
HUNTing the Overlap

Costin Iancu, Parry Husbands, Paul Hargrove

Computational Research Division, Lawrence Berkeley National Laboratory

{cciancu,pjrhusbands,phhargrove}@lbl.gov

Abstract

Hiding communication latency is an important optimiza-
tion for parallel programs. Programmers or compilers
achieve this by using non-blocking communication prim-
itives and overlapping communication with computation
or other communication operations. Using non-blocking
communication raises two issues: performance and pro-
grammability. In terms of performance, optimizers need
to find a good communication schedule and are some-
times constrained by lack of full application knowledge.
In terms of programmability, efficiently managing non-
blocking communication can prove cumbersome for com-
plex applications. In this paper we present the design prin-
ciples of HUNT, a runtime system designed to search and
exploit some of the available overlap present at execution
time in UPC programs. Using virtual memory support,
our runtime implements demand-driven synchronization for
data involved in communication operations. It also employs
message decomposition and scheduling heuristics to trans-
parently improve the non-blocking behavior of applications.
We provide a user level implementation of HUNT on a vari-
ety of modern high performance computing systems. Re-
sults indicate that our approach is successful in finding
some of the overlap available at execution time. While sys-
tem and application characteristics influence performance,
perhaps the determining factor is the time taken by the CPU
to execute a signal handler. Demand driven synchroniza-
tion at execution time eliminates the need for the explicit
management of non-blocking communication. Besides in-
creasing programmer productivity, this feature also simpli-
fies compiler analysis for communication optimizations.

1 Introduction

Hiding communication latency is widely accepted as one
of the most important optimizations in parallel program-
ming [10, 11, 29]. Application writers and compilers for
parallel languages attempt to achieve this by overlapping
communication operations with other independent work in

the application. They use non-blocking communication
primitives and initiate transfers as early as possible so that
the transfer time is hidden by other operations.

The performance gain of this explicit scheduling of com-
munication operations is directly related to the optimizer’s
(either programmer or compiler) ability to identify work
that can be overlapped with data transfers. For programs
that do not contain any independent work between the trans-
fer and the computation associated with it, decomposition
transformations such as message strip-mining [17, 28] have
been proposed.

Current manual and compiler communication optimiza-
tions are sometimes limited by the the inherently static na-
ture of the approach: 1) data transfer sizes are usually not
known or vary dynamically for each communication opera-
tion; 2) the manner in which the application uses the trans-
ferred data might be hard or impossible to determine due to
factors such as the presence of indirect accesses (a[b[i]]) or
third party library functions; and 3) when scheduling com-
munication operations the optimizer many not have a good
estimate of the amount of overlap available.

In addition, there are other practical considerations that
limit the overlap achieved. Manual optimizations are
very cumbersome to code and programmers typically only
schedule transfers but do not apply the more sophisticated
message strip mining techniques. Compilers are often lim-
ited by a lack of knowledge about the communication li-
brary (MPI), lack of knowledge about the code (third party
libraries), or by the quality of the optimizer itself (lack of
inter-procedural analysis support). All these factors indi-
cate that parallel programs, even optimized ones, may still
contain some amount of unexploited overlap.

In this paper we introduce HUNT, a runtime system de-
signed to find and exploit some of the overlap available in
parallel programs. The design principle of HUNT is based
on the insight that in order to exploit all the overlap avail-
able in an application, communication operations should be
retired (waited on) only at the program point where the ap-
plication uses the data. Our runtime implements this princi-
ple by ignoring the explicit calls to retire transfers (i.e. the
wait calls) present in the application and using virtual mem-

1

ory support to determine the dynamic program point (data
access) where the communication operation should instead
be retired. Thus, we delay retiring communication oper-
ations until the program point where the data is actually
needed and achieve a form of demand-driven synchroniza-
tion. In addition, HUNT can change the schedule of the
communication operations.

HUNT is implemented at the user level as a runtime for
UPC [5] programs. The implementation uses GASNet [8],
a portable one-sided communication layer that supports a
wide variety of contemporary high speed networks. Of most
interest to us are Infiniband, Myrinet and Quadrics and we
present results for several computing systems. Our results
indicate that the proposed approach is indeed able to find
and exploit overlap in application programs. Although sys-
tem characteristics (network, processor, operating system)
directly influence performance, perhaps the most important
factor is the time taken to execute a signal handler on the
target system.

Despite the fact that HUNT provides only runtime sup-
port for UPC programs, the findings in this paper are widely
applicable. In particular, the same principles apply to any
one-sided communication library (ARMCI [22], MPI-2)
and also to programs using two-sided communication li-
braries (MPI-1).

2 Programmability and Portability: Unified
Parallel C

UPC is a Partitioned Global Address Space (PGAS) lan-
guage designed as a small set of extensions to ISO-C99.
The language implements an SPMD programming model
with two distinct address spaces. Each thread has access to a
local address space and in addition, all threads share a com-
mon address space. The distinction between the two address
spaces is made using the language type system. Thus, at the
language level there is no syntactic difference between an
access to local memory and an access to shared memory.

The goal of PGAS languages is to increase developer
productivity by shifting the optimization burden from the
programmer to the compiler and runtime system. Be-
sides providing the abstraction of a shared address space
that encourages a fine-grained style of programming, these
languages also offer control over application performance
using bulk communication primitives. In the UPC case,
these are one-sided blocking communication primitives
that take the form upc memget(dest,src,size),
upc memput(dest,src,size). In order to assist
compiler optimizations the language provides a memory
consistency model.

In addition, the language provides a specification [4] for
interfaces to a comprehensive set of collective communi-
cation functions. These primitives are also blocking, but

allow programmer hints regarding the synchronization re-
quirements of the primitive. The goal of this design is to
provide compilers and library implementors with more in-
formation about optimization opportunities.

While neither Co-Array Fortran (CAF) nor UPC pro-
vide support for non-blocking communication in the orig-
inal language specification, recent efforts [9, 13] attempt to
retrofit this into the languages. The intention is to offer pro-
grammers better control over communication optimizations
in the cases where the compiler is not able to apply them.

