
Automatic Nonblocking Communication for Partitioned
Global Address Space Programs

Wei-Yu Chen1,2

wychen@cs.berkeley.edu
Dan Bonachea1,2

bonachea@cs.berkeley.edu
Costin Iancu2

cciancu@lbl.gov
Katherine Yelick1,2

yelick@cs.berkeley.edu
1 University of California at Berkeley

2 Lawrence Berkeley National Laboratory

ABSTRACT
Overlapping communication with computation is an impor-
tant optimization on current cluster architectures; its im-
portance is likely to increase as the doubling of processing
power far outpaces any improvements in communication la-
tency. PGAS languages offer unique opportunities for com-
munication overlap, because their one-sided communication
model enables low overhead data transfer. Recent results
have shown the value of hiding latency by manually apply-
ing language-level nonblocking data transfer routines, but
this process can be both tedious and error-prone. In this
paper, we present a runtime framework that automatically
schedules the data transfers to achieve overlap. The opti-
mization framework is entirely transparent to the user, and
aggressively reorders and aggregates both remote puts and
gets. We preserve correctness via runtime conflict checks
and temporary buffers, using several techniques to lower the
overhead. Experimental results on application benchmarks
suggest that our framework can be very effective at hiding
communication latency on clusters, improving performance
over the blocking code by an average of 16% for some of the
NAS Parallel Benchmarks, 48% for GUPS, and over 25%
for a multi-block fluid dynamics solver. While the system
is not yet as effective as aggressive manual optimization, it
increases programmers’ productivity by freeing them from
the details of communication management.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – Optimiza-
tion

General Terms
Design, Experimentation, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’07, June 18-20, Seattle, WA, USA.
Copyright 2007 ACM 978-1-59593-768-1/07/0006 ...$5.00.

Keywords
UPC, PGAS, nonblocking

1. INTRODUCTION
As high end computing systems continue to scale in com-

putational power of individual compute nodes and overall
node count, optimization techniques that hide communica-
tion latency through overlap of communication with compu-
tation have proven important [8, 12, 37], and recent work has
demonstrated the value of overlap in problems limited by bi-
section bandwidth [3, 21]. Partitioned Global Address Space
(PGAS) languages, such as UPC [34], Titanium [35], and
Co-Array Fortran [28]), provide direct access to lightweight
one-sided communication. In these languages, data trans-
fer and synchronization are decoupled, minimizing software
overheads and making communication overlap more viable.
In [3], the authors showed that the performance of the NAS
FT benchmark [1] could improve by 90% with aggressive
communication and computation overlap in a UPC imple-
mentation. At the hardware level, communication routines
are split-phase by nature; an init call initiates the opera-
tion, and a subsequent sync call blocks to await operation
completion. By separating the initiation of a remote mem-
ory access as far away as possible from its completion, its
latency can be hidden through the overlapping of communi-
cation and computation as well as message pipelining.

Today parallel programmers typically achieve communi-
cation overlap by manually applying nonblocking communi-
cation primitives provided by the programming model, and
explicitly inserting synchronization calls for the nonblock-
ing accesses. This manual scheduling of nonblocking com-
munication creates additional obstacles on the already dif-
ficult task of parallel programming. Manual optimizations
are cumbersome to code, and programmers typically only
schedule transfers but do not apply more sophisticated op-
timization techniques. If one synchronizes the nonblocking
accesses too early, performance suffers due to insufficient
amount of overlap. On the other hand, synchronizing too
late (or not at all) can result in incorrect program behav-
ior that is often difficult to track down. In a sense, manual
communication scheduling is analogous to manual memory
management, a practice now generally held to be error-prone
and detrimental to productivity.

Therefore, optimizations that automatically schedule com-
munication to achieve overlap would be highly desirable.

Ideally, the compiler should statically determine the place-
ment of the initiation and synchronization calls. In practice,
however, compiler communication optimizations are often
limited by the inherently static nature of the approach: 1)
data transfer sizes are usually not statically known or vary
dynamically for each communication operation; 2) the man-
ner in which the application uses the transferred data might
be difficult or impossible to determine due to factors such as
the presence of indirect accesses (e.g., a[b[i]]) or third party
library functions; and 3) when scheduling communication
operations, the optimizer may not have a good estimate of
the amount of overlap available. Thus, runtime support is
often required in order for the compiler to successfully ex-
ploit communication overlap while not violating data depen-
dencies.

In this paper, we describe a runtime framework for auto-
matic nonblocking communication optimizations. Our sys-
tem intercepts blocking communication calls and aggres-
sively reschedules and transforms these operations. Remote
puts are synchronized on-demand when a synchronization
operation or other conflicting accesses are encountered. Re-
mote gets are automatically prefetched by the runtime based
on past access history. To further improve performance, the
runtime automatically performs aggregation and selects the
most efficient communication primitives available for special
patterns such as strided accesses. We also present a number
of techniques that help reduce the amount of runtime over-
head associated with conflict checking as well as message
initiation and synchronization.

