
Multi-Threading and One-Sided Communication in

Parallel LU Factorization
Parry Husbands Katherine Yelick

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory and
University of California at Berkeley

1 Cyclotron Road 777 Soda Hall
Berkeley, CA 94720 USA Berkeley, CA 94720 USA

+1 510 486 4378 +1 510 642 8900

pjrhusbands@lbl.gov yelick@eecs.berkeley.edu

ABSTRACT
Dense LU factorization has a high ratio of computation to

communication and, as evidenced by the High Performance

Linpack (HPL) benchmark, this property makes it scale well on

most parallel machines. Nevertheless, the standard algorithm for

this problem has non-trivial dependence patterns which limit

parallelism, and local computations require large matrices in order

to achieve good single processor performance. We present an

alternative programming model for this type of problem, which

combines UPC's global address space with lightweight

multithreading. We introduce the concept of memory-constrained

lookahead where the amount of concurrency managed by each

processor is controlled by the amount of memory available. We

implement novel techniques for steering the computation to

optimize for high performance and demonstrate the scalability and

portability of UPC with Teraflop level performance on some

machines, comparing favourably to other state-of-the-art MPI

codes.

Categories and Subject Descriptors
D.1.3 [Parallel Programming]

General Terms
Algorithms, Performance, Languages.

Keywords
Multithreading, latency tolerance, dense linear algebra.

1. INTRODUCTION
Much of scientific computation is organized into a bulk-

synchronous model having distinct phases of communication and

computation. In this paper we describe a parallel execution model

for a problem that is not naturally bulk-synchronous, namely

matrix factorization. We start with the UPC language

[14][11][34], which has one-sided communication via its global

address space, locality control through the partitioning of the

address space, and a static parallelism model with barrier

synchronization which lends itself well to a bulk-synchronous

style. We then explore extensions of the basic UPC execution

model to better support problems such as matrix factorization with

interesting dependence patterns.

The long term goal of our project is to develop highly optimized

matrix factorization routines for both dense and sparse matrices.

In addition, the UPC community is exploring possible extensions

to UPC to improve productivity and performance. In this paper

we use dense LU factorization, which is simpler than the sparse

case, but still has nontrivial dependences that lead to many

possible parallel schedules and some challenges for Partitioned

Global Address Space (PGAS) languages such as UPC. In

addition, the high computational intensity of dense LU

factorization means that arithmetic unit utilization should be very

high, and the prevalence of LU performance data across machines

from benchmark implementations of LU [20][25][33] sets a high

standard for success. For an arbitrarily large dense matrix, the

high computation to communication ratio leads to a computation

that scales with machine size and processor performance, as long

as the input matrix is large enough to mask communication,

memory, and synchronization costs. For small matrices or for

sparse ones, the dependencies inherent in the algorithm can result

in poor scaling due to memory costs, communication overhead,

synchronization, and load imbalance.

Two of the most common parallel LU factorization codes for

distributed memory machines are from the ScaLAPACK library

[12] and the High Performance Linpack (HPL) benchmark used in

determining the Top 500 list [33]. Both of these codes are written

for portability and scalability using the two-sided message passing

model in MPI [32], and are written to keep the processors

somewhat synchronized in order to manage the matching of sends

and receives and the associated buffer space for messages. The

ScaLAPACK code synchronizes for each distinct phase of the

algorithm, while the HPL code allows for a statically determined

amount of communication and algorithmic overlap. In this paper

we present an alternative parallelization strategy for LU based on

(c) 2007 Association for Computing Machinery. ACM acknowledges

that this contribution was authored or co-authored by a contractor or

affiliate of the [U.S.] Government. As such, the Government retains a

nonexclusive, royalty-free right to publish or reproduce this article, or

to allow others to do so, for Government purposes only.

SC07 November 10-16, 2007, Reno, Nevada, USA

(c) 2007 ACM 978-1-59593-764-3/07/0011…$5.00

the PGAS model in UPC augmented with an event-driven

multithreaded execution model. The global address space

provides for one-sided communication, which decouples data

transfer from synchronization; the partitioning gives application

control over data layout; and the multithreading relaxes the static

(SPMD) model used in UPC. Our code is designed with latency

hiding as primary goal, and we explore the programmability and

performance benefits of UPC’s one-sided communication model,

coupled with a dynamic parallelism model. Our experience

highlights some of the subtle pitfalls of dynamic threading and the

need for application-level control for thread management, which

is relevant to the HPCS languages (X10 [13], Fortress [2] and

Chapel [10]) as well as existing libraries like Charm++ [21] or (if

augmented with locality control) Cilk [5]. Scheduling decisions

must be made to balance the needs of parallel progress, memory

utilization, and cache performance.

Latency tolerance for both memory and network latencies has

become increasingly important in high performance algorithm

design, as latencies have remained relatively stagnant over years

of tremendous gains in clock speed and bandwidth scaling. Our

implementation is designed to respect Little’s Law, which

quantifies the need for parallelism to mask latency: to run at

bandwidth rather than latency speeds, sufficient parallelism

(bandwidth*latency) in the memory and network streams is

required to keep pipelines full [3]. Current high performance

implementations, such as HPL and ScaLAPACK, view each task's

execution as a single thread of control, which unnecessarily

serializes the computation, and results in ad hoc and restrictive

solutions to latency hiding. Rather than designing an algorithm

for a specific degree of parallelism, we will use a dataflow

interpretation of the algorithm with a multithreaded

implementation [28][30] that exposes all available parallelism at

runtime. Lewis and Richards [23] used this dataflow approach

successfully for LU in a shared memory parallel setting on up to

24 processors, but not in a scalable distributed memory context.

