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Outline

• Partitioned Global Address Space 
Programming Model

• Berkeley UPC and GASNet

• One-sided communication and Active 
Messages

• Collective Communication

• Benchmarks
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Partitioned Global Address Space

Thread 1 Thread 2 Thread 3 Thread 4

 Global data view abstraction for productivity
 Vertical partitions among threads for locality control
 Horizontal partitions between shared and private 

segments  for data placement optimizations
 Friendly to non-coherent cache architecture

Private 
Segment

Shared 
Segment

Private 
Segment

Shared 
Segment

Private 
Segment

Shared 
Segment

Private 
Segment

Shared 
Segment

2/25/2010 4SIAM PP 10 -- UPC at Scale



PGAS Example: Global Matrix 
Distribution

Global Matrix View Distributed Matrix Storage
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UPC Programming Models

SPMD Fork-Join

Synchronization

Bulk Synchronous Parallel with 
Computation and Communication 
Overlaps
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UPC Overview

• PGAS dialect of ISO C99

• Distributed shared arrays

• Dynamic shared-memory allocation

• One-sided shared-memory communication 

• Synchronization: barriers, locks, memory 
fences

• Collective communication library

• Parallel I/O library
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UPC PGAS Example

Thread 1 Thread 2 Thread 3 Thread 4

Private 
Segment

Shared 
Segment

Private 
Segment

Shared 
Segment

Private 
Segment

Shared 
Segment

Private 
Segment

Shared 
Segment

p = malloc(4) *pStandard C

UPC sp = upc_alloc(4) *sp*sp *sp

*p *p

int *p

shared int *sp
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Berkeley UPC Software Stack

UPC-to-C Translator

UPC Applications

UPC Runtime

GASNet Communication Library 

Network Driver and OS Libraries

Translated C code with Runtime Calls
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Translation and Call Graph Example
shared [] int * shared sp;
*sp = a;

UPC-to-C Translator

UPCR_PUT_PSHARED_VAL(sp, a);

gasnet_put(sp, a); memcpy(sp, a);

UPC Runtime

GASNet Memory load and store

Is *sp local?
Remote Local
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UPC Compiler Implementation

• Source-to-source translator based on the Open64 
compiler infrastructure
– Portable: work with most popular back-end compilers; 

support remote translation
– High performance: leverage existing Open64 program 

analysis and optimizations 

• UPC-specific Optimizations
– Message vectorization
– Message strip-mining
– Overlapping communication
– Data reshaping

See Berkeley UPC Publications (http://upc.lbl.gov/publications/#compiler ) for further information 
on compiler analysis and optimizations.
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UPC Runtime Implementation

• Modular design with a well-defined API
– Support multiple front-end compilers

– Enable runtime optimizations

• Light-weight implementation

• Efficient shared-memory management

• Fast intra-node communication via hardware 
shared-memory 
– Pthreads

– Processes with POSIX shared-memory
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GASNet Implementation

• Core API 
– Active Messages

• Extended API
– Non-Blocking One-sided Communication

– Collective Communication

– Point-to-Point Synchronizations

– Vector, Indexed, Stride Data Transfer

• Portable tools 
– timers, memory barriers, atomic ops and portable 

data types  
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Active Messages

• Active messages = Data + Action

• Key enabling technology for both 
one-sided and two-sided 
communications
– Software implementation of Put/Get

– Eager and Rendezvous protocols

• Remote Procedural Calls
– Facilitate “owner-computes”

– Spawn asynchronous tasks

Request

Reply

A B

Request 
handler

Reply 
handler
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One-Sided vs. Two-Sided Messaging

• Two-sided messaging
– Message does not contain information about the final 

destination; need to look it up on the target node
– Point-to-point synchronization implied with all transfers

• One-sided messaging
– Message contains information about the final destination
– Decouple synchronization from data movement

dest. addr.

message id

data payload

data payload

one-sided put (e.g., UPC)

two-sided message (e.g., MPI)

network

interface

memory

host

CPU
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GASNet Bandwidth on BlueGene/P 

• Torus network
– Each node has six 850MB/s* 

bidirectional links

– Vary number of links from 1 to 6

• Consecutive non-blocking puts 
on the links (round-robin)

• Similar bandwidth for large-size 
messages

• GASNet outperforms MPI for 
mid-size messages
– Lower software overhead

– More overlapping

* Kumar et. al showed the maximum 
achievable bandwidth for DCMF 
transfers is 748 MB/s per link so we 
use this as our peak bandwidth
See “The deep computing messaging 
framework: generalized scalable 
message passing on the blue gene/P 
supercomputer”, Kumar et al. ICS08

G
O
O
D

See “Scaling Communication Intensive Applications on 
BlueGene/P Using One-Sided Communication and 
Overlap”,  Rajesh Nishtala, Paul Hargrove, Dan Bonachea, 
and Katherine Yelick, IPDPS 2009
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GASNet Latency on Cray XT4 

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256 512 1024

Payload Size (bytes)

L
a
te

n
c
y
 o

f 
B

lo
c
k
in

g
 P

u
t 

(µ
s
)

mpi-conduit Put

MPI Ping-Ack

portals-conduit Put

(d
o

w
n

 is
 g

o
o

d
)

