flight and
more communication leads to
better performance

• At 32k cores, overlap
algorithms yield 17%
improvement in overall
application time

 Numbers are getting close to HPC
record

 Future work to try to beat
the record

0

500

1000

1500

2000

2500

3000

3500

256 512 1024 2048 4096 8192 16384 32768

G
Fl

o
p

s

Num. of Cores

Slabs
Slabs (Collective)
Packed Slabs (Collective)
MPI Packed Slabs

G
O
O
D

2/25/2010 35SIAM PP 10 -- UPC at Scale

Summary

• Demonstrated scalability to tens of thousands of
cores

• Global address space improves productivity
• Data partitioning enables performance

optimizations
• Interoperable with other programming models

and languages including MPI, FORTRAN, C++
• Growing UPC community with actively developed

and maintained software implementations
– Berkeley UPC and GASNet: http://upc.lbl.gov
– Other UPC compilers: Cray UPC, GCC UPC, HP UPC,

IBM UPC, MTU UPC
2/25/2010 36SIAM PP 10 -- UPC at Scale