This work was continued by Kurzak and Dongarra [22] and

colleagues [8][9] for additional matrix factorizations on multi-

core processors. A mixed shared/distributed memory code in this

style was also run on the NASA Columbia machine, using the

data driven approach within shared memory [29].

Several challenges arise in using a highly parallel dataflow view

of the algorithm as we do. First, because we want to run on

hundreds or even thousands of processors and across clusters,

locality is critical. We use UPC’s global address space to

statically distribute blocks of the input matrix and build

scheduling queues for the tasks associated with each block; both

the matrix blocks and queues are remotely accessed through the

global address space. Second, the multithreading support that is

needed to expose available parallelism can have a significant

runtime cost; we explore several different strategies for

implementing fast user-level threads. Third, while the algorithm

is highly dynamic, control over task scheduling is critical and

non-obvious. For highest performance we use an application-

specific scheduling policy to ensure proper prioritization. Fourth,

as with any attempt to expose all available parallelism to the

runtime layer, memory resources can easily be strained, and

deadlock may result in a constrained memory environment,

because tasks that have been allocated may not be able to run until

other unallocated tasks complete. We use a novel dependence-

constrained task allocation mechanism to avoid deadlock.

Finally, we incorporate some of the best-practice optimizations

from prior work, including recursive algorithms to increase

granularity and the combining certain tasks to improve local task

size and thereby boost serial performance. We found each of

these optimizations necessary to high performance.

2. A MULTI-THREADED VIEW OF LU

2.1 The LU Factorization Algorithm
The LU factorization algorithm that is most commonly used on

parallel machines is simply a reorganization of classic Gaussian

Elimination. The basic algorithm proceeds row by row,

attempting to “eliminate” entries below the main diagonal.

Multiples of row i are subtracted from rows below i in order to

ensure that the part of column i below the main diagonal becomes

zero. To enhance numerical stability pivoting, the swapping of

rows to place a large value on the diagonal, is performed prior to

each elimination step. The steps for a matrix A are1:

for i = 1 to n-1

1. find maximum absolute element in column i below the

diagonal

2. swap the row of maximum element with row i

3. scale column i below diagonal by 1/A(i,i)

L(i,i)=1

for j = i+1 to n

 L(j,i)=A(j,i)/A(i,i)

4. Set row i of U

for j = i to n

 U(i,j)=A(i,j)

5. Perform a “trailing matrix update”, i.e. update the part

of the matrix below and to the right of A(i,i)

for j=i+1 to n

 for k = i+1 to n

 A(j,k) = A(j,k)-L(j,i)*U(i,k)

This step can equivalently be expressed as a “rank-one

update”:

 A(i+1:n,i+1:n) = A(i+1:n,i+1:n) -

 L(i+1:n,i)*U(i,i+1:n)

After this process is completed, the solution of Ax=b can be

obtained by forward and back substitution with L and U. For

benchmarking purposes both HPL and our code append b to A as

an extra column and perform the above operations on this

augmented matrix. In this way, only substitution with U is needed

to find x.

One can view this algorithm from a dataflow perspective and see

that there are several dependencies between the first few steps, but

the update in the last step is both parallel in itself and, if it is

broken into smaller tasks, the subsequent elimination steps may be

started as soon as column i+1 is computed. This view exposes

extremely fine-grained parallelism, but uses only inefficient

matrix-vector and vector-vector operations.

1 Note that the lower triangular part of the input matrix is

commonly overwritten with L and the upper triangular part with

U

The blocked algorithm, schematically depicted in Figure 1, is

critical to high performance on cache-based and distributed

memory machines, and emerges when we note that

mathematically the result stays the same if we replace matrix

elements by blocks, division by linear solves, and scalar

multiplication with matrix multiplication. Pivots are still

computed (maximums) within a single column, and individual

rows, not blocks, are swapped during pivoting. In addition, a

slight modification is required in the computation of the blocks of

U. In this algorithm, blocks of columns referred to as “panels”,

are first factored (steps 1-3), a number of rows of U are computed

(step 4), then the trailing matrix is updated (step 5). A more

detailed treatment of the algorithmic issues can be found in Golub

and van Loan [16].

Finished part of U

A(i,i)

A(j,k)

A(i,k)

Co
mp
let
ed

mu
ltip
lier
s A(j,i)

Panel being factored

Trailing matrix

Finished part of U

A(i,i)

A(j,k)

A(i,k)

Co
mp
let
ed

mu
ltip
lier
s A(j,i)

Panel being factored

Trailing matrix

Finished part of U

A(i,i)

A(j,k)

A(i,k)
Finished
part

of
L

A(j,i)

Panel being factored

Trailing matrix
To be updated

Figure 1. Dataflow in LU Factorization. The computation

proceeds from left to right, factoring panels then updating

higher number numbered panels.