Using these primitives to construct optimal execution
schedules is fraught with many difficulties. In addition to
the considerations discussed in the introduction, program-
ming languages do not provide many of the tools required
to express and control the concurrent nature of programs
that contain non-blocking operations. Furthermore, tun-
ing such a schedule may be very system specific because
of differing network characteristics. We consider the ap-
proach proposed in this paper as offering a compromise
between application performance and programmer produc-
tivity. While it may not find the optimal execution sched-
ule, our results show that our approach can non-intrusively
add all the benefits of non-blocking behavior to applica-
tions running on a wide class of machines while preserving
a common code base with the implementation for systems
with a tight network/CPU integration. In addition, the de-
mand driven synchronization we propose has the potential
to greatly simplify the development of compiler communi-
cation optimizations.

3 The Berkeley UPC Compiler

Figure 1 shows the overall structure of the Berkeley UPC
compiler used in our experiments. The translator performs
source-to-source translation of UPC programs and targets a
runtime responsible for bootstrapping tasks such as thread
generation and shared data allocation. The runtime dele-
gates communication operations, such as remote memory
accesses, to the GASNet [8] communication layer which
provides an uniform interface for one-sided communication
primitives on a large class of contemporary high speed net-
works.

One-sided communication APIs provide communication
primitives of the form init transfer; sync transfer with “all-
or-nothing” data delivery semantics, i.e. the sync transfer
call blocks the CPU until the entire transfer is complete and
the data written to main memory.

Figure 2 shows a UPC code snippet that contains com-
munication and the corresponding translated code. Any
UPC level communication primitive gets translated into a
transfer/sync pair and the placement of the sync op-
eration is under compiler control.

The upc memget operation in the original code has a

2

UPC Code Translator

Generated C Code
Berkeley UPC Runtime + HUNT
GASNet Communication System

Network Hardware

Compiler Independent

Language Independent

Network Independent

Platform Independent

Figure 1.The Berkeley UPC Compiler.

h = upcr_get_nb(local, remote, size);
// can’t safely access [local, local+size]
upcr_wait_syncnb(h);
//can use [local, local+size]
for(i=0; i < size; i++)
 ... = local[f(i)];

upc_memget(local, remote, size);
for(i=0; i < size; i++)
 ... = local[f(i)];

(a) (b)

Figure 2. (a) UPC code sequence; (b) Translated C code

latency that is determined by the network round trip time
(RTT) and the network bandwidth. In the translated code,
most of this latency can be overlapped with independent
work placed between the get/sync communication calls.
Hiding communication latency involves finding code in
the original program that can be executed in between the
get/sync pair without violating any data or control de-
pendencies in the program. Subsequently, optimizations in-
volve moving the initiation of a operation as far as possi-
ble from the use of data involved and explicit management
of synchronization operations. Thus, any compiler analysis
phase needs thus to take into account all possible execution
paths.

Scheduling communication operations can exploit only
the coarse grained (independent) overlap present in appli-
cations and it is often the case that in practice not enough
independent work can be found and placed in between a
transfer/sync pair of operations. However, consid-
ering a network transfer in conjuction with the compu-
tation on transferred data, uncovers an amount of fine-
grained overlap present in any application. Message strip-
mining [17, 28] is a program transformation that attempts to
exploit such cases. This transformation decomposes trans-
fers into a series of independent sub-transfers and modifies
the structure of the associated computation to overlap a sub-
transfer with computation on data previously received. Ap-
plying it requires detailed knowledge of the structure of the
program and involves non-trivial source transformations.
Furthermore, the transformed program is very likely to still
contain parts where the processor is idle waiting for com-
munication operations to finish.

4 Design Goals

In the ideal case, communication is performed in such a
way that data items are transferred and become available in
the order the application uses them rather than the sequen-
tial order imposed by the network. Furthermore, data items
are delivered to the CPU for processing as soon as they ar-
rive over the network. This functionality is clearly unattain-
able on most current systems and is approximated at the

application level by message decomposition and pipelining
techniques.

In the rest of the paper we describe the design principles
behind HUNT, a runtime system that attempts to find and
eliminate the idle times in a UPC program. HUNT is able to
exploit both fine and coarse grained overlap by using a com-
bination of automatic strip-mining and message scheduling.
It opportunistically performs non-blocking communication
operations and retires these operations only when the data
involved is accessed by the CPU. For the automatic strip
mining, the runtime provides a common unit of data transfer
and synchronization between the two distinct subsystems:
CPU-memory and NIC-memory.

The end result is that with HUNT, applications actively
search for the unexploited overlap, either independent or
fine-grained, available at execution time and schedule the
operations found in order to hide communication latency.

The design goals are:

• Performance: 1) minimal communication manage-
ment overhead and 2) preserving the performance of
already well optimized applications.

• Programmability: 1) ability to transparently add non-
blocking behavior to stock UPC programs and 2) a
very simple set of interfaces to allow user control over
runtime behavior and tuning.

• Portability: a set of simple heuristics to determine the
values of the parameters that influence runtime perfor-
mance combined with a minimality of the interface de-
sign.

5 Exploiting Find-Grained Overlap

The first goal of HUNT is to exploit the fine-grained
overlap associated with a data transfer. This form of overlap
is the hardest to exploit by programmers or compilers due
the nature of the approach they are constrained to use.

We find and exploit fine-grained overlap by using a com-
bination of two techniques: automatic strip mining and de-
mand driven synchronization. Each data transfer is decom-

3

posed into strips and the transfer of each strip is performed
in a non-blocking manner. Synchronization for each strip
is demand driven. Instead of per message explicit synchro-
nization calls, the system offers a mechanism for implicit
synchronization at a smaller data granularity. Following a
communication call, the first access to a data item triggers a
synchronization (wait on) operation if the data has not been
transfered.

The demand driven synchronization is achieved using
virtual memory support. Operating systems allow programs
to control the access rights to virtual memory pages using
the mprotect system call. The access rights for a given
page are either NONE or a combination of READ, WRITE,
EXEC. Upon executing an instruction that accesses any
memory location within a page with non-matching access
rights, programs receive a SIGSEGV1 signal. Thus, assum-
ing that access to a page is restricted to NONE whenever a
data transfer is initiated, the program is guaranteed to re-
ceive a SIGSEGV signal whenever it tries to access the data
within the page. Whenever a program receives a signal,
the operating system asynchronously executes the associ-
ated signal handler code (if any). In HUNT, receiving a
SIGSEGV indicates that the program demands the data and
we use the execution of the signal handler code to ensure
that the corresponding transfer has indeed finished.

