
GASP: A Performance Analysis Tool Interface
for Global Address Space Programming Models

Lawrence Berkeley National Lab Tech Report LBNL-61606

Adam Leko1, Dan Bonachea2, Hung-Hsun Su1, Alan D. George1

1Electrical and Computer Engineering Dept., University of Florida
2Computer Science Division, University of California at Berkeley

Specification Version 1.5, 09/14/2006

1 Introduction

1.1 Scope

Due to the wide range of compilers and the lack of a standardized performance tool interface, writers of performance tools face many
challenges when incorporating support for global address space (GAS) programming models such as Unified Parallel C (UPC),
Titanium, and Co-Array Fortran (CAF). This document presents a Global Address Space Performance tool interface (GASP) that is
flexible enough to be adapted into current global address space compiler and runtime infrastructures with little effort, while allowing
performance analysis tools to gather much information about the performance of global address space programs.

1.2 Organization

Section2 gives a high-level overview of the GASP interface. As GASP can be used to support many global address space pro-
gramming models, the interface has been broken down into model-independent and model-specific sections. Section3 presents the
model-independent portions of the GASP interface, and the subsequent sections detail the model-specific portions of the interface.

1.3 Definitions

• Model – a parallel programming language or library, such as UPC or MPI.

• Users– individuals using a GAS model such as UPC

• Developers– individuals who write parallel software infrastructure such as UPC, CAF, or Titanium compilers

• Tools– performance analysis tools such as Vampir, TAU, or KOJAK

• Tool developers– individuals who develop performance analysis tools

• Tool code– code or library implementing the tool developer’s portion of the GASP interface

• Thread – a thread of control in a GAS program, maps directly to UPC’s concept of threads or CAF’s concept of images

1

2 GASP overview

The GASP interface controls the interaction between a user’s code, a performance tool, and GAS model compiler and/or runtime
system. This interaction is event-based and comes in the form of callbacks to thegasp_event_notify function at runtime. The
callbacks may come from instrumentation code placed directly in an executable, from an instrumented runtime library, or any other
method; the interface only requires thatgasp_event_notify is called at appropriate times in the manner described in the rest of
this document.

The GASP interface allows tool developers to support GAS models on all platforms and implementations supporting the interface.
The interface is used in the following three steps:

1. Users compile their GAS code using compiler wrapper scripts provided by tool developers. Users may specify which analysis
they wish the tool to perform on their code through either command-line arguments, environment variables or through other
tool-specific methods.

2. The compiler wrapper scripts pass appropriate flags to the compiler indicating which callbacks the tool wishes to receive.
During the linking phase, the scripts link in appropriate code from the performance tool that handles the callbacks at runtime.
This tool-provided code shall be written in C.

3. When a user runs their program, the tool-provided code receives callbacks at runtime and may perform some action such as
storing all events in a trace file or performing basic statistical profiling.

The specifics of each step will be discussed in Section3. The model-specific portions of the GASP interface will be discussed in the
subsequent sections.

A GAS implementation may exclude any system-level event defined in the model-specific sections of this document if an application
cannot be instrumented for that event (eg due to design limitations or other implementation-specific constraints).

Any action resulting in a violation of this specification shall result in undefined behavior. Tool and model implementors are strongly
encouraged not to deviate from these specifications.

3 Model-independent interface

3.1 Instrumentation control

Instrumentation control is accomplished through either compilation arguments or compiler pragmas. Developers may use alternative
names for the command-line arguments if the names specified below do not fit the conventions already used by the compiler.

3.1.1 User-visible instrumentation control

If a user wishes to instrument their code for use with a tool using the GASP interface, they shall pass one of the command-line
arguments described in this section to the compiler wrapper scripts.

GASP system events are divided into the following broad categories, for the purposes of instrumentation control:

• Local access events:Events resulting from access to objects or variables contained in the portion of the global address space
which is local to the accessing thread.