2.2 The Parallel Case
Load balancing considerations motivate the use of a blocked

cyclic layout for the parallel algorithm, which is standard in

distributed memory implementations. Returning to Figure 1, we

note that if, for example, the matrix is distributed by block

columns, as the computation proceeds fewer and fewer processors

perform useful work (because the factorization proceeds from left

to right). In order to keep all the processors busy for as long as

possible we use a layout such as the one shown in Figure 2 where

4 processors are logically viewed as a 2x2 processor grid and

matrix blocks distributed to the processors.

The bulk of the computation comes from the matrix

multiplications in the blocked version of step 5, which multiply

thin rectangular matrices to update the trailing submatrices of the

original. Each processor is responsible for updating the blocks it

owns, including the multiplication of blocks for this update,

which it generally does not own. The blocked cyclic layout

spreads out the work of the multiplication across most of the

processors, except possibly at the end of the computation, where

there may not be enough matrix blocks to distribute across the

entire machine. Figure 2 also reveals the importance of choosing

the block size, since a block size that it too large will result in

significant time spent in the beginning or ending phases (the left

and right edges of the Figure) when some processors are idle.

Figure 2. Block cyclic decomposition with a 2x2 processor

grid. The numbers denote the processor owning the respective

block.

2.2.1 The Major Operations
The major operations of the algorithm are blocked versions of the

steps detailed in Section 2.1. They sweep through the matrix

performing:

1. Panel factorizations encompassing algorithm steps 1-3.

2. Updates to U (step 4). In this step the pivots are applied

to the rest of the matrix, for pivots are only applied to

the panel when it is factored.

3. The trailing matrix updates.

Note that these operations are carried out in parallel on the

processors owning the corresponding blocks of the matrix. They

can execute concurrently but are, however subject to a few

constraints, discussed below.

2.2.2 The Constraints
The constraints on the operations come from the algorithm’s

dependencies:

• A panel can be factorized after all previous trailing

updates to its rows and columns have been performed

• The pivot sequence can be applied to a region of the

matrix when all previous trailing updates to it are

complete

• U is updated after the pivot sequence is applied

• The trailing submatrix updates can be performed after

the pivot sequence is applied

For the triangular solve using the upper triangular factor, U:

• A block triangular solve on a block of the solution

vector (for computing x via back-substitution) can be

performed only after all the updates from previous block

0 2 0 2

1 3 1 3

0 2 0 2

1 3 1 3

0 2 0 2

1 3 1 3

0 2 0 2

1 3 1 3

0 2 0 2

1 3 1 3

0 2 0 2

1 3 1 3

0 2 0 2

1 3 1 3

0 2 0 2

1 3 1 3

solves (with higher block numbers) have been

accumulated

In our event-driven execution model, the dependencies are

handled in part by dynamically creating threads for dependent

operations:

• The panel factorization creates U update and trailing

sub-matrix update threads

• Block triangular solves in back-substitution create

update threads for lower numbered vector blocks.

The task graph for LU factorization, shown schematically in

Figure 3 below, is not a tree, because update operations have two

input dependencies. The first is from the thread created by panel

factorization above, and the second is a result of updating U:

• Updates to U provide the other argument to the trailing

update

The factorization process is initiated by noting that the constraints

on the leftmost panel of the matrix are trivially satisfied and so a

panel factorization can commence immediately.

Figure 3. Dependencies in LU factorization

The constraints are handled in two ways. Operations that are

dependent on remote events, such as the completion of the

factorization of a panel, are triggered by the receipt of a

notification. In addition, because we can perform operations on

matrix blocks in any legal order, an additional synchronization

method is needed. For example, a panel cannot be factored until

all trailing updates and pivots are performed. In order to keep

track of this, a count of the number of remaining updates is kept

for each matrix block. When this count reaches zero, it is then

safe to continue.

3. IMPLEMENTING THE ALGORITHM IN

UPC
Our implementation is written entirely in UPC, except for the

single node matrix kernels, such as matrix multiplication, which

are performed using calls to an optimized Basic Linear Algebra

Subroutine (BLAS) library [4], and a heap data structure taken

from the C++ Standard Template Library. Our code was written

in approximately 4,000 lines of code (not counting the threading

system) compared to about 12,000 lines for HPL. Comparisons to

ScaLAPACK LU are difficult because it depends on a large

amount of supporting infrastructure that is used in other linear

algebra routines. In this Section, we detail how our code dealt

with many of the challenges of implementing the algorithm using

distributed multithreading.

3.1 The Data Layout
As mentioned in Section 2.2, the input matrix is distributed in 2-D

block cyclic fashion among the processors. All the blocks owned

by a particular processor are stored contiguously in its local

shared memory region. This allows update operations to be

aggregated across blocks by viewing several matrix

multiplications as one larger one, which can improve individual

processor efficiency. Although UPC supports distributed arrays,

including blocked and cyclic layouts, we chose to avoid them for

a few reasons. First, they do not directly support blocking in

multiple dimensions, which is necessary for the layout in Figure 2.

Second, the block size must be a compile-time constant, whereas

we would like it to be an input parameter. Finally, our prior

experience has shown that use of blocked layouts can incur

significant overheads in some compilers, although this is an active

area in which optimizations are under development.

Although we do not use UPC’s distributed arrays, we do take

advantage of the global address space to build a distributed data

structure that uses global pointers, which can refer to memory

associated with other UPC processes.

