-~

frfrerereer

|||‘

UPC AT SCALE

Rajesh Nishtala, Yili Zheng, Paul Hargrove,
Katherine Yelick

Lawrence Berkeley National Lab



Berkeley UPC Group

e Pl: Katherine Yelick

* Group members: Filip Blagojevic, Dan
Bonachea, Paul Hargrove, Costin lancu, Seung-
Jai Min, Yili Zheng

* Former members: Christian Bell, Wei Chen,
Jason Duell, Parry Husbands, Rajesh Nishtala,
Mike Welcome

* Ajoint project of LBNL and UC Berkeley

2/25/2010 SIAM PP 10 -- UPC at Scale 2



Outline

Partitioned Global Address Space
Programming Model

Berkeley UPC and GASNet

One-sided communication and Active
Messages

Collective Communication
Benchmarks



5
A
rrereee

EEEEEEEEEEE ‘

Partitioned Global Address Space

Shared Shared Shared Shared
Segment Segment Segment Segment

Private Private Private Private
Segment Segment Segment Segment

Thread 1 Thread 2 Thread 3 Thread 4

= Global data view abstraction for productivity

= Vertical partitions among threads for locality control

= Horizontal partitions between shared and private
segments for data placement optimizations

= Friendly to non-coherent cache architecture

2/25/2010 SIAM PP 10 -- UPC at Scale 4



PGAS Example: Global Matrix
Distribution

Global Matrix View Distributed Matrix Storage

.

°

2/25/2010 SIAM PP 10 -- UPC at Scale 5

.
.




UPC Programming Models

SPMD Fork-Join

Y V¥V VYV VYV VYV VYV V. VY

Bulk Synchronous Parallel with
Computation and Communication v
Overlaps

Synchronization
2/25/2010 SIAM PP 10 -- UPC at Scale 6



UPC Overview

e PGAS dialect of ISO C99

* Distributed shared arrays

* Dynamic shared-memory allocation
* One-sided shared-memory communication

* Synchronization: barriers, locks, memory
fences

* Collective communication library
* Parallel I/0O library

2/25/2010 SIAM PP 10 -- UPC at Scale



1l

~
A
f(rreeer ‘

UPC PGAS Example

Shared Shared Shared Shared
Segment Segment Segment Segment

Private Private Private Private
Segment Segment Segment Segment

Thread 1 Thread 2 Thread 3 Thread 4

Standard C  p = malloc(4) *p @ *p @ *p @

UPC sp = upc_alloc(4) *sp ¥ *sp o *sp o
2/25/2010 SIAM PP 10 -- UPC at Scale



Outline

* Berkeley UPC and GASNet

2/25/2010 SIAM PP 10 -- UPC at Scale



Berkeley UPC Software Stack

Hardware Dependant

A 4

2/25/2010

UPC Applications

<L
UPC-to-C Translator
<L

Translated C code with Runtime Calls

GASNet Communication Library

UPC Runtime

|

Network Driver and OS Libraries

|

SIAM PP 10 -- UPC at Scale

H

juepuadaqg a3en3ueT

10



>

A
f(rreoeer W
]

Translation and Call Graph Example

shared [] int * shared sp;
*sp = a;

UPC-to-C Translator

@‘@

UPCR_PUT_PSHARED_VAL(sp, a);

UPC Runtime

Q‘

Remote Local
L L
gasnet_put(sp, a); memcpy(sp, a);

GASNet Memory load and store

2/25/2010 SIAM PP 10 -- UPC at Scale 11



UPC Compiler Implementation

e Source-to-source translator based on the Open64
compiler infrastructure

— Portable: work with most popular back-end compilers;
support remote translation

— High performance: leverage existing Open64 program
analysis and optimizations

* UPC-specific Optimizations
— Message vectorization
— Message strip-mining
— Overlapping communication
— Data reshaping

See Berkeley UPC Publications (http://upc.lbl.gov/publications/#compiler ) for further information
on compiler analysis and optimizations.

2/25/2010 SIAM PP 10 -- UPC at Scale

12




UPC Runtime Implementation

 Modular design with a well-defined API
— Support multiple front-end compilers
— Enable runtime optimizations

* Light-weight implementation
e Efficient shared-memory management

* Fast intra-node communication via hardware
shared-memory
— Pthreads
— Processes with POSIX shared-memory

2/25/2010 SIAM PP 10 -- UPC at Scale 13



GASNet Implementation

* Core API
— Active Messages

e Extended API
— Non-Blocking One-sided Communication
— Collective Communication
— Point-to-Point Synchronizations
— Vector, Indexed, Stride Data Transfer