In the most general case, for the code in Fig-
ure 2(a), HUNT performs the following operations. The
upc memget call decomposes the transfer into strips, ini-
tiates non-blocking communication for the strips, records
the decomposition and protects (mprotect PROT NONE)
the pages involved in the original transfer. The program will
continue executing any instructions that do not access mem-
ory locations involved in the network transfer in parallel
with the network transfers. Upon executing an instruction
that accesses a memory location involved in the transfer, the
program will receive a SIGSEGV and start executing the
associated signal handler. The handler associates the fault-
ing address with the sub-transfer that contains it, restores
access rights and blocks execution until all the data has ar-
rived. Then, program execution continues until references
to data still outstanding are encountered and the process is
repeated. By using this mechanism, computation is allowed
to proceed as soon as data has arrived over the network and
the transfers of subsequent parts of the message are trans-
parently overlapped with the computation in the for loop.

It is obvious from this description that, for auto-
matic strip mining, the granularity of interaction between
CPU and NIC is constrained to the page level and for
smaller transfers, HUNT should revert to the default modus
operandi. In Section 6.1 we show that adding non-blocking
behavior to small transfers is able to improve performance

1Or SIGBUS depending on the processor architecture and the operating
system.

in the case where independent overlap is present in the pro-
gram.

For each data transfer HUNT opportunistically adds
overhead to the program execution in the hope that the ex-
tra work it performs will help reduce the communication
latency and the overall execution time. It is therefore im-
portant to make sure that we keep the extra overhead to a
minimum.

Before we present the techniques we use to minimize
overhead, it is important to understand analytically what are
the determining factors.

5.1 Performance Aspects of Automatic Strip Min-
ing

Analyzing the behavior of automatic strip mining needs
to take into account network performance, the performance
of mprotect, the cost of servicing a signal, and the cost
of manipulating the run-time meta-data associated with a
transfer decomposition.

The LogGP [7, 12] network performance model approx-
imates the cost of a data transfer as the sum of the costs
incurred by the transfer in all system components. This is
illustrated in Figure 3. Parameters of special relevance to
us are os and or, the message send and receive overhead
of a message; G, the inverse network bandwidth; and g,
the minimal gap required between the transmission of two
consecutive messages. According to the model, the cost of
a single message transfer can be divided into two compo-
nents, the software overhead on both the send and receive
side (o = os + or in the following), as well as the time the
message actually spends in the network.

In addition, let M(N) denote the cost of calling
mprotect on a sequence of N elements and I denote the
cost of servicing a signal. We assume that I is spent evenly
between entering and exiting the signal handler. The cost of
manipulating the message decomposition meta-data can be
ignored for simplicity. It is pure software overhead for ei-
ther recording a very small amount of data or looking it up.
At any entry into HUNT, it is proportional with the number
of outstanding network transfers. This choice is also vali-
dated by the experimental data.

Consider the code in Figure 2, and assume that no in-
dependent overlap exists and we need to exploit only the
fine-grained overlap. The total execution time of the origi-
nal code is o+RTT +G ∗ size+C(size), where C(size)
is the compute time on size bytes of data.. Assume now
that we apply automatic strip mining and we decompose
the transfer into 2 smaller transfers, first one with size N1,
second one with size size−N1.

Our first observation is that there is no computation
available to be overlapped with the transfer of the first strip.
This means that we can use this time for the message de-

4

P0

P1

os

L

or

EEL

Figure 3. Traditional LogP model for sending a mes-
sage from processor P0 to processor P1.

composition, changing the access rights, servicing half of
the signal, and reverting access rights. This translates into
o+M(size)+ I

2 +M(N1) < RTT +G∗N1 and is indepen-
dent of the computation to follow. This constraint directly
determines the value of N1 and implicitly determines the
lower bound of the transfer size for which benefits can be
expected.

In order to obtain any benefit from the optimization,
the second requirement is that the combined latency of
communication and computation on N1 completely covers
the latency of the second transfer and the additional over-
head of the signal handler execution. This translates into
RTT +G∗N1 + I

2 +C(N1) > RTT +G∗ (size−N1)+
I
2 + I

2 +M(size−N1). While the other parameters are fixed
or under our control (N1), satisfying this constraint is deter-
mined mostly by the structure of the computation C(N1)
which is determined by the application. However, network
transfers place data only into the main memory and each
computation following a transfer has a residual latency de-
termined by the cost of moving the data from main memory
to caches. This gives us a lower bound on the computation
latency. We use this lower bound for the worst case scenario
decomposition.

The values of the parameters considered in this analy-
sis are system characteristics determined off-line and used
to compute a lower bound on the transfer size. Transfers
smaller than this value are not decomposed in HUNT.

5.2 Minimizing Overheads

In order to obtain good performance from automatic strip
mining, the overhead of changing memory access rights and
executing signal handlers needs to be minimized. Since
these are system characteristics and we cannot improve their
execution time, we try instead to minimize the number of
interrupts and the size of the protected memory area.

In order to do this, we try to exploit the program struc-
ture and optimize for the case where transferred data is ac-
cessed using a monotonically increasing or decreasing se-
quence of addresses. This is indeed a very common case in
scientific applications. Affine array index expressions triv-
ially satisfy this property. In addition, Paek et al [23] exam-
ine a large class of scientific kernels and applications and
present evidence that, except for ”subscripted-subscripts”,
all non-affine subscript expressions present were compile-

time provably monotonic.
For the sequential scan case, we do not need to protect

the whole memory region involved in the transfer. We use
two observations: 1) program execution starts processing
a strip with its first (or last) page and 2) if indeed overlap
is present in the application, at the time of performing the
demand driven synchronization for a strip, some transfers
for subsequent strips have already finished.

Based on these observations, we need to protect only a
boundary page of any strip and not all the strip boundary
pages need to be protected at once. We use a lazy protection
technique that distributes the work evenly between message
initiation and synchronization events and also decreases the
number of signals that need to be serviced. At any time, we
protect only the first page of a strip that program execution
will access next. When the time to finish the transfer for that
strip has arrived, the signal handler checks whether transfers
for subsequent strips have finished. Any transfer that has
already finished does not need any pages protected. The
signal handler protects only the first page of the first transfer
still outstanding that it is found.