3.2 Managing the concurrency
We use a multithreaded implementation of the algorithm with

threads running on each processor for the major operations of

Section 2.2.1. These threads are built over the fixed set of UPC

threads and are scheduled co-operatively, which means they are

never preempted, but instead explicitly yield when they reach a

long-latency operation or synchronization dependence. Because

there are many threads sharing a single processor and performance

of the dense matrix operations suffers if cache context is lost, mid-

execution, pre-emption is not viable. In addition, co-operative

threads simplify maintenance of data structure consistency (no

critical regions are necessary) as the threads give up control of the

processor by explicit yielding only when the data structures are in

a consistent state. Co-operative threads also provide a convenient

abstraction for managing the multiple dependent operations that

each processor may have in flight at any given time [1].

For managing these co-operative threads, we experimented with a

number of threading packages, from GNU Pth [15] to POSIX

Threads where only one thread executes at any time. For reasons

of portability (to machines such as the Cray X1) and performance

(context switches in our package cost only a function call or two)

we eventually settled on a home-grown package that uses only

function calls combined with the use of a variant of Duff’s Device

[31].

3.3 Enforcing locality
As discussed before, our implementation spawns threads on

remote processors to perform certain matrix operations. Because

we have a global address space a natural question is why we

choose to spawn a thread on a particular processor. The answer,

of course, is locality. Although not implemented this way, this

can be viewed as giving a locality hint to a “global” thread

scheduler: execute, for example, a trailing update on the processor

that owns the block being updated.

3.4 Coalescing Updates
Each trailing update operates on a single block of the matrix (see

Figure 3). These blocks are of size b x b, where b is the block

size used to partition that matrix. We can obtain higher

some edges omitted

performance if we observe that we can update an entire block

column with a single matrix-matrix multiplication:

A
i,j

A
i,j

L
i,k
U
n,j

A
i+m,j

A
i+m,j

L
i+m,k

U
n,j

A
i: i+m,j

A
i: i+m,j

L
i: i+m,k

U
n,j

In our implementation, this optimization was manually performed,

but it is conceivable that in the future, some high level language

constructs can be provided for coalescing the threads that

implement a trailing update on a single block. Our coalescing

strategy departs from the standard HPL code. HPL also coalesces

multiple block columns to produce even larger trailing update

matrices. Because these matrices are larger, the matrix

multiplications can potentially run at a higher fraction of peak.

The trade-off is that this approach exposes less concurrency

because a panel factorization can start when the update to the

panel (and not the whole submatrix stored on the processors) is

completed. In future work we will consider a compromise hybrid

scheme that coalesces larger blocks for panels that are not about

to be used for panel factorizations. Note that our scheme requires

that we use larger block sizes than HPL because of the need for

large matrices for multiplication.

3.5 Memory-Constrained Lookahead
In matrix factorization, lookahead refers to the technique of

overlapping panel factorizations with trailing matrix updates. In

HPL lookahead is static in the sense that, at program startup time,

the user must define the number of panel factorizations that can be

overlapped. In our case, lookahead is dynamic. As long as the

dependencies are satisfied, any amount of overlap is permissible.

Figure 4. Timeline for an LU run with no lookahead (SGI

Altix Itanium 2 1.4GHz, n=12,800, process grid = 2x4, block

size = 400). Grey blocks represent matrix multiplication and

black blocks denote panel factorization.

Figures 4 and 5 show timelines for processors on a small problem

with and without lookahead. They show how the dynamic

lookahead version can overlap panel factorizations with matrix

multiplications, filling “holes” in the execution schedule of the

more synchronous code.

Figure 5. Timeline for the same problem as Figure 4 with

dynamic lookahead (a buffer size of 512MB). As a very small

problem was used for illustrative purposes, the processors

were not very busy towards the end of the computation.

One of the ways we create opportunities for overlap is by coding

the operations that require remote blocks in a split-phase manner.

For example, an update operation on a trailing block requires two

other blocks (one to the left and one above) to be multiplied. One

or both of these input blocks may be remote, and we use bulk

UPC operations such as upc_memget. On most machines we use

a Berkeley compiler extension to these bulk operations, which

provide non-blocking functionality [6][7]. In this way we can

hide the latency of the transfer by yielding and only resuming

once the transfer is complete.

The remote blocks used during updates and in the computation of

U require storage on the processor where the computation is to be

performed. In the current implementation we decide at startup

time on the amount of memory we wish to devote for latency

hiding. Memory allocated for buffering trailing matrix updates is

tracked. When initiating an operation we reserve a buffer from

this memory pool, start the transfer(s), then return to other work.

When all the transfers for a particular update are complete, the

operation is performed, then the memory returned to the pool. In

this way we can hide the latency of as many transfers as we have

memory. In addition we have a stored “reservoir” of work that

can be performed when the processor would otherwise be idle. If

we find that we cannot allocate enough memory to hold a transfer,

we simply defer the operation and return to it at a later (and

hopefully more favourable) time.

It is important to note that there is the potential for deadlock. If

the notification for the completion of the factorization of panel 3,

for example, arrives before panel 2’s notification and the last bit

of memory on a processor is allocated for buffering panel 3’s

updates, progress is stopped because panel 2’s updates can’t be

run and these must come before panel 3’s updates release the

required memory. This is avoided by always allocating memory

in the order of the panel number that spawned the update with no

“holes” in the sequence. In the previous example, no memory

would be allocated for panel 3 until panel 2 is taken care of. This

strategy ensures that all the trailing updates to a panel can be

buffered and so complete before dealing with any higher panels.