• User function events:Events resulting from entry and exit to user-defined functions, as described in section4.3.1.

• Other events:Any system event which does not fall into the above categories.

The --inst argument specifies that the user’s code shall be instrumented for all system events supported by the GAS model
implementation which fall into the final category of events described above.

The --inst-local argument implies--inst , and additionally requests that user code shall be instrumented to generate local
access events supported by the GAS model implementation. Otherwise, such events need not be generated.

For models lacking a semantic concept of local or remote memory accesses,--inst shall have the same semantics as--inst-local ,
implying instrumentation of all global address space accesses.

The --inst-functions argument implies--inst , and additionally requests that user code shall be instrumented to generate
user function events supported by the GAS model implementation. Otherwise, such events need not be generated.

2

3.1.2 Tool-visible instrumentation control

Compilers supporting the GASP interface shall provide the following command-line arguments for use by the tool-provided compiler
wrapper scripts.

The arguments--inst , --inst-local and--inst-functions have the same semantics as the user-visible instrumentation
flags specified in Section3.1.1.

An additional argument--inst-only takes a single argumentfilename which is a file containing a list of symbolic event names
(as defined in the model-specific sections of this document) separated by newlines. The file’s contents indicate the events for which
the performance tool wishes to receive callbacks. Events in this file may be ignored by the compiler if the events are not supported
by the model implementation. Compiler implementations are encouraged to avoid any overheads associated with generating events
not specified by--inst-only , however tools that pass--inst-only must still be prepared to receive and ignore events which
are not included in the--inst-only list.

3.1.3 Interaction with instrumentation, measurement, and user events

When code is compiled without an--inst flag, all instrumentation control shall be ignored and all user event callbacks shall be
compiled away. Systems may link “dummy” versions ofgasp_control andgasp_create_event (described in Sections3.3
and3.4) for applications that have no code compiled with--inst .

Systems may support compiling parts of an application using one of the--inst flags and compiling other parts of an application
normally; for systems where this is not possible, this behavior may be prohibited. Applications compiled using an--inst flag for
at least one translation unit shall also pass the--inst flag during the linking phase to the compiler wrapper scripts.

Any model-specific instrumentation control shall not have any effect on user events or on the state of measurement control. As a
result, any model-specific instrumentation controls shall not prevent user events from being instrumented during compilation (e.g.,
#pragma pupc shall not change the behavior of thepupc_create_event and pupc_event_start functions in UPC
programs).

3.2 Callback structure

At runtime, all threads of an instrumented executable shall collectively call thegasp_init C function at the beginning of program
execution after the model runtime has finished initialization but before executing the entry point in a user’s code (e.g.,main in UPC).
Thegasp_init function shall have the following signature:

typedef enum {
GASP_MODEL_UPC,
GASP_MODEL_TITANIUM,
GASP_MODEL_CAF,
GASP_MODEL_MPI,
GASP_MODEL_SHMEM

} gasp_model_t;

struct _gasp_context_S;
typedef struct _gasp_context_S *gasp_context_t;

gasp_context_t gasp_init(gasp_model_t srcmodel,
int *argc, char ***argv);

The gasp_init function and an implementation of the_gasp_context_S struct shall be provided by tool developers. A
single running instance of an executable may collectively callgasp_init multiple times if the executable contains code written in
multiple models (such as a hybrid UPC and CAF program), with at most one call per model.

Thegasp_init function returns a pointer to an opaque, thread-specific, tool-implemented struct. This pointer shall be passed in
all subsequent calls to the tool developer’s code made on behalf of this thread. This pointer shall only be used in event callbacks for
events corresponding to the model indicated by thesrcmodel argument.

Tool code may modify the contents of theargc andargv pointers to support the processing of command-line arguments.