 Portable tools

— timers, memory barriers, atomic ops and portable
data types

2/25/2010 SIAM PP 10 -- UPC at Scale 14



Outline

* One-sided communication and Active
Messages

2/25/2010 SIAM PP 10 -- UPC at Scale

15



Active Messages

* Active messages = Data + Action

e Key enabling technology for both
one-sided and two-sided

Request

communications Request

— Software implementation of Put/Get nander

— Eager and Rendezvous protocols Reply o*
* Remote Procedural Calls o

— Facilitate “owner-computes”

— Spawn asynchronous tasks Reply

handler

2/25/2010 SIAM PP 10 -- UPC at Scale 16



5
A
rrereee

One-Sided vs. Two-Sided Messaging

two-sided message (e.g., MPI)

message id data payload —* CPU
network
one-sided put (e.g., UPC) interface
dest. addr. data payload g

 Two-sided messaging

— Message does not contain information about the final
destination; need to look it up on the target node
— Point-to-point synchronization implied with all transfers
* One-sided messaging
— Message contains information about the final destination
— Decouple synchronization from data movement

2/25/2010 SIAM PP 10 -- UPC at Scale 17



2%0 Bydas)

Flood Bandwidth (MB/s 1MB

]
A
rrereee

BERKELEY LAaB

GASNet Bandwidth on BlueGene/P

= = = Slx Link Peak
GASNat (6 link)

| —B— w1 (5 link)

—¥— GASMat (4 link)
MPI (4 link)
GASMET (2 link)
MPI (2 link)

== Ong Link Peak

GASNat (1 linky
BAPL (1 link)

2/25/2010

1 1 1
4k 8k 16k 32k G4k 128K 256k 512k 1M 2M
Transfer Size (Bytes)

* Kumar et. al showed the maximum
achievable bandwidth for DCMF
transfers is 748 MB/s per link so we
use this as our peak bandwidth

See “The deep computing messaging
framework: generalized scalable
message passing on the blue gene/P
supercomputer”, Kumar et al. ICS08

e Torus network

— Each node has six 850MB/s*
bidirectional links

— Vary number of links from 1to 6

* Consecutive non-blocking puts

on the links (round-robin)

* Similar bandwidth for large-size

messages

 GASNet outperforms MPI for

mid-size messages
— Lower software overhead
— More overlapping

See “Scaling Communication Intensive Applications on
BlueGene/P Using One-Sided Communication and
Overlap”, Rajesh Nishtala, Paul Hargrove, Dan Bonachea,
and Katherine Yelick, IPDPS 2009

SIAM PP 10 -- UPC at Scale 18



GASNet Latency on Cray XT4

Latency of Blocking Put (us)

30

25

20

15

10

L 8 — 8 — 88— —8— —I—-—-/I
-
Y R R o O
. o
* ° OD
.................... 4 w
/ T — | ¢
C 3
@)
—&— mpi-conduit Put -
- - MPI Ping-Ack
—O—portals-conduit Put
1 2 4 8 16 32 64 128 256 512 1024

Payload Size (bytes)

5
A
rrereee

BERKELEY

Slide source: Porting GASNet to Portals: Partitioned Global Address Space (PGAS) Language Support for the
Cray XT, Dan Bonachea, Paul Hargrove, Michael Welcome, Katherine Yelick, CUG 2009

2/25/2010

SIAM PP 10 -- UPC at Scale

19

LAaB



>
A
freeeer ‘w

BERKELEY LAaB

GASNet Bandwidth on Cray XT4

\C\
N
(up is good) >

800 / /-/
600 /
/ / —O— portals-conduit Put

400
// - - - OSU MPI BW test
200

— —8— mpi-conduit Put

Bandwidth of Non-Blocking Put (MB/s)

0]
2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Payload Size (bytes)

Slide source: Porting GASNet to Portals: Partitioned Global Address Space (PGAS) Language Support for the
Cray XT, Dan Bonachea, Paul Hargrove, Michael Welcome, Katherine Yelick, CUG 2009

2/25/2010 SIAM PP 10 -- UPC at Scale 20



>

A
freeeer ‘m

GASNet vs. MPI on InfiniBand (Jul ‘05)

900000

800000

—-8— gasnet_put_nbi_bulk

—-6—gasnet_put_bulk
700000 1

-=— MPI Flood

S~

600000 1|~ MPI Ping/Ack / /{// /r A
400000
/ / // Relative BW (put_nbi_bulk/MPI_Food)
2.4
300000 2.2 u
N YA
/ /Z/ X
1.8
200000 iy N -
14 \
12 \ P
100000 . S/
Aé./.{./;/ - 10 1000 100000 10000000
Size (bytes)
0 T T T

10 100 1,000 10,000 100,000 1,000,000 10,000,000
Size (bytes)