While application specific, this suggests a possible general

solution that looks at dependency information before making

memory management and scheduling decisions.

3.6 Panel Factorization Issues
The panel factorization is managed by the processor owning the

corresponding diagonal block. It sends requests to the other

participants in its process column (that own the part of the matrix

below its diagonal block) asking them to:

• Return the absolute maximum element of a particular

column. The managing processor can then perform the

pivots.

• Scale a column

• Perform a trailing matrix update to other columns in the

block column.

Note that at this point the processor controlling the factorization

can choose to either yield or wait for completion of the operations

it initiates on other processors. Because the panel factorization is

a critical operation (as it produces work for the other processors)

the controlling processor only performs its portion of the panel

factorization and handles event notifications while waiting for

completion of the operations. It suspends the threads that perform

trailing updates and updates to U.

The algorithm implemented by this master processor is either a

simple blocked version of Gaussian Elimination or a recursive

version in the style of Gustavson [19]. After some

experimentation we determined that the recursive version

provides better performance and is used in all the experiments

below.

After the panel factorization is complete, the processors that own

blocks of U in the same block row as the diagonal block are

notified of its completion. The pivots that were needed for the

panel factorization are then applied to each block column of the

trailing submatrix, but only after all updates for all previous

factorizations have been applied. The corresponding blocks of U

can then be computed. Because we use one-sided

communication, only the processor involved in the update to U

needs to actively participate in applying the pivots. It is notified

when previous trailing matrix updates in its block column are

complete to indicate when it is safe to begin pivoting. These

notifications are sent by the processors in its process column that

perform trailing submatrix computations.

4. TUNING
Tuning the code for performance involves finding good values of

the following parameters; the block size, process grid, base case

of the panel recursion, and amount of memory to use for

buffering. The goal is simple: to keep the processors as busy as

possible.

In order to accomplish this task, the local thread scheduler needs

to make some decisions about what operations to perform. As

such, we have the following prioritization of operations:

• Panel factorizations run as soon as possible. This is

motivated by the fact that the panel factorizations drive

the whole process and expose the concurrency in the

algorithm. In fact, when panel factorizations have

started, the participating processors suspend all other

activities (including trailing updates) in order to focus

on the task. In a small experiment on 32 2.2GHz

Opteron processors on a 40,000 x 40,000 matrix, block

size 200, performance dropped from 107.87 GFlop/s to

89.64 GFlop/s when other threads weren’t suspended

for panel factorizations.

• Trailing updates (matrix multiplications) to panels with

lower column numbers are performed before all others.

This is accomplished by organizing all ready updates

(those for which all remote data has been transferred) in

a priority queue. This is of use primarily at large scales

when lots of panels are buffered. To simulate this on a

small number of processors we ran a 25,600 x 25,600

matrix on 16 Opteron processors with a small block size

(50). Absolute performance naturally suffered, but we

observed an additional 20% decrease in performance

with a poorer schedule that always used the panel with

the highest block number.

These rules ensure that panel factorizations (the generators of

work) start as soon as all their dependencies are satisfied.

The rate at which the dependencies are satisfied, however,

depends on the amount of memory available. If memory isn’t

available to buffer panels of L and strips of U, the trailing updates

cannot be executed. Thus there is a dependency between the

amount of memory available and the degree of utilization of the

processors.

The block size used plays a very interesting role. It must be large

enough to enable the trailing updates to run at a high fraction of

peak performance. However, it must not be so large that the panel

factorizations (a very communication-intensive process due to

pivoting) take a long time to complete, resulting in idle

processors. In addition, the larger the panels, the fewer of them

that can be buffered for a fixed amount of memory.

Table 1 shows how performance varies when all other parameters

are fixed and the block size is varied. For this configuration, a

block size of 400 gives the best performance, but the matrix

multiplications (using the Goto BLAS [17]) run slower compared

to a large block size such as 1600. The combination of longer

panel factorization times and less space for buffering dooms this

parameter choice as it results in an execution that cannot hide

latency sufficiently well to achieve high performance.

Table 1. Variation of performance with block size on SGI Altix

Itanium 2 1.4GHz, n=25,600, process grid = 2x4, buffer size =

512MB

Block

Size

Max dgemm()

performance

(Gflop/s)

Total

Performance

(Gflop/s)

200 5.03 33.77

400 5.26 35.52

800 5.40 32.75

1600 5.44 24.03

In addition to the optimizations described above that are specific

to our particular implementation strategy, we also implemented

the common “tricks” that Linpack benchmark writers have used

over the years:

• Each block is stored in row major order so that, when

rows are exchanged in the pivot operation, contiguous

portions of memory are transferred.

• The blocks are arranged in memory in column major

order so that the trailing matrix update on a block

column can be performed with a single BLAS-3 call,

obviating the need for memory copies.

5. PERFORMANCE RESULTS
Our experimental setup is similar to any HPL experiment. A

random dense matrix, A, and random vector, b, are created (using

the “Mersenne Twister” code of Matsumoto and Nishimura [27]),

and the code solves for x where Ax=b. In order to keep the code

as clean as possible there are some restrictions on the matrix size

and block size. The block size must evenly divide into the matrix

size and the total number of row and column blocks must be an

exact multiple of the process row and process column size

respectively. These ensure that each task contains the same

number of blocks. A future version will relax this restriction,

primarily by upgrading the 2-D distribution and global to local

address computation routines.