After thegasp_init function has been called by each thread of execution, the tool code shall receive all other callbacks through
the two functions whose signatures are shown below:

3

typedef enum {
GASP_START,
GASP_END,
GASP_ATOMIC,

} gasp_evttype_t;

void gasp_event_notify(gasp_context_t context, unsigned int evttag,
gasp_evttype_t evttype, const char *filename,
int linenum, int colnum, ...);

void gasp_event_notifyVA(gasp_context_t context, unsigned int evttag,
gasp_evttype_t evttype, const char *filename,
int linenum, int colnum, va_list varargs);

Both functions may be used interchangeably; theVAvariant is provided as a convenience to developers.

The gasp_event_notify implementation shall be written in C, but may make upcalls to code written in the model specified
by thesrcmodel argument passed to thegasp_init function on the thread that received the callback. If upcalls are used, the
gasp_event_notify function implementation is responsible for handling re-entrant calls. Additionally, code that is used in up-
calls shall be compiled using the same environmental specifications as the code in a user’s application (e.g.,gasp_event_notify
shall only perform upcalls to UPC code compiled under a static threads environment when used with a UPC program compiled under
the static threads environment).

Any user data referenced by pointers passed togasp_event_notify shall not be modified by tool code.

For the first argument togasp_event_notify , tool code shall receive the samegasp_context_t pointer that was returned
from thegasp_init function for this thread. Tool developers may use the context struct to store thread-local information for
each thread. Thegasp_event_notify function shall be thread-safe in order to support model implementations that make use of
pthreads or other thread libraries.

Theevttag argument shall specify the event identifier as described in the model-specific sections of this document. Theevttype
argument shall be of typegasp_evttype_t and shall indicate whether the eventevttag is a begin event, end event, or atomic
event.

Thefilename , linenum , andcolnum arguments shall indicate the line and column number in the model-level source code most
closely associated with the generation of the eventevttag . If filename is non-NULL, it references a character string whose
contents must remain valid and unmodified for the remainder of the program execution. The samefilename pointer is permitted
to be passed in multiple calls and by multiple threads, and it is also permitted for differentfilename pointers (passed in different
calls) to indicate the same file name (this implies the tool may storefilename pointer values and use simple pointer comparison
of non-NULL values to establish filename equality, but not inequality).

GAS model implementations that do not retain column information during compilation may pass 0 in place of thecolnum parameter.
GAS model implementations that do not retain any source-level information during compilation may pass 0 for thefilename ,
linenum , andcolnum parameters. GAS model implementations are strongly encouraged to support these arguments unless this
information can be efficiently and accurately obtained through other documented methods.

GAS model implementations that use instrumented runtime libraries for GASP support may provide dummy implementations for
thegasp_event_notify , gasp_event_notifyVA , gasp_init functions and_gasp_context_S struct to prevent link
errors while linking a user’s application that is not being used with any performance tool.

The contents of thevarargs argument shall be specific to each event identifier and type and will be discussed in the model-specific
sections of this document.

3.3 Measurement control

Tool developers shall provide an implementation for the following function:

int gasp_control(gasp_context_t context, int on);

Thegasp_control function takes thecontext argument in the same manner as thegasp_event_notify function.

When the value 0 is passed for theon parameter, the tool shall cease measuring any performance data associated with subsequent
system or user events generated on the calling thread, until the thread makes a future call togasp_control with a nonzero value
for theon parameter.

4

Thegasp_control function shall return the last value for theon parameter the function received from this thread, or a nonzero
value ifgasp_control has never been called for this thread.

3.4 User events

Tool developers shall provide an implementation for the following function:

unsigned int gasp_create_event(gasp_context_t context,
const char *name, const char *desc);

Thegasp_create_event shall return a tool-generated event identifier.

Compilers shall translate the corresponding model-specific_create_event functions listed in the model-specific sections of this
document into correspondinggasp_create_event calls. The semantics of thename anddesc arguments and the return value
shall be the same as defined by the_create_event function listed in the model-specific section of this document corresponding
to the model indicated bycontext .