(up is good)

Bandwidth (KB/s)

Slide source: Experiences Implementing

Partitioned Global Address Space (PGAS)

Languages on InfiniBand, Paul Hargrove et al
2/25/2010 SIAM PP 10 -- UPC at Scale 21



Outline

 Collective Communication

2/25/2010 SIAM PP 10 -- UPC at Scale

22



Fork Tree Radix 2 Dissemination

2/25/2010 SIAM PP 10 -- UPC at Scale 23



>

A
f(rreoeer W

GASNet Collectives Organization

UPC Collectives Other PGAS Collectives

GASNet Collectives API

Auto-Tuner of Algorithms and Parameters
P | _ .
cOﬁ':cat?\,zs Native Collectives
Shared-Memory

: : : Collectives
Point-to-point Collective
Comm. Driver Comm. Driver
Interconnect/Memory

2/25/2010 SIAM PP 10 -- UPC at Scale 24



~

] A
rrreeer

w

Auto-tuning Collective Communication

Offline tuning

= Optimize for platform
common characteristics

= Minimize runtime
tuning overhead

Online tuning

= Optimize for application
runtime characteristics

= Refine offline tuning

results

2/25/2010

Performance

Influencing Factors

Hardware

- CPU

= Memory system

= Interconnect
Software

« Application

» System software
Execution

= Process/thread

layout
» |nput data set
» System workload

SIAM PP 10 -- UPC at Scale

Performance
Tuning Space

Algorithm selection

= Eager vs. rendezvous

= Putvs. get

« Collection of well-

known algorithms

Communication topology

= Tree type

» Tree fan-out
Implementation-specific
parameters

= Pipelining depth

» Dissemination radix

25



Broadcast —

5
A
freeeer w

1400  mmmm 2-nomial tree

1zoo} | 4-nomial tree 0
I 8-nomial tree S
[ 16-nomial tree

Time (microseconds)

Broadcast on Sun Constellation
(1024 cores)

| = 4-nomial is consistently a “good”
performer

- 8-nomial is best at < 2k bytes

128 2k
Transfer Size (Bytes)

2-nomial tree
4-nomial tree
8-nomial tree
16-nomial tree

2000

Broadcast on Cray XT4 (2048 cores) =

. . L?:"ISDD —

- 4-nomial is best < 2k : —
» choosing 4-nomial at 32k leads to £
2x degradation in performance g |

128 2k
Transfer Size (Bytes)

2/25/2010 SIAM PP 10 -- UPC at Scale 26



. ’\| ],;}
Nonblocking Broadcast -

* Benchmark overlaps collectives with each other
— Collectives pipelined so that the network resources are more effectively used
— 100-200 microsecond difference
— We show later how this can be incorporated into a real application

— All collectives built as state machines
900

v MPI
=—a GASNet (Blocking)
700[| «—e GASNet (NonBlocking)

800

1% B =)
o T -
=~

s
o
o

Time (microseconds)

N

S X Y VS
S A R R R SV

Y
Transfer Size (Bytes)

Cray XT4 Nonblocking Broadcast Performance (1024 Cores)

2/25/2010 SIAM PP 10 -- UPC at Scale 27



Time (microseconds)

Reduce

8-byte Reduce on Sun Constellation

* 8-nomial tree delivers best or
close to optimal performance

* GASNet outperforms vendor-MPI
by 18% at 1k cores and 25% at 2k
cores

1200

¥—¥ 2-nomial tree
1000} == 4-nomial tree

e—e 8-nomial tree
gool| & = MPI

600}

400

200

0 16 32 64 128 256 512 1k 2k 4k 8k

250

[\
o
(=]

100}

Time (microseconds)
H
(¥
[=]

50

~
/—\l !\
reerreer

|||‘
B

B 2-nomial
Bl 4-nomial
| |HEE 8-nomial
1 MPI

=
o

o
=t

ﬁ

256

186

116

1k 2k
Thread Count

Reduce on Cray XT4 (2048 cores)

- 4-nomial consistently gives a
good algorithm

- Average of 25% better
performance over 8-nomial

- GASNet out performs MPI by >
factor of 2x in most cases

8
2/25/2010 Transfer Size [Bytes} SIAM PP 10 == UPC at Scale

28



Scatter/Gather

Scatter on 1536 cores of Cray XT5

Loose synch. offers 4x performance
improvement at low sizes

Difference decreases at higher
message sizes

GASNet is able to deliver better
performance for both modes
compared to vendor MPI library