Our UPC code is compiled with the Berkeley UPC compiler,

except on the Cray X1 where Cray’s UPC compiler is used. The

Berkeley compiler supports some non-blocking extensions of the

bulk memory operations which are important on some machines.

5.1 Single Processor Performance
In order to evaluate the overheads incurred by our multithreaded

implementation, we first collect performance numbers for single

processor runs. These are reported in Table 2. The data shows

that the overall performance of the code is within 10% of the

performance of the matrix multiplications on their own, which are

entirely BLAS 3 calls. Here, only the block size needs to be tuned

as there isn’t any parallel execution. Threads are, however,

created and managed as in the parallel case.

Table 2. Single Processor Performance of UPC-LU code

Processor Performance

GFlop/sec

% peak matrix mult.

%peak in run

Opteron

2.2 GHz

3.6 81.9 89.2

Itanium 2

1.5GHz

6.0 91.8 95.2

5.2 Parallel Performance
In this Section, we present our results for parallel execution. Fair

performance comparisons across implementations are difficult,

because each one has to be tuned using parameters such as block

size, and in the case of the HPL code, the amount of overlap. We

primarily provide comparisons to HPL because our UPC-LU code

greatly outperforms synchronous codes such as ScaLAPACK. For

example, we observe a 62% increase in performance on a sample

16 processor, n=32,000 problem run on the SGI Altix.

Comparisons to HPL numbers from the HPC Challenge survey

are shown in Tables 3 and 4. Because of the difficulty of gaining

access to large amounts of time at supercomputing centers, we

attempted to match machine configurations as closely as possible,

always reporting HPL results on a machine as least as powerful as

we used for our code. Although the random matrices used are

also different and this affects the time spent in pivoting, we later

note that pivoting only accounts for a negligible fraction of our

running time.

Table 3. Parallel Performance of UPC-LU

Machine #

proc.

Perf.

(Gflop/s)

%

peak

n

Cray X1 (800 MHz) 64 576.7 70.4 128,000

Cray X1 (800 MHz) 128 1215.8 74.2 230,400

Opteron (2.2 GHz)

Infiniband
64 216.3 76.8 76,800

SGI Altix (Itanium

2 1.5GHz)
32 149.8 78.0 64,000

Itanium 2 1.4GHz

(Elan4)
512 2249.4 78.5 230,400

Cray XT3 (2.4

GHz)
512 2041.1 76.6 229,376

Table 4. Parallel Performance of HPL. Source: HPC

Challenge [20][26].

Machine #

proc.

Perf.

(Gflop/s)

%

peak
n

Cray X1 (800 MHz) 64 521.6 63.7 160,000

Cray X1 (800 MHz) 60 578.8 75.4 135,555

Cray XD1 (2.2 GHz

Opteron)
64 223.4 79.3 84,000

Cray XD1 (2.4 GHz

Opteron)
128 502.1 81.7 110,000

SGI Altix (Itanium

2 1.6GHz)
32 147.3 71.9 49,152

SGI Altix (Itanium

2 1.6GHz)
64 297.0 72.5 98,304

The data in the Tables 3 and 4 show very good performance for

our UPC implementation. On a 512 processor Itanium/Quadrics

machine (the Thunder machine at LLNL), the UPC code achieves

over 2 TFlop/s, which validates the scalability of the Berkeley

UPC implementation and multi-threaded approach to LU. Our

historical data from the development of our LU code indicates

that non-blocking communication, the use of a very lightweight

thread layer, and careful task prioritization are all critical.

The UPC code also performs very well in comparison to the HPL

implementation written in MPI, but in approximately 1/3rd the

program size. The following graph summarizes the data for a few

machine configurations. As noted, the HPL/MPI numbers are

taken by other researchers, since the effort of tuning these codes

to a particular machine and problem size can be substantial. We

were unable to access identical machines for the Opteron cluster

and Altix comparisons, but chose machines that should favor the

HPL/MPI code. For the Opteron cluster comparison (denoted

“Opt” in Figure 6), we used numbers from a Cray XD1 for the

HPL code and an Infiniband cluster at NERSC for the UPC code,

both with the same Opteron clock rate. This should give a

substantial advantage to the HPL implementation because of the

more tightly integrated network, but we see that the UPC

performance is quite close. Similarly, the clock rate on the Altix

machine is slightly faster on the machine used for the HPL/MPI

code, but the UPC code slightly outperforms the MPI.

Linpack Performance

0

200

400

600

800

1000

1200

1400

X1/64 X1/128 Opt/64 Alt/32

machine / # Procs

G
F
lo
p
/s

HPL/MPI

UPC

Figure 6. Performance Summary

5.3 Other Performance Factors
To conclude our performance discussion, we present some

performance aspects of our code that, while not the most

important, shed some light on how the use of multi-threading and

one-sided communication influence the final Gflop/s number.

There is some conventional wisdom in the HPC community that

the application of the pivots is an intricate, time consuming

process. However, because we use one-sided communication

(along with the row-major layout) we find that this is not the case.