For programs that access transferred data in a truly ran-
dom manner, the implementation reverts to protecting ev-
erything. This changes the lower bound on the transfer size
we consider for decomposition.

Most of the mechanisms described here are widely sup-
ported by modern operating systems. However, we have
purposefully ignored so far the implied requirement that
network interface cards are able to transfer data into pro-
tected memory regions. From the RMA networks we con-
sidered, Myrinet and Infiniband use physical addresses for
the transfer targets, satisfy the requirement and all the
mechanisms described can be implemented at user level.
Quadrics uses virtual memory addresses and provides an
on-board TLB that mirrors the processor TLB. A user level
only implementation on Quadrics hardware aborts the pro-
gram when transfers into protected areas are attempted. We
can implement correctly our technique for sequential scan
scenarios or scenarios where the access pattern of the pro-
gram is communicated to HUNT by using a minor modifi-
cation. Instead of protecting the first to be accessed page of
an outstanding transfer, we protect the last accessed page of
the previous transfer. This ensures that we can correctly de-
termine a point where the program will soon start accessing
data from a strip.

5.3 Message Scheduling

The message scheduling component of HUNT tries to
exploit overlap whenever possible while preserving the per-
formance of already optimized applications. It uses a set of
simple heuristics to decide when to perform non-blocking
communication operations and how to apply the automatic

5

strip mining. The following are principles that we have
found to work well in practice:

• For any blocking transfer, automatic strip mining
should be attempted subject to the minimum size con-
straints presented in Section 6.1. HUNT supports two
automatic modes for message decomposition: equal
sized strips or variable sized strips. The principles
and the trade-offs of these two strategies are described
in [17].

• If there are any other outstanding transfers, use this
as an indication that independent communication-
communication overlap is available. Non-blocking
communication is performed but without message de-
composition (mprotect only). This case occurs in
practice in program regions where one-to-many (scat-
ter/gather) or all-to-all communication patterns occur.
For a large number of outstanding transfers it is very
likely that the latency of the latter transfers is com-
pletely hidden by the combined latency and computa-
tion of the previous transfers. Thus, for a “train” of
outstanding messages performing the mprotect and
servicing the signal handlers for the messages at end of
the train is pure overhead. In this case, the implemen-
tation can choose to perform non-blocking communi-
cation without the mprotect and piggy-back the syn-
chronization operations on the last expected demand-
driven synchronization operation.

• For programs using non-blocking transfers (Berkeley
UPC extensions), use this as an indication that inde-
pendent overlap is already exploited in the program.
In this case, we either do not attempt any decompo-
sition or attempt a more aggressive (very large strips)
decomposition. The size of the first strip is chosen to
represent a significant percentage of the transfer and
the handle returned by the operation is the one asso-
ciated with the first strip. Synchronization for subse-
quent strips is demand driven.

5.4 Preserving Program Correctness

In HUNT, we change the semantics of communication
operations and this might silently affect program correct-
ness. Since we synchronize a transfer whenever the pro-
cessor attempts to access data involved in it, correctness is
maintained on each processor. Thus, we need only to pre-
serve data consistency between processors.

In the general case, parallel programs usually use either
barriers or point-to-point synchronization operations to en-
force inter-processor data consistency. Thus, at any explicit
synchronization operation HUNT needs to complete all the
transfers whose behavior it had modified. Besides explicit

synchronization operations, programs sometimes use point-
to-point messages to implement various forms of synchro-
nization. These operations typically follow a set pattern and
HUNT can be trained to detect those and retire all outstand-
ing transfers.

In the UPC case, the language has a memory consistency
model that correct programs need to observe. The language
provides for explicit synchronization through the use of bar-
riers or locks. At any of these operations, HUNT retires all
outstanding transfers. In addition, the language provides a
form of consistency enforcing memory accesses (strict). In
the UPC case, at any strict memory operations all transfers
are retired. Due to the presence of the memory model, the
runtime does not need to detect point-to-point synchroniza-
tion patterns.

5.5 Implementation

HUNT is implemented as a change to the default Berke-
ley UPC runtime library. It inherits the bootstrapping
functionality from the current Berkeley UPC runtime and
it modifies all the communication functionality exposed
to applications (e.g. upc memget, upc memput,
upc barrier ...) to implement the concepts presented
throughout Section 5. All the described functionality is dy-
namic: the runtime maintains statistics about the communi-
cation behavior of the application and it uses these statistics
to guide the decomposition and scheduling choices. Fig-
ures 4 and 5 show details about the implementation.

The implementation provides default values for all the
parameters. For example, to guide message decomposi-
tion we implement the techniques described in [17]. Finer
control over the functionality is exposed at the application
level through a a simple interface. Application program-
mers can provide hints to guide the message decomposition
and scheduling. For message decomposition, we provide in-
terfaces to instruct the runtime to use a more aggressive de-
composition (set decomp(factor)) or to change the
order of the strips transferred (set order(UP|DOWN)).
To control message scheduling we provide interfaces to in-
struct the runtime to start piggybacking after a certain num-
ber of transfers (start piggyback thresh(num)).

6 Evaluation
We have experimented with HUNT on a variety of pro-

duction large scale parallel systems as well as on smaller
experimental clusters. These systems are described in Ta-
ble 1 and each system’s characteristics influences the per-
formance of our implementation in different ways. On the
network side, the Quadrics network has a much shorter
round-trip time than Infiniband or Myrinet, thus the over-
head of message decomposition has a greater impact on
overall performance. On the processor side, the PPC 970
processor has a signal service cost that significantly exceeds

6

upc_memget(.., size) {

if (outstanding_transfers > TO) {
 - initiate non blocking communication (size)

 if (need_mprotect())
 mprotect(...);
 else
 - mark for piggyback

} else {
 - determine decomposition parameters

 - initiate all non blocking communication
 - mprotect(...)
 }

 - try retire transfers that have already completed

- update stats
}

Figure 4. upc memget implementation

sigsegv_handle() {
- identify transfer/strip for addr
- retire strip and unprotect

 while (more_strips()) {
- check next strip completion

 if(!done) {
mprotect(...)
break;

}
}

if(have_piggyback()) {
 - retire all completed transfers
}

- update stats
}

Figure 5. Signal handler implementation.

the network round-trip time. Thus, the message decompo-
sition requires higher granularity and it is very important to
minimize the number of signals serviced at run-time.