3.5 Header files

Developers shall distribute agasp.h C header file with their GAS model implementations that contains at least the following
definitions:

• Function prototypes for thegasp_init , gasp_event_notify , gasp_control , andgasp_create_event func-
tions and associated typedefs, enums, and structs.

• A GASP_VERSIONmacro that shall be defined to an integral date (coded as YYYYMMDD) corresponding to the GASP
version supported by this GASP implementation. For implementations that support the version of GASP defined in this
document, this macro shall be set to the integral value 20060914.

• Macro definitions that map the symbolic event names listed in the model-specific sections of this document to 32-bit unsigned
integers.

Thegasp.h file shall be installed in a directory that is included in the compiler’s default search path.

4 C interface

4.1 Instrumentation control

Instrumentation for the events defined in this section shall be controlled by using the corresponding instrumentation control mecha-
nisms for UPC code defined in Section5.1.

4.2 Measurement control

Measurement for the events defined in this section shall be controlled by using the corresponding measurement control mechanisms
for UPC code defined in Section5.2.

4.3 System events

4.3.1 Function events

Table1 shows system events related to executing user functions.

5

Symbolic name Event type vararg arguments
GASP_C_FUNC Start, End const char *funcsig

Table 1: User function events

These events occur upon each call to a user function (after entry into that function), and before exit from a user function (before
returning to the caller as a result of executing a return statement or reaching the closing brace which terminates the function). The
funcsig argument specifies the character string representing the full signature of the user function that is being entered or exited,
or NULL if that information is not available.

If funcsig is non-NULL, it references a character string whose contents must remain valid and unmodified for the remainder of
the program execution. The samefuncsig pointer is permitted to be passed in multiple calls and by multiple threads, and it is also
permitted for differentfuncsig pointers (passed in different calls) to indicate the same function signature (this implies the tool
may storefuncsig pointer values and use simple pointer comparison of non-NULL values to establish function equality, but not
inequality).

4.3.2 Memory allocation events

Table2 shows system events related to the standard memory allocation functions.

Symbolic name Event type vararg arguments
GASP_C_MALLOC Start size_t nbytes
GASP_C_MALLOC End size_t nbytes, void *returnptr
GASP_C_REALLOC Start void *ptr, size_t size
GASP_C_REALLOC End void *ptr, size_t size, void *returnptr
GASP_C_FREE Start, End void *ptr

Table 2: Memory allocation events

The GASP_C_MALLOC, GASP_C_REALLOC, and GASP_C_FREEstem directly from the standard C definitions ofmalloc ,
realloc , andfree .

4.4 Header files

Supported C system events shall be handled in the same method as UPC events, which are described in Section5.5.

5 UPC interface

5.1 Instrumentation control

Users may insert#pragma pupc on or #pragma pupc off directives in their code to instruct the compiler to avoid instru-
menting lexically-scoped regions of a user’s UPC code. These pragmas may be ignored by the compiler if the compiler cannot
control instrumentation for arbitrary regions of code.

When an--inst argument is given to a compiler or compiler wrapper script, the#pragma pupc shall default toon .

5.2 Measurement control

At runtime, users may call the following functions to control the measurement of performance data:

int pupc_control(int on);

Thepupc_control function shall behave in the same manner as thegasp_control function defined in Section3.3.

6

5.3 User events

unsigned int pupc_create_event(const char *name, const char *desc);
void pupc_event_start(unsigned int evttag, ...);
void pupc_event_end(unsigned int evttag, ...);
void pupc_event_atomic(unsigned int evttag, ...);

Thepupc_create_event function shall be translated into a correspondinggasp_create_event call, as defined in Section
3.4. Thename argument shall be used to associate a user-specified name with the event, and thedesc argument may contain either
NULLor aprintf -style format string. The memory referenced by both arguments need not remain valid once the function returns.