For example, on the n=76,800 run from Table 3, on a loosely

coupled cluster, the application of the pivot sequences to the

trailing sub-matrices only accounted for a maximum (over all

UPC tasks) of 0.36% of the execution time. By comparison, the

overhead of managing the queues took up 5.04% of the total time.

In addition, UPC Task 0 spawned 46,193 threads locally. This

validates our decision to implement a low-overhead threading

system.

6. CONCLUSION
This paper presents a set of parallelism primitives for the UPC

language, including non-blocking bulk communication,

lightweight user-level threading to mask communication and

synchronization latency, and a remote thread spawning

mechanism. We demonstrate this in a running example, which

results in a new implementation of LU factorization and the High

Performance Linpack benchmark written from the ground up

using UPC extended with user-level threading. The performance

meets and sometimes exceeds that of the MPI-based HPL and

ScaLAPACK codes, including runs that have been tuned by

others for benchmark reporting. The code was run on up to 512

processors so far, with performance exceeding 2 TFlop/s. The

UPC code uses non-blocking remote memory operations (one-

sided communication), remote task creation, and dynamic

threading to allow computations to suspend mid-execution at

statically determined points. The code is roughly 1/3rd the size of

the HPL and requires less manual tuning, since the degree of

lookahead in the HPL is handled automatically and dynamically

through our memory-constrained approach.

Our experience touches on several areas of relevance to language

designers and users of parallel programming systems:

• We demonstrated the effectiveness of combining

multithreading for communication overlap with user-

controlled data layout for locality. While both

multithreading and locality control exist in isolation in

previous systems, and are proposed for the HPCS

languages, there is little experience with this

combination at scale. Control over data and task

placement are essential to the performance of our code

and many other applications.

• We demonstrated the use of latency tolerance

mechanisms including non-blocking one-sided

communication and multi-threading with threads that

automatically deschedule themselves when they reach a

long-latency operation. It is our contention (see Gürsoy

and Kale [18] for a supporting viewpoint) that parallel

systems of the future must include some facilities for

handling this issue.

• We presented a technique for memory deadlock

avoidance in latency tolerant programs. This is a

critical problem with the kinds of scheduling flexibility

that can arise in a distributed multithreaded

environment. Combined with constrained resources

(such as limited memory) a system can easily deadlock

by allocating all available resources to tasks that are

unable to run to completion due to dependencies. Our

solution so far is application-dependent, but we believe

it can be generalized.

• We leveraged UPC’s partitioned global address space to

ensure locality in multi-threaded computations. The

global address space was used for updating remote

information about dependencies, for access to remote

blocks of the matrix, and for scheduling remote tasks.

• We identified three of the major issues concerning

scheduling and prioritization of multiple local threads in

a distributed memory environment. We observed that

using application-dependent information was critical.

In our case:

• Parallel progress was ensured by prioritizing panel

factorizations and lower numbered trailing updates

• Memory was controlled using our dependency based

allocation scheme

• Cache performance was maximized by increasing the

size of the matrix multiplications. While not strictly a

scheduling concern in this case, this issue will become

more important in, say, sparse matrix factorization

algorithms [24] where very large BLAS 3 operations

may not always be available.

We intend to continue research in these matters, gaining

experience from implementing a wide range of applications in this

style on a wide range of machines (including those with explicitly

managed memory hierarchies such as Cell), in the hopes of

discovering a concise yet complete set of primitives that are useful

for building high performance parallel applications.

7. ACKNOWLEDGMENTS
This work was supported by the Director, Office of Science,

Office of Advanced Scientific Computing Research, of the U.S.

Department of Energy under Contract No. DE-AC02-

05CH11231.

8. REFERENCES
[1] Adya A., Howell J., Theimer M., Bolosky W. J., and

Douceur J. R. Cooperative Task Management without

Manual Stack Management or, Event-driven Programming is

not the Opposite of Threaded Programming. In Proceedings

of the 2002 USENIX Annual Technical Conference, 2002.

[2] Allen E., Chase D., Hallett J., Luchangco V., Maessen J.-W.,
Ryu S., Steele G. L., and Tobin-Hochstadt S. The Fortress

Language Specification, 2007. Available at

http://research.sun.com/projects/plrg/Publications/index.html

[3] Bailey D. Little’s Law and High Performance Computing,

1997. Available at:

http://crd.lbl.gov/~dhbailey/dhbpapers/little.pdf

[4] Blackford S., Demmel J., Dongarra J., Duff I., Hammarling
S., Henry G., Heroux M., Kaufman L., Lumsdaine A., Petitet

A., Pozo R., Remington K., and Whaley R.C. An Updated

Set of Basic Linear Algebra Subprograms (BLAS), ACM

Trans. Math. Soft., 28, 2 (2002), 135-151.

[5] Blumofe R. and Leiserson C. Space-Efficient Scheduling of
Multithreaded Computations. SIAM J. on Computing, 27, 1

(1998), 202-229.

[6] Bonachea D. GASNet Specification, v1.1. U.C. Berkeley

Technical Report CSD-02-1207, 2001.

[7] Bonachea D. Proposal for Extending the UPC Memory

Copy Library Functions and Supporting Extensions to

GASNet, v1.0. Lawrence Berkeley National Laboratory

Technical Report LBNL-54983, 2004.

[8] Buttari A., Dongarra J., Kurzak J., Langou J., Luszczek P.,
and Tomov S. The Impact of Multicore on Math Software. In

Proceedings of PARA 2006, Umeå, Sweden, June 2006.