Slide source: Porting GASNet to Portals: Partitioned Global Address Space (PGAS) Language Support for the 
Cray XT, Dan Bonachea, Paul Hargrove,  Michael Welcome, Katherine Yelick, CUG 2009
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GASNet Bandwidth on Cray XT4 
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GASNet vs. MPI on InfiniBand (Jul ‘05)
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Collective Communication Topologies
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GASNet Collectives Organization

GASNet Collectives API

Portable 
Collectives

Point-to-point
Comm. Driver

Interconnect/Memory

Native Collectives

Collective
Comm. Driver

UPC Collectives Other PGAS Collectives

Auto-Tuner of Algorithms and Parameters

Shared-Memory 
Collectives
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Auto-tuning Collective Communication
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Offline tuning

 Optimize for platform 
common characteristics

 Minimize runtime 
tuning overhead

Online tuning

 Optimize for application 
runtime characteristics

 Refine offline tuning 
results

Performance
Influencing Factors

Performance
Tuning Space

Hardware
 CPU
 Memory system
 Interconnect

Software
 Application
 System software

Execution 
 Process/thread 

layout
 Input data set
 System workload

Algorithm selection
 Eager vs. rendezvous
 Put vs. get 
 Collection of well-

known algorithms
Communication topology 
 Tree type 
 Tree fan-out

Implementation-specific 
parameters 
 Pipelining depth
 Dissemination radix



Broadcast on Sun Constellation 
(1024 cores)

• 4-nomial is consistently a “good” 
performer

• 8-nomial is best at < 2k bytes

Broadcast on Cray XT4 (2048 cores)

• 4-nomial is best < 2k

• choosing 4-nomial at 32k leads to 
2x degradation in performance

Broadcast
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Nonblocking Broadcast
• Benchmark overlaps collectives with each other

– Collectives pipelined so that the network resources are more effectively used

– 100-200 microsecond difference

– We show later how this can be incorporated into a real application

– All collectives built as state machines

Cray XT4 Nonblocking Broadcast Performance (1024 Cores)
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Reduce

8-byte Reduce on Sun Constellation

• 8-nomial tree delivers best or 
close to optimal performance

• GASNet outperforms vendor-MPI 
by 18% at 1k cores and 25% at 2k 
cores

Reduce on Cray XT4 (2048 cores)

• 4-nomial consistently gives a 
good algorithm

• Average of 25% better 
performance over 8-nomial

• GASNet out performs MPI by > 
factor of 2x in most cases 
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Scatter/Gather
Scatter on 1536 cores of Cray XT5

• Loose synch. offers 4x performance 
improvement at low sizes 

• Difference decreases at higher 
message sizes

• GASNet is able to deliver better 
performance for both modes 
compared to vendor MPI library

Gather on 1536 cores of Cray XT5

• Similar results as Scatter

• Looser synchronization continues to 
deliver good performance upto 4k 
bytes

• GASNet is able to consistently 
outperform vendor MPI library
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Exchange (Alltoall)
• Dissemination algorithm by Bruck et al. (1997)

– Send the data multiple times through the network before it reaches the final destination

– Uses less messages at the cost of more bandwidth

• Highlights a tradeoff between algorithmic choice

– Intuition suggests there is a crossover point between the algorithms

• Finding the best algorithm is a tuning question that we will address in the automatic tuner 
section

• Penalty for picking bad algorithm is 
high

 Radix-2 is best at 8 bytes but 
worst at 16k bytes

 Flat algorithm becomes the 
best between 512 and 1k byte 
exchange

• order of magnitude worse at 
8 bytes

• 28% (~73 ms) faster at 16 
Kbytes Exchange on Sun Constellation (256 cores)
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Matrix-Multiplication on Cray XT4

2/25/2010 SIAM PP 10 -- UPC at Scale 32

0

1000

2000

3000

4000

0 50 100 150 200 250 300 350 400

G
Fl

o
p

s

Cores

DGEMM Peak

UPC (nonblocking collectives)

UPC (flat point-to-point)

UPC (blocking collectivs)

MPI / PBLAS

Matrix size: (8K X 8K doubles) per node



Choleskey Factorization on Sun 
Constellation (Infiniband) 
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FFT Performance on Cray XT4

3-D FFT (1024 Cores)

G
O
O
D
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FFT Performance on BlueGene/P
HPC Challenge Peak as of July 09 is ~4.5 TFlops
on 128k Cores

 PGAS implementations 
consistently outperform MPI

 Leveraging communication and 
computation overlaps yields best 
performance

• More collectives in flight and 
more communication leads to 
better performance

• At 32k cores, overlap 
algorithms yield 17% 
improvement in overall 
application time

 Numbers are getting close to HPC 
record 

 Future work to try to beat 
the record
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Summary

• Demonstrated scalability to tens of thousands of 
cores

• Global address space improves productivity
• Data partitioning enables performance 

optimizations
• Interoperable with other programming models 

and languages including MPI, FORTRAN, C++
• Growing UPC community with actively developed 

and maintained software implementations 
– Berkeley UPC and GASNet: http://upc.lbl.gov
– Other UPC compilers: Cray UPC, GCC UPC, HP UPC, 

IBM UPC, MTU UPC
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