The event identifier returned bypupc_create_event shall be a unique value in the range fromGASP_UPC_USEREVT_START
to GASP_UPC_USEREVT_END, inclusive. TheGASP_UPC_USEREVTmacros shall be provided in thegasp_upc.h header
file described in Section5.5. The value returned is thread-specific. If the unique identifiers are exhausted for the calling thread,
pupc_create_event shall issue a fatal error.

Thepupc_event_start , pupc_event_end , andpupc_event_atomic functions may be called by a user’s UPC program
at runtime. Theevttag argument shall be any value returned by a priorpupc_create_event function call from the same
thread. Users may pass in any list of values for the... arguments, provided the argument types match theprintf -style for-
mat string supplied in the correspondingpupc_create_event (according to the printf format string conventions specified by
the target system). Any memory referenced by... arguments (e.g. string arguments) need not remain valid once the function
returns. A performance tool may use these values to display performance information alongside application-specific data cap-
tured during runtime to a user. The UPC implementation shall translate thepupc_event_start , pupc_event_end , and
pupc_event_atomic function calls into correspondinggasp_event_notify function calls.

When a compiler does not receive any--inst arguments, thepupc_event function calls shall be excluded from the executable
or linked against dummy implementations of these calls. A user’s program shall not depend on any side effects that occur from
executing thepupc_event functions.

Users shall not pass a shared-qualified pointer as an argument to thepupc_event functions.

5.4 System events

For the event arguments below, the UPC-specific typesupc_flag_t andupc_op_t shall be converted to Cint s.

Pointers to shared data shall be passed with an extra level of indirection, and may only be dereferenced through UPC upcalls. UPC
implementations shall provide two opaque types,gasp_upc_PTS_t andgasp_upc_lock_t , which shall represent a generic
pointer-to-shared (ie.shared void *), and a UPC lock pointer (ie.upc_lock_t *), respectively. These opaque types shall
be typedef ’ed tovoid to prevent C code from attempting to dereference them without using a cast in a UPC upcall. The content
of anygasp_upc_PTS_t or gasp_upc_lock_t location passed to an event is only guaranteed to remain valid for the duration
of thegasp_event_notify call, and must not be modified by the tool.

5.4.1 Exit events

Table3 shows system events related to the end of a program’s execution.

Symbolic name Event type vararg arguments
GASP_UPC_COLLECTIVE_EXIT Start, End int status
GASP_UPC_NONCOLLECTIVE_EXIT Atomic int status

Table 3: Exit events

TheGASP_UPC_COLLECTIVE_EXITevents shall occur at the end of a program’s execution on each thread when a collective exit
occurs. These events correspond to the execution of the final implicit barrier for UPC programs.

TheGASP_UPC_NONCOLLECTIVE_EXITevent shall occur at the end of a program’s execution on a single thread when a non-
collective exit occurs.

5.4.2 Synchronization events

Table4 shows events related to synchronization constructs.

7

Symbolic name Event type vararg arguments
GASP_UPC_NOTIFY Start, End int named, int expr
GASP_UPC_WAIT Start, End int named, int expr
GASP_UPC_BARRIER Start, End int named, int expr
GASP_UPC_FENCE Start, End (none)

Table 4: Synchronization events

These events shall occur before and after execution of the notify, wait, barrier, and fence synchronization statements. Thenamed
argument to the notify, wait, and barrier start events shall be nonzero if the user has provided an integer expression for the corre-
sponding notify, wait, and barrier statements. In this case, theexpr variable shall be set to the result of evaluating that integer
expression. If the user has not provided an integer expression for the corresponding notify, wait, or barrier statements, thenamed
argument shall be zero and the value ofexpr shall be undefined.

5.4.3 Work-sharing events

Table5 shows events related to work-sharing constructs.

Symbolic name Event type vararg arguments
GASP_UPC_FORALL Start, End (none)

Table 5: Work-sharing events

These events shall occur on each thread before and afterupc_forall constructs are executed.

5.4.4 Library-related events

Table6 shows events related to library functions.