[9] Buttari A., Langou J., Kurzak J., and Dongarra J. Parallel
Tiled QR Factorization for Multicore Architectures.

Technical Report UT-CS-07-598, University of Tennessee,

Computer Science Department, July 2007. Also published as

LAPACK Working Note 190.

[10] Callahan D., Chamberlain B. L., and Zima, H,P. The
Cascade High Productivity Language. In Proceedings of the

9th International Workshop on High-Level Parallel

Programming Models and Supportive Environments (HIPS

2004), 52-60, IEEE Computer Society, 2004.

[11] Chen W., Bonachea D., Duell J., Husbands P., Iancu C., and
Yelick K. A Performance Analysis of the Berkeley UPC

Compiler. In Proceedings of the 17th Annual International

Conference on Supercomputing (ICS), 2003.

[12] Choi J., Dongarra J., Ostrouchov S., Petitet A., Walker D.,
and Whaley, R.C. The Design and Implementation of the

ScaLAPACK LU, QR, and Cholesky Factorization Routines.

Scientific Programming, 5, (1996), 173-184.

[13] Ebcioglu K., Saraswat V., and Sarkar, V. X10: an
Experimental Language for High Productivity Programming

of Scalable Systems. In Proceedings of the P-PHEC 2005

Workshop, held in conjunction with HPCA 2005, 2005.

[14] El-Ghazawi T., Carlson W., Sterling T., and Yelick K. UPC:

Distributed Shared-Memory Programming. Wiley-

Interscience, 2005.

[15] Engelschall R. Portable Multithreading: The Signal Stack
Trick for User-Space Thread Creation. In Proceedings of the

2000 USENIX Annual Technical Conference, 2001.

[16] Golub G. and Van Loan, C. Matrix Computations. Johns

Hopkins University Press, 1996.

[17] Goto K. and van de Geijn R. On reducing TLB misses in

matrix multiplication. Technical Report TR-2002-55, The

University of Texas at Austin, Department of Computer

Sciences, 2002. Also published as FLAME Working Note

#9.

[18] Gürsoy A. and Kale L. V. Performance and modularity
benefits of message-driven execution. Journal of Parallel

and Distributed Computing, 64, (2004), 461-480.

[19] Gustavson F. 1997. Recursion Leads to Automatic Variable
Blocking for Dense Linear-Algebra Algorithms. IBM

Journal of Research and Development, 41, 6 (1997), 737-

755.

[20] HPC Challenge Benchmark Page. Available at:
http://icl.cs.utk.edu/hpcc/

[21] Kale L. V. and Krishnan S. CHARM++ : A Portable
Concurrent Object Oriented System Based On C++, ACM

Sigplan Notes, 28, 10 (1993), 91-108.

[22] Kurzak J. and Dongarra J. Implementing Linear Algebra

Routines on Multi-Core Processors with Pipelining and a

Look Ahead. Technical Report UT-CS-06-581, University of

Tennessee, Computer Science Department, 2006. Also

published as LAPACK Working Note 178.

[23] Lewis B. and Richards K. LU Factorization Case Study

Using FAST: Dataflow Parallelism with the Forte

Application Scalability Tool. 2003. Available at:

http://developers.sun.com/prodtech/cc/articles/FAST/lu_cont

ent.html

[24] Li X. and Demmel J. SuperLU_DIST: A Scalable
Distributed-Memory Sparse Direct Solver for Unsymmetric

Linear Systems. ACM TOMS, 31, 3 (2003), 110-140.

[25] Lin H.-Y. and Luszczek P. Tuning LINPACK N*N for PA-
RISC Platforms. Presented at the 2001 High Performance

Computing on Hewlett-Packard Systems Conference, 2001.

[26] Luszczek P., Dongarra J., Koester D., Rabenseifner R., Lucas
B., Kepner J., McCalpin J., Bailey D., and Takahashi D.

Introduction to the HPC Challenge Benchmark Suite.

SC2005 (submitted), Seattle, WA, 2005.

[27] Matsumoto M. and Nishimura T. Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudorandom

number generator. ACM Transactions on Modeling and

Computer Simulation, 8, 1 (1998), 3-30.

[28] Nikhil R. and Arvind. Can dataflow subsume von Neumann
computing? In Proceedings of the 16th Annual International

Symposium on Computer Architecture, 1989.

[29] Panziera J.-P. and Baron J. A Highly Efficient Linpack
Implementation Based on Shared-Memory Parallelism. In

Proceedings of the 2005 International Supercomputer

Conference, 2005.

[30] Papadopoulos G. and Traub K. Multithreading: A revisionist
view of dataflow architectures. In Proceedings of the 18th

Annual International Symposium on Computer Architecture,

1991.

[31] Raymond E. The New Hacker’s Dictionary. The MIT Press.

ISBN 0-262-68092-0, 1996.

[32] Snir M., Otto S., Huss-Lederman S., Walker D., and
Dongarra J. MPI: The Complete Reference - 2nd Edition:

Volume 1. The MIT Press. ISBN 0-262-57123-4, 1998.

[33] The Top 500 Supercomputer Sites. Available at:
http://www.top500.org, 2007.

[34] UPC Consortium. UPC Language Specifications, v1.2.
Available at: http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf,

2005.