Gather on 1536 cores of Cray XT5
Similar results as Scatter

Looser synchronization continues to
deliver good performance upto 4k
bytes

GASNet is able to consistently
outperform vendor MPI library

2/25/2010 SIAM PP 10 --

>
,/ﬂ !\
f"\f'"‘

BERKELEY LAaB

v—v MPI-Strict
=8 GASNet-Strict
e—o MPI-Loose
&4 GASNet-Loose

[
(=]
'S

Time (microseconds)
(-]
o
[F¥]

—
L]
e

=
=
—

128 256 512 1k 2k 4k
Transfer Size (Bytes)

32 64

v—v MPI-Strict
=8 GASNet-Strict
e—o MPI-Loose
&4 GASNet-Loose

[
(=]
'S

=
L]
[

Time (microseconds)
[
[
%]

10" ' : :
128 256 512
Transfer Size (Bytes)

32 64

UPC at Scale



~

Exchange (Alltoall)

Dissemination algorithm by Bruck et al. (1997)

— Send the data multiple times through the network before it reaches the final destination
— Uses less messages at the cost of more bandwidth

Highlights a tradeoff between algorithmic choice
— Intuition suggests there is a crossover point between the algorithms

Finding the best algorithm is a tuning question that we will address in the automatic tuner
section

- . . A
Penalty for picking bad algorithm is 5
high Em
= Radix-2 is best at 8 bytes but g
worst at 16k bytes 3 10° —
= T W
= Flat algorithm becomes the % =—u Dissem (k=2)
best between 512 and 1k byte E10° o—e Dissem (k=4)
exchange »—4 Dissem (k=8)
order of magnitude worse at : -  Flat
8 bytes 016 32 & 128 szfgfsugl{éytesl)k 2k 4k 8k 16k
28% (~73 ms) faster at 16 :
Kby?uis ) Exchange on Sun Constellation (256 cores)

2/25/2010 SIAM PP 10 -- UPC at Scale 30



Outline

* Partitioned Global Address Space
Programming Model

* Berkeley UPC and GASNet

e One-sided communication and Active
Messages

e Collective Communication
e Benchmarks

2/25/2010 SIAM PP 10 -- UPC at Scale

31



>
A
freeeer ‘w

BERKELEY LAaB

Matrix-Multiplication on Cray XT4

4000
- — DGEMM Peak
® UPC (nonblocking collectives) _
3000 ¢ _UPC (flat point-to-point)
® UPC (blocking collectivs)
x MPI / PBLAS
(7]
o
2 2000
LL.
O
1000
Matrix size: (8K X 8K doubles) per node
0 | | | | | | | |
0 50 100 150 200 250 300 350 400

Cores

2/25/2010 SIAM PP 10 -- UPC at Scale 32



Choleskey Factorization on Sun ==
Constellation (Infiniband)

UPC team
collectives

Hand-coded
UPC

Naive UPC

(get-based) 2048 cores on Ranger

Matrix size: 240K

0 1000 2000 3000 4000 5000

GFlops

2/25/2010 SIAM PP 10 -- UPC at Scale 33



FFT Performance on Cray XT4

3-D FFT (1024 Cores)

400

- - <
B MP| Packed Slabs -
Il UPC Packed Slabs

300 | Il UPC Slabs

350
41

350

o
25[] B . T 5 T EE R B s . I o T L NI 0 LSRN SRR

200¢

GFlops

150

100

50f

D/8 D/4 D/2 D 2D 4D 8D
Problem Size (D=2048x1024x1024)

2/25/2010 SIAM PP 10 -- UPC at Scale 34



5
A
freeeer w

EEEEEEEEEEE

00 PGAS implementations HPC Challenge Peak as of July 09 is ~4.5 TFlops
consistently outperform MPI on 128k Cores

0 Leveraging communication and 3500
computation overlaps yields best

—o—Slabs
erformance
P . o 3000 -#-Slabs (Collective)

- More collectives in flight and —+Packed Slabs (Collective)
more communication leads to 2500 —<MPI Packed Slabs
better performance

v 2000

- At 32k cores, overlap 3
algorithms yield 17% G 1500
improvement in overall
application time 1000

0 Numbers are getting close to HPC
record 500
0 Future work to try to beat 0
the record 256 512 1024 2048 4096 8192 16384 32768

Num. of Cores
2/25/2010 SIAM PP 10 -- UPC at Scale 35



Summary

Demonstrated scalability to tens of thousands of
cores

Global address space improves productivity

Data partitioning enables performance
optimizations

Interoperable with other programming models
and languages including MPI, FORTRAN, C++

Growing UPC community with actively developed
and maintained software implementations
— Berkeley UPC and GASNet: http://upc.lbl.gov

— Other UPC compilers: Cray UPC, GCC UPC, HP UPC,
IBM UPC, MTU UPC