Symbolic name Event type vararg arguments
GASP_UPC_GLOBAL_ALLOC Start size_t nblocks, size_t nbytes

GASP_UPC_GLOBAL_ALLOC End size_t nblocks, size_t nbytes,
gasp_upc_PTS_t *newshrd_ptr

GASP_UPC_ALL_ALLOC Start size_t nblocks, size_t nbytes

GASP_UPC_ALL_ALLOC End size_t nblocks, size_t nbytes,
gasp_upc_PTS_t *newshrd_ptr

GASP_UPC_ALLOC Start size_t nbytes

GASP_UPC_ALLOC End size_t nbytes,
gasp_upc_PTS_t *newshrd_ptr

GASP_UPC_FREE Start, End gasp_upc_PTS_t *shrd_ptr
GASP_UPC_GLOBAL_LOCK_ALLOCStart (none)
GASP_UPC_GLOBAL_LOCK_ALLOCEnd gasp_upc_lock_t *lck
GASP_UPC_ALL_LOCK_ALLOC Start (none)
GASP_UPC_ALL_LOCK_ALLOC End gasp_upc_lock_t *lck
GASP_UPC_LOCK_FREE Start, End gasp_upc_lock_t *lck
GASP_UPC_LOCK Start, End gasp_upc_lock_t *lck

GASP_UPC_LOCK_ATTEMPT Start gasp_upc_lock_t *lck

GASP_UPC_LOCK_ATTEMPT End gasp_upc_lock_t *lck,
int result

GASP_UPC_UNLOCK Start, End gasp_upc_lock_t *lck
Continued on next page

8

Symbolic name Event type vararg arguments

GASP_UPC_MEMCPY Start, End
gasp_upc_PTS_t *dst,
gasp_upc_PTS_t *src,
size_t n

GASP_UPC_MEMGET Start, End
void *dst,
gasp_upc_PTS_t *src,
size_t n

GASP_UPC_MEMPUT Start, End
gasp_upc_PTS_t *dst,
void *src,
size_t n

GASP_UPC_MEMSET Start, End
gasp_upc_PTS_t *dst,
int c,
size_t n

Table 6: Library-related events

These events stem directly from the UPC library functions defined in the UPC specification. Thevararg arguments for each event
callback mirror those defined in the UPC language specification.

5.4.5 Blocking shared variable access events

Table7 shows events related to blocking shared variable accesses.

Symbolic name Event type vararg arguments

GASP_UPC_GET Start, End

int is_relaxed,
void *dst,
gasp_upc_PTS_t *src,
size_t n

GASP_UPC_PUT Start, End

int is_relaxed,
gasp_upc_PTS_t *dst,
void *src,
size_t n

Table 7: Blocking shared variable access events

These events shall occur whenever shared variables are assigned to or read from using the direct syntax (not using theupc.h library
functions). The arguments to these events mimic those of theupc_memget andupc_memput event callback arguments, but differ
from the ones presented in the previous section because they only arise from accessing shared variables directly. If the memory access
occurs under the relaxed memory model, theis_relaxed parameter shall be nonzero; otherwise theis_relaxed parameter
shall be zero.

5.4.6 Nonblocking shared variable access events

Table8 shows events related to direct shared variable accesses implemented through nonblocking communication.

Symbolic name Event type vararg arguments

GASP_UPC_NB_GET_INIT Start

int is_relaxed,
void *dst,
gasp_upc_PTS_t *src,
size_t n

Continued on next page

9

Symbolic name Event type vararg arguments

GASP_UPC_NB_GET_INIT End

int is_relaxed,
void *dst,
gasp_upc_PTS_t *src,
size_t n,
gasp_upc_nb_handle_t handle

GASP_UPC_NB_GET_DATAStart, End gasp_upc_nb_handle_t handle

GASP_UPC_NB_PUT_INIT Start

int is_relaxed,
gasp_upc_PTS_t *dst,
void *src,
size_t n

GASP_UPC_NB_PUT_INIT End

int is_relaxed,
gasp_upc_PTS_t *dst,
void *src,
size_t n,
gasp_upc_nb_handle_t handle