We use micro-benchmarks to illustrate the performance
aspects of our implementation and validate these results
with a series of application benchmarks: NAS [2, 15] (class
B) FT, IS, MG. While the results presented are only for re-
mote memory read operations, similar trends are observable
for remote write operations. For write operations, the ini-
tiator typically blocks until it is safe to modify the source
buffer. Protecting the memory of the source buffer with
HUNT is used in this case and writes trigger segmentation
faults.

The results presented for the AlphaServer and PowerPC
systems use complete and correct user level implementa-
tions of HUNT. As explained in Section 8, we consider
some of the results on Linux based systems as simulation.

6.1 Performance Aspects

Performance Parameters: As indicated in Section 5.1, the
behavior of our implementation is influenced by the com-
bination of network and processor performance parame-
ters. Figures 6 and 7 present these parameters for the Al-
phaServer and the PPC/Infiniband systems. The processor
performance parameters for the x86/Itanium processors all
show similar trends to those of the Alpha processor, while
the performance parameters of Myrinet are similar to those
of the Infiniband network.

On most systems, the signal service time (I) is smaller
than the network RTT. This indicates that even for very
small transfers demand-driven synchronization has the po-
tential to exploit for overlap a fraction of the RTT. On all
systems, the transfer time increases with data size much
faster than any other component and accordingly the mes-
sage decomposition benefits will increase with the transfer
size. This is illustrated in Figure 6.

Figure 7 shows the values of the performance parameters
for small transfers on the PPC/Infiniband system. On this

system, finer grained overlap is harder to achieve due to the
much higher overhead of the demand-driven synchroniza-
tion (I >> RTT).

Demand-driven Synchronization (DDS): The perfor-
mance of demand-driven synchronization is determined by
the relationship between the network latency (RTT) and the
CPU signal overhead (I). We use two worst case scenario
micro-benchmarks to illustrate this interaction and compare
the performance of DDS with the performance of source
level blocking and non-blocking communication. Table 2
shows our results.

The first benchmark applies DDS to an 8 byte data
transfer and captures the overhead our method. On the
Opteron/Itanium/PPC systems, this overhead is propor-
tional with the speed of the processor signal handling. On
the Opteron/Infiniband systems the overhead is smaller than
the network round-trip time, while on the PPC system it is
twice as high. On the AlphaServer system, the overhead
of our method is much higher than the signal time. The
Quadrics network contains an on-board TLB that is main-
tained coherent with the CPU TLB. We attribute the ob-
served difference to the overhead of maintaining TLB co-
herency.

The second micro-benchmark performs two consecutive
8 byte transfers. Data involved in the transfer is located
within the same page. On the Opteron and Itanium based
systems, DDS is able to exploit some of the overlap avail-
able. The non-blocking implementation is still faster. This
result indicates that even for the smallest transfers, when
independent overlap is present in the application, our ap-
proach is able to find and exploit it. On the AlphaServer
and PPC/Infiniband, the granularity of the overlap available
is still smaller than the overhead of the implementation.

For very fine grained messages, due to TLB synchro-
nizations, the overhead of our approach increases propor-
tionally with the number of messages on Quadrics based
systems. Note also that for a small number of transfers on
the Quadrics networks it is not necessarily true that non-
blocking communication improves performance in the fine

7

CPU/OS Network o (µs) G (µs/KB) RTT (µs) I (µs) mprotect (µs)
AMD Opteron 2.2GHz/Linux 4xInfiniband 1.8 1.23 11.6 2 1

Itanium2 1GHz/Linux [3] Myrinet 3 4.7 25.5 3 1
PowerPC 970FX 2.3GHz/MacOSX [6] 4xInfiniband 5.2 1.26 20.2 37 1
AlphaServer ES45 1GHz/Tru64 [20] Quadrics 2 3.96 8 5 1

Table 1. Systems Used for Benchmarks

1 transfer (µs) 2 transfers (µs)
n-block DDS blockn-block DDS block

Opteron/Infiniband 11.67 15.37 11.57 20.68 22.36 23.42
Itanium/Myrinet 26.14 29.48 25.61 45.72 48.93 51.22
PPC/Infiniband 18.62 61.03 18.25 29.12 67.65 36.19

AlphaServer 7.78 43.48 7.55 15.83 52.65 14.93

Table 2. Performance of demand-driven syn-
chronization.

grained case. For the pinning based networks, for proces-
sors with high interrupt time, our approach starts show-
ing performance benefits for a train of small messages of
roughly length I

RTT + 1. For the PPC/Infiniband system
this threshold is around 5-6 transfers. In general, increasing
the number of transfers provides better amortization of the
DDS overhead and the relative performance benefits of our
approach improve when compared with the non-blocking
implementation.

Message Decomposition: The performance benefits of
automatic strip mining are illustrated using a micro-
benchmark that times the duration of a
memcpy() of transfered data. In a sense, this is a hard case
to optimize for, since it contains only a small amount of
computation. Figures 8 and 9 present our results. The
line labeled self-induced overlap corresponds to a scenario
where computation immediately follows the network trans-
fer. The line labeled independent overlap corresponds to
the case where an independent computation whose latency
is large enough to hide the transfer latency has been inserted
between the transfer and the memcpy operation.

On the systems with fast signal handling we observe a
lower bound of the transfer sizes that benefit from decom-
position in the range of 30KB − 64KB. On systems with
slow signal handling (PPC), this threshold has a value of
≈ 200KB. The benefits of message decomposition in-
crease with the transfer size. On all systems, for transfers
in the MB range we observe speed-up in the 25% − 35%
range.

On all systems, our technique is successful at finding and
exploiting the independent overlap. In this case, the pro-
gram has to service only one signal and the overhead of our
technique is much smaller than transfer overheads.