GASP_UPC_NB_PUT_DATAStart, End gasp_upc_nb_handle_t handle

GASP_UPC_NB_SYNC Start, End gasp_upc_nb_handle_t handle
Table 8: Nonblocking shared variable access events

These nonblocking direct shared variable access events are similar to the regular direct shared variable access events in Section5.4.5.
The INIT events shall correspond to the nonblocking communication initiation, theDATAevents shall correspond to when the data
starts to arrive and completely arrives on the destination node (these events may be excluded for most implementations that use
hardware-supported DMA), and theGASP_UPC_NB_SYNCfunction shall correspond to the final synchronization call that blocks
until the corresponding data of the nonblocking operation is no longer in flight.

gasp_upc_nb_handle_t shall be an opaque type defined by the UPC implementation. Several outstanding nonblocking get or
put operations may be attached to a singlegasp_upc_nb_handle_t instance. When a sync callback is received, the tool code
shall assume all get and put operations for the correspondinghandle in the sync callback have been retired.

The implementation may pass the handleGASP_NB_TRIVIAL to GASP_UPC_NB_{PUT,GET}_INIT to indicate the operation
was completed synchronously in the initiation interval. The tool should ignore anyDATAor SYNCevent callbacks with the handle
GASP_NB_TRIVIAL.

5.4.7 Shared variable cache events

Table9 shows events related to shared variable cache events.

Symbolic name Event type vararg arguments

GASP_UPC_CACHE_MISS Atomic size_t n,
size_t n_lines

GASP_UPC_CACHE_HIT Atomic size_t n

GASP_UPC_CACHE_INVALIDATE Atomic size_t n_dirty
Table 9: Shared variable cache events

TheGASP_UPC_CACHEevents may be sent for UPC runtime systems containing a software cache after a corresponding get or put
start event but before a corresponding get or put end event (including nonblocking communication events). UPC runtimes using
write-through cache systems may sendGASP_UPC_CACHE_MISSevents for each corresponding put event.

Thesize_t n argument for theMISS andHIT events shall indicate the amount of data read from the cache line for the particular
cache hit or cache miss.

The n_lines argument of theGASP_UPC_CACHE_MISSevent shall indicate the number of bytes brought into the cache as a
result of the miss (in most cases, the line size of the cache).

10

Then_dirty argument of theGASP_UPC_CACHE_INVALIDATEshall indicate the number of dirty cache lines that were written
back to shared memory due to a cache line invalidation.

5.4.8 Collective communication events

Table10shows events related to collective communication.

Symbolic name Event type vararg arguments

GASP_UPC_ALL_BROADCAST Start, End

gasp_upc_PTS_t *dst,
gasp_upc_PTS_t *src,
size_t nbytes,
int upc_flags

GASP_UPC_ALL_SCATTER Start, End

gasp_upc_PTS_t *dst,
gasp_upc_PTS_t *src,
size_t nbytes,
int upc_flags

GASP_UPC_ALL_GATHER Start, End

gasp_upc_PTS_t *dst,
gasp_upc_PTS_t *src,
size_t nbytes,
int upc_flags

GASP_UPC_ALL_GATHER_ALL Start, End

gasp_upc_PTS_t *dst,
gasp_upc_PTS_t *src,
size_t nbytes,
int upc_flags

GASP_UPC_ALL_EXCHANGE Start, End

gasp_upc_PTS_t *dst,
gasp_upc_PTS_t *src,
size_t nbytes,
int upc_flags

GASP_UPC_ALL_PERMUTE Start, End

gasp_upc_PTS_t *dst,
gasp_upc_PTS_t *src,
gasp_upc_PTS_t *perm,
size_t nbytes,
int upc_flags