We have also timed the scenario where transfers are per-
fectly overlapped using non-blocking communication prim-
itives. For lack of space we do not show these results. On

the systems with fast signal handling, the overhead of our
technique is minimal and ranges from 1% of the total run-
ning time for the smaller transfers to changes in the third
decimal digit for larger sizes.

Figure 9 shows the performance behavior on the Al-
phaServer system. On this system, besides the overhead
introduced by maintaining the NIC TLB coherence which
increases the decomposition size threshold, we observe
a large variation in performance for the smaller transfer
sizes that our performance models and previously presented
micro-benchmarks do not account for. We think this behav-
ior is caused by the system scheduler which might lower
the priority of processes that service many signals in a short
period of time.

6.2 Application Benchmarks

NAS FT and IS: These two benchmarks illustrate the case
where both independent and self-induced overlap is present
in the application. The main data redistribution step in
both benchmarks consists of an one-to-many communica-
tion step, followed by either a Fourier transform (FT) or
a histogram computation (IS). The released version of the
benchmarks has communication implemented with block-
ing primitives (stock UPC).

Figure 10 shows performance results for the FT bench-
mark. We use as a base case the performance of the original
implementation (FT) and normalize the performance of the
other implementations. The series labeled FT-nb presents
the performance of the benchmark where the blocking com-
munication is replaced with non-blocking communication.
For this benchmark source level strip mining is cumber-
some and lowers significantly the performance of the serial
code. Thus, this implementation represents the extent to
which one can realistically expect a programmer to manu-
ally optimize the implementation without a complete rewrit-
ing and exploits only communication-communication over-
lap. The series labeled FT-md presents the performance
with only message-decomposition enabled, while the series
FT-H presents the performance of message decomposition
combined with message scheduling.

Figure 11 shows the performance results for the IS
benchmark. The series labeled IS-nb corresponds to an im-
plementation where communication is non-blocking and the
communication for the data received from one processor is

8

AlphaServer/Quadrics

1

10

100

1000

10000

100000

0 500 1000 1500 2000 2500

Number of Pages

T
im

e
 (

u
se

c) o

RTT

mprotect

I

TransferTime

Figure 6. Asymptotic behavior of perfor-
mance parameters

PPC/Infiniband

0

5

10

15

20

25

30

35

40

45

50

1 5 9 13 17 21 25 29

Number of pages

T
im

e
 (

u
se

c) o

RTT

mprotect

TransferTime

I

Figure 7. Performance parameters detail

memcpy/Opteron/Infiniband

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 12 14 16 18 20

2^x doubles

sp
e
e
d

u
p original

self-induced overlap

independent overlap

Figure 8. Automatic strip mining

memcpy/AlphaServer/Quadrics

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

12 13 14 15 16 17 18 19 20 21

2^x doubles

sp
e
e
d

u
p original

self-induced overlap

independent overlap

Figure 9. Automatic strip mining

FT class B/AlphaServer

0.6

0.8

1

1.2

1.4

1.6

1.8

4 8 16 32 64

Processors

S
p

e
e
d

u
p FT

FT-nb

FT-md

FT-H

Figure 10. FT performance on Al-
phaServer/Quadrics.

IS class B/AlphaServer

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 4 8 16 32 64

Processors

S
p

e
e
d

u
p IS

IS-nb

IS-md

IS-nb-H

Figure 11. IS performance on Al-
phaServer/Quadrics.

9

overlapped with both communication and computation for
the data from distinct processors. Again, this represents a
realistic expectation of what a programmer might attempt.
The series labeled IS-md shows the performance benefits
when enabling only message decomposition. The series
labeled IS-H shows the performance of hunting the non-
blocking implementation of the benchmark.

HUNT is able to find and exploit the overlap present
in the implementation of both benchmarks. Adding non-
blocking behavior to the application improves performance
by up to 77%. For the FT benchmark, HUNT outperforms
the non-blocking implementation for up to 32 processors by
up to 6%. Increasing the number of processors decreases
the message sizes and the benefits of automatic strip min-
ing while it increases the number of signals that need to be
serviced in order to achieve correct synchronization. En-
abling message scheduling lowers this overhead and our
implementation outperforms the source-level non-blocking
implementation even for higher processor counts. For the
IS benchmark, IS-nb and IS-md show similar trends. Also,
IS-H consistently outperforms the non-blocking version by
a small amount.

Comparing the relative behavior for the two bench-
marks, we note that our approach produces better results
for the FT benchmark. This is explained by the differ-
ences in implementation. The implementation of IS exploits
both communication-communication and communication-
computation overlap. The FT implementation exploits only
communication-communication overlap and thus exhibits a
larger percentage of idle times.

User level hints were not used for any of the implemen-
tations presented here. Since both benchmarks perform the
equivalent of a gather communication call, we do believe
that further tuning of the application performance is possi-
ble using hints.

NAS MG: This benchmark uses a point-to-point commu-
nication pattern. The volume of transfered data varies with
the program execution and the only applicable optimization
is message strip-mining. Manual application of this tech-
nique is cumbersome due to the variation in message sizes
and the structure of the computation that follows transfers.
There are six distinct computation blocks immediately fol-
lowing a transfer operation, program control being able to
choose any of them depending on the execution stage.

On the Opteron/Itanium systems the execution with
HUNT enabled consistently outperforms the execution of
the original program for the configurations measured (up
to 64 processors). The performance benefits of HUNT in
terms of end-to-end execution time are not as large for this
benchmark when comparing with the benefits seen for FT
and IS. MG spends only a small fraction of the total run-
ning time in communication operations, it transfers a much
smaller volume of data (largest message size is ≈ 250KB

versus MByte messages in FT/IS) and performs a large
number of transfers whose size is under the implementation
threshold for automatic strip mining. The performance im-
provements for individual communication stages vary from
5% to 25% depending on the message size while the over-
all program performance improves by at most 1%. On the
AlphaServer and PPC/Infiniband systems, according to our
implementation heuristics, HUNT disables automatic strip
mining for MG class B.

7 Programmability

HUNT exports all the interfaces required by the original
UPC language specification and the non-blocking Berkeley
UPC library extensions. In addition it exports a very sim-
ple set of single-argument functions to guide the heuristics
involved, if so desired by the programmer. It has the abil-
ity to run unmodified UPC programs and transparently add
non-blocking behavior to the original program thus implic-
itly finding the overlap wasted by the presence of blocking
communication operations.