GASP_UPC_ALL_REDUCE Start, End

gasp_upc_PTS_t *dst,
gasp_upc_PTS_t *src,
int upc_op,
size_t nelems,
size_t blk_size,
void *func,
int upc_flags,
gasp_upc_reduction_t type

GASP_UPC_ALL_PREFIX_REDUCEStart, End

gasp_upc_PTS_t *dst,
gasp_upc_PTS_t *src,
int upc_op,
size_t nelems,
size_t blk_size,
void *func,
int upc_flags,
gasp_upc_reduction_t type

Table 10: Collective communication events

The events in Table10 stem directly from the UPC collective library functions defined in the UPC specification. Thevararg
arguments for each event callback mirror those defined in the UPC language specification.

For the reduction functions, thegasp_upc_reduction_t enum shall be provided by a UPC implementation and shall be defined
as follows:

11

typedef enum {
GASP_UPC_REDUCTION_C,
GASP_UPC_REDUCTION_UC,
GASP_UPC_REDUCTION_S,
GASP_UPC_REDUCTION_US,
GASP_UPC_REDUCTION_I,
GASP_UPC_REDUCTION_UI,
GASP_UPC_REDUCTION_L,
GASP_UPC_REDUCTION_UL,
GASP_UPC_REDUCTION_F,
GASP_UPC_REDUCTION_D,
GASP_UPC_REDUCTION_LD

} gasp_upc_reduction_t;

where the suffix toGASP_UPC_REDUCTIONdenotes the same type as specified in the UPC specification.

5.5 Header files

UPC compilers shall distribute apupc.h C header file with their GAS language implementations that contains function prototypes
for the functions defined in Sections5.2 and5.3. The pupc.h file shall be installed in a directory that is included in the UPC
compiler’s default search path.

All supported system events and associatedgasp_upc_* types shall be defined in agasp_upc.h file located in the same directory
as thegasp.h file. System events not supported by an implementation shall not be included in thegasp_upc.h file. The
gasp_upc.h header file may include definitions for implementation-specific events, along with brief documentation embedded in
source code comments.

Compilers shall define a compiler-specific integralGASP_UPC_VERSIONversion number ingasp_upc.h that may be incre-
mented when new implementation-specific events are added. Compiler developers are encouraged to use theGASP_X_Ynaming
convention for all implementation-specific events, whereX is an abbreviation for their compilation system (such asBUPC) andY is
a short, descriptive name for each event.

Compilers that implement the pupc interface shall predefine the feature macro__UPC_PUPC__to the value 1. The macro should be
predefined whenever applications may safely#include <pupc.h> , invoke the functions it defines and use the#pragma pupc
directives, without causing any translation errors. The feature macro does not guarantee that GASP instrumentation is actually
enabled for a given compilation, as some of the features might have no effect in non-instrumenting compilations.

6 Other models

Event sets for additional models (SHMEM, Titanium, CAF, MPI, etc.) will be defined in a future revision of this specification.

12

	1 Introduction
	1.1 Scope
	1.2 Organization
	1.3 Definitions

	2 GASP overview
	3 Model-independent interface
	3.1 Instrumentation control
	3.1.1 User-visible instrumentation control
	3.1.2 Tool-visible instrumentation control
	3.1.3 Interaction with instrumentation, measurement, and user events

	3.2 Callback structure
	3.3 Measurement control
	3.4 User events
	3.5 Header files

	4 C interface
	4.1 Instrumentation control
	4.2 Measurement control
	4.3 System events
	4.3.1 Function events
	4.3.2 Memory allocation events

	4.4 Header files

	5 UPC interface
	5.1 Instrumentation control
	5.2 Measurement control
	5.3 User events
	5.4 System events
	5.4.1 Exit events
	5.4.2 Synchronization events
	5.4.3 Work-sharing events
	5.4.4 Library-related events
	5.4.5 Blocking shared variable access events
	5.4.6 Nonblocking shared variable access events
	5.4.7 Shared variable cache events
	5.4.8 Collective communication events

	5.5 Header files

	6 Other models