Explicit handle management for non-blocking commu-
nication can prove to be cumbersome and we believe that
HUNT can increase programmer productivity by eliminat-
ing explicit communication management. In addition, it
performs automatic strip mining, eliminating the need to
perform it manually if it is not already performed by com-
pilers (not supported or fails due to complicated code or
third party libraries).

Since in our system no code reordering to increase the
overlap potential is possible at run-time, manual code re-
structuring might be desired where compilers fail to per-
form it. In these cases, our run-time allows programmers to
incrementally try different restructuring alternatives with-
out the need to explicitly manage non-blocking communi-
cation. After determining the best implementation alterna-
tive, UPC programmers can change their code to fully use
non-blocking communication if so desired.

To obtain best performance, HUNT might require pro-
grammer hints about the program access pattern on trans-
ferred data. When using third party libraries or complicated
codes, this pattern might be hard to determine. We provide a
diagnostic and feature extraction functionality to determine
the page trace of data accesses after a transfer. We plan to
extend this with a simple profiling infrastructure to assist
programmers to decide if they need to switch to a fully non-
blocking implementation.

8 Future Work

The user level implementation of demand-driven syn-
chronization introduces unnecessary overhead due to the

10

lack of proper OS level interface support and the lack of
proper CPU/NIC integration. Kernel and driver modifica-
tions have the potential to eliminate parts of this overhead.

On TLB coherent networks, such as Quadrics, manip-
ulating page access rights (mprotect) forces TLB up-
date operations that increase the overhead of DDS. Unless
the virtual-to-physical memory mapping changes, these up-
dates are not necessary and network driver modifications
might alleviate this problem.

The conclusions in this paper were drawn mostly from
non-Linux systems because on all Linux based systems
we investigated, user level DDS affects program correct-
ness due to poor OS/NIC integration. Under Linux, calls
to mprotect at any program point cause intermittent
incorrect program behavior, even after the restoration of
READ/WRITE access and even for blocking communica-
tion operations (no DDS). While our micro-benchmarks
execute correctly under Linux, the NAS benchmarks suf-
fer from verification failures for some processor configura-
tions. This is a generic problem for all the Linux user-level
network drivers we have examined: Infiniband, Quadrics
patch-free and Myrinet. Quadrics networks function cor-
rectly with kernel patched drivers at the expense of extra
overhead due to maintaining TLB coherence. We are cur-
rently investigating mprotect and driver implementations
for pinning-based networks and believe we can achieve cor-
rect functionality with no extra overhead. Thus, we believe
that our performance results are achievable under a correct
Linux implementation.

HUNT is constrained to use standard operating system
level interfaces and thus performs an unnecessary number
of system calls. For example, the most common operation
inside the signal handler is restoring access rights to one
page while restricting the access to another. This currently
requires two system calls that can be executed together with
simple interface modifications.

The message scheduling heuristics in HUNT are de-
signed to improve scalability and performance in the most
general case and do require programmer hints for optimal
performance. One-to-many and all-to-all library commu-
nication primitives already contain extra semantic informa-
tion that can be used for message scheduling and we plan
to investigate the implementation of such primitives. For
example, the UPC collective operations, besides directly
capturing the program communication pattern, contain as
arguments programmer hints for the data synchronization
requirements of the operation. Efficiently using these hints
requires both run-time and compiler support. We believe
that a HUNT implementation can make use of programmer
hints and alleviate the need for compiler support.

9 Related Work

Wakatani and Wolfe [27, 28] introduce message strip-
mining and analyze its impact for array redistribution
in HPF and a code that implements a simple inspector-
executor. Iancu et al. [17] examine message-strip mining
for a variety of contemporary networks from the combined
viewpoint of performance and portability. The idea of de-
composing message traffic also appears in [24, 25] where
it is transparently implemented inside the network layer in
order to alleviate switch contention.

Using virtual memory support in parallel runtimes is an
approach often used in practice. Dubnicki et al. [14] present
the principles of virtual-memory-mapped-communication
(VMMC). Their work explores software support for remote-
direct-memory-access (RDMA) transfers and has since
been supplanted by hardware RDMA support. Virtual
memory services are widely used in the implementation of
page based distributed-shared-memory (DSM) systems [21,
26] to enforce data coherence. More recent approaches [18]
address the granularity problem of page based DSMs by us-
ing virtual memory support for multiple virtual mappings of
the same physical page. Similar techniques might be appli-
cable in HUNT based approaches to decrease the granular-
ity of data interaction for demand-driven-synchronization.

Communication optimizations for parallel programs
have been extensively studied [10, 11, 16, 19] both from the
user level and compiler directed optimization point of view.
All these studies indicate that non-blocking communication
is able to increase program performance, especially under
a one-sided communication model. For compiler optimiza-
tions, explicitly managing synchronization operations not
only unnecessarily complicates the analysis but it also re-
stricts the range of communication movement. A HUNT-
like approach would eliminate most of these constraints and
greatly simplify the analysis.

Intelligent run-time systems have received renewed in-
terest in the last years and show very promising potential
in terms of performance, scalability and programmer pro-
ductivity. The approach most closely related to ours is
present in the CHARM [1] runtime. Charm provides for
latency hiding through an abstract execution model based
on processor virtualization and message-driven execution.
Charm decomposes the computation and achieves overlap
by rescheduling threads that block for communication. In a
sense, Charm schedules computations and our approach is
orthogonal since it decomposes and schedules communica-
tion.

10 Conclusion

In this paper we explore the design and performance as-
pects of run-time techniques able to find and exploit the

11

idle times caused by the presence of communication oper-
ations in parallel programs. Our runtime is implemented
in user space and exploits overlap by using a combination
of demand-driven synchronization, automatic message strip
mining and message scheduling. Such an approach elimi-
nates the need for explicit non-blocking communication and
has the potential to increase programmer productivity, sim-
plify the analysis required, and improve the quality of opti-
mizations in compilers for parallel languages.

Performance is directly influenced by a combination of
network and CPU performance characteristics and on all
systems explored, the run-time is able to find and exploit
“relatively large” granularity overlap. Exploiting very fine
grained overlap is dependent on processor and network
characteristics. On processors with a large signal service
time (I >> RTT), our approach is not always bene-
ficial for fine grained messages. Networks maintaining
TLB coherency (Quadrics) also exhibit a large overhead for
demand-driven synchronization, but driver level modifica-
tions might alleviate this problem. Very fine grained over-
lap can be efficiently exploited for a combination of pining-
based networks (Infiniband, Myrinet) and processors with
fast interrupts (Itanium, Opteron, x86). In order to further
increase the performance of our approach, a tighter integra-
tion of CPU and NIC through kernel and driver level modi-
fications is required.

We believe that intelligent run-time systems able to man-
age non-blocking communication on behalf of the appli-
cation programmer or compilers are a necessity on future
very-large scale parallel machines. Our work constitutes an
initial evaluation of the design and performance aspects of
such a runtime from a software only perspective. However,
some of the principles presented capture the general nature
of the problem and even hardware based implementations
will have to implement them in some form. Thus, a soft-
ware based approach like ours can be easily used to explore
the design trade-offs of hardware implementations.

References

[1] CHARM++ project web page. Available at http://charm.cs.uiuc.edu.

[2] The NAS Parallel Benchmarks. Available at
http://www.nas.nasa.gov/Software/NPB.

[3] The Rice Terascale Cluster. http://support.rtc.rice.edu/.

[4] UPC Collective Operation Specification, v 1.0 . Available at
http:/upc.lbl.gov/docs/system.

[5] UPC Language Specification, Version 1.0. Available at
http://upc.gwu.edu.

[6] Virginia Tech Terrascale Computing Facility : SystemX.
http://www.tcf.vt.edu/systemX.html.

[7] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman.
LogGP: Incorporating Long Messages into the LogP Model for Par-
allel Computation. Journal of Parallel and Distributed Computing,
44(1):71–79, 1997.

[8] D. Bonachea. GASNet Specification, v1.1. Technical Report CSD-
02-1207, University of California at Berkeley, October 2002.

[9] D. Bonachea. Proposal for Extending the UPC Memory Copy Li-
brary Functions and Supporting Extensions to GASNet, v1.0. Tech-
nical Report LBNL-56495, Lawrence Berkeley National Laboratory,
2004.

[10] S. Chakrabarti, M. Gupta, and J.-D. Choi. Global Communication
Analysis and Optimization. In SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 68–78, 1996.

[11] S. E. Choi and L. Snyder. Quantifying the Effects of Communication
Optimizations. Technical Report TR-97-04-05, 1997.

[12] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, and T. von Eicken. LogP: Towards a
Realistic Model of Parallel Computation. In Principles Practice of
Parallel Programming, pages 1–12, 1993.

[13] Y. Dotsenko, C. Coarfa, and J. Mellor-Crummey. A Multiplatform
Co-array Fortran Compiler. In Parallel Architecture and Compilation
Techniques (PACT04), Antibes Juan-les-Pins, France, 2004.

[14] C. Dubnicki, L. Iftode, E. Felten, and K. Li. Software Support for
Virtual Memory-Mapped Communication. In Proceedings of 10th
International Parallel Processing Symposium, April 1996.

[15] T. El-Ghazawi and F. Cantonnet. UPC Performance and Potential: A
NPB Experimental Study. In Proceedings of Supercomputing2002.

[16] M. Gupta, E. Schonberg, and H. Srinivasan. A Unified Framework
for Optimizing Communication in Data-Parallel Programs. IEEE
Transactions on Parallel and Distributed Systems, July 1996.

[17] C. Iancu, P. Husbands, and W. Chen. Message Strip Mining Heuris-
tics for High Speed Networks. In the Proceedings of the Sixth In-
ternational Meeting for High Performance Computing for Computa-
tional Science (VECPAR’04).

[18] A. Itzkovitz and A. Schuster. MultiView and Millipage - Fine-Grain
Sharing in Page-Based DSMs. In Operating Systems Design and
Implementation, pages 215–228, 1999.

[19] M. T. Kandemir, A. N. Choudhary, P. Banerjee, J. Ramanujam, and
N. Shenoy. Minimizing Data and Synchronization Costs in One-Way
Communication. IEEE Transactions on Parallel and Distributed Sys-
tems, 11(12):1232–1251, 2000.

[20] Lemieux. http://www.psc.edu/machines/tcs/lemieux.html.

[21] K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory
Systems. In Proceedings of the 5th ACM Symposium on Principles
of Distributed Computing (PODC), pages 229–239, New York, NY,
1986. ACM Press.

[22] J. Nieplocha and B. Carpenter. ARMCI: A Portable Remote Mem-
ory Copy Library for Distributed Array Libraries and Compiler Run-
Time Systems. Lecture Notes in Computer Science, 1586:533–??,
1999.

[23] Y. Paek, J. Hoeflinger, and D. Padua. Simplification of Array Access
Patterns for Compiler Optimizations. In Proceedings of the 1998
ACM Conference on Programming Language Design and Implemen-
tation.

[24] L. Prylli, B. Tourancheau, and R. Westrelin. The Design for a
High-Performance MPI Implementation on the Myrinet Network. In
PVM/MPI, pages 223–230, 1999.

[25] L. Prylli, R. Westrelin, and B. Tourancheau. Modelling of a High-
Speed Network to Maximize Throughput Performance: The Expe-
rience of BIP over Myrinet. In H. Arabnia, editor, Parallel and
Distributed Processing Techniques and Applications - PDPTA, vol-
ume II, pages 341–349, 1998.

[26] S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest and Typhoon:
User-Level Shared Memory. In Proc. of the 21th Annual Int’l Symp.
on Computer Architecture (ISCA’94), pages 325–337, 1994.

[27] A. Wakatani and M. Wolfe. A New Approach to Array Redistri-
bution: Strip Mining Redistribution. In Proceedings of PARLE’94
(Athen, Greece), Jul 1994.

[28] A. Wakatani and M. Wolfe. Effectiveness of Message Strip-Mining
for Regular and Irregular Communication. In PDCS (Las Vegas), Oct
1994.

[29] Y. Zhu and L. J. Hendren. Communication Optimizations for Par-
allel C Programs. Journal of Parallel and Distributed Computing,
58(2):301–332, 1999.

12