We have implemented the system in the runtime layer of
an optimizing UPC compiler. The optimization framework
is transparent to the user, and through the GASNet com-
munication system [5] supports a wide range of contempo-
rary high-speed networks. Experimental results show that
our approach removes a significant amount of communica-
tion overhead on clusters, speeding up eight benchmarks by
over 19% on average. We have also tested the system on a
large computational fluid dynamics (CFD) application writ-
ten in UPC and achieved a 25% speedup. While our runtime
optimizations are not yet as effective as aggressive manual
transformations, our approach has the benefit of increasing
programmer productivity by freeing them from the details
of communication management.

The rest of this paper is organized as follows. In Sec-
tion 2, we present background information on the language
and compilation environment. Section 3 describes our run-
time optimization framework that automatically overlaps
blocking bulk communication, and summarizes our efforts
on further tuning the performance of our system. Section 4
presents a detailed analysis of the experimental results on a
supercomputing cluster. Section 5 surveys related work and
Section 6 concludes the paper.

2. BACKGROUND
The approach described in this paper has been imple-

mented in the Berkeley UPC compiler [10]. UPC is a par-
allel extension of the ISO C programming language aimed
at supporting high performance scientific applications. The
language adopts the single-program-multiple-data (SPMD)
programming model. In addition to each thread’s private
address space, UPC provides a shared memory area to facil-
itate communication among threads. While a private object
may only be accessed by its owner thread, all threads can

read or write data in the shared address space. For more
details about the language see [34].

An interesting UPC feature relevant to our optimizations
in this paper is its hybrid memory consistency model. Every
shared variable access in UPC is semantically categorized
as either “strict” or “relaxed” by the language specifica-
tion, based on a combination of type qualifiers and prag-
mas. The strict memory model is analogous to sequential
consistency in that it requires the execution of the accesses
on each thread to appear in program order from the per-
spective of all threads, while relaxed accesses only need to
preserve local data dependencies on the initiating thread.
As a consequence, communication ordering needs to be pre-
served only for strict accesses while relaxed memory accesses
can generally be reordered. The difference between the two
models is visible only in a program with a data race, which
occurs when two threads access the same memory location
with no ordering constraints between them, and at least one
of the accesses is a write [27].

The Berkeley UPC compiler is divided into three main
components: the UPC-to-C translator, the UPC runtime
system, and the GASNet communication system. During
the first phase of compilation, the Berkeley UPC compiler
translates UPC programs into C code in a platform indepen-
dent manner, with UPC-related parallel features converted
into runtime library calls. The translated C code is next
compiled using the target system’s C compiler and linked
to the runtime system, which performs initialization tasks
such as thread generation and shared data allocation. The
Berkeley UPC runtime delegates communication operations
such as remote memory accesses to the GASNet communica-
tion layer, which provides a uniform interface for low-level
communication primitives on all networks. GASNet pro-
vides efficient point-to-point put/get communication primi-
tives that operate on contiguous memory regions as well as
higher level operations that perform aggregation of opera-
tions targeting disjoint memory regions.

The runtime optimization framework presented in this
paper is designed specifically for UPC programs. Thus,
there are distinctions between read and write operations
and the memory consistency model is of great assistance
in the implementation. However, the same approach should
be applicable to other parallel programming models that use
one-sided communication and permit non-conflicting high-
latency accesses to be reordered.

3. RUNTIME COMMUNICATION OPTIMIZA-
TIONS

The basic principle of communication optimizations that
exploit overlap is to issue the initiation of a communication
operation as early as possible in the program schedule and
the completion of the operation as late as possible. The
constraints on the placement and scheduling of these opera-
tions are determined by the application data dependencies.
The candidates of our optimizations are the upc memget
and upc memput communication calls. Both calls are
part of the standard UPC library and perform semantically
blocking memory-to-memory operations with relaxed mem-
ory consistency; the former copies (remote) shared data into
the thread’s private address space, while the latter updates
(remote) shared data with contents from its private buffer.
The upc memcpy call is also handled in the special case

where the source or destination is local, by rewriting it to
the appropriate upc memget or upc memput call at run-
time. Our optimizations operate on relaxed memory ac-
cesses, which according to the UPC memory model can be
reordered as long as local data dependence is preserved.

At runtime, any program path between two synchroniza-
tion events becomes an optimization region. Most UPC
programs use barriers to perform synchronization, but any
statements that imply a strict memory access (e.g.,upc lock
library call) are also considered synchronization events. We
monitor the sequence of communication operations (source,
destination, size) within one optimization region. For any
blocking communication call within a region, we decouple
the initiation of the operation from its completion. Initia-
tions of put operations are executed in the same program
order, while their completions are dynamically delayed in
the execution path until a synchronization event or conflict-
ing operation is encountered. Initiation of get operations is
speculatively executed at the synchronization point directly
preceding the operation in the execution path, while their
completion is executed in program order. For the case of
gets the operation of our runtime is equivalent to specula-
tive prefetching.

Data consistency and dependence is preserved by a com-
bination of dynamic conflict checks and double buffering.
Communication aggregation is performed for special com-
munication patterns such as strided accesses, and the system
is carefully tuned to reduce the overhead for programs that
do not benefit from overlap. This is achieved by a combi-
nation of compiler support and run-time profitability anal-
ysis. Similarly, our system reduces the overhead of prefetch
initiation and metadata maintenance by using flow control
heuristics and by overlapping them with communication.

3.1 Optimizing Puts
The upward mobility of the initiation of upc memput

operations is limited by control dependencies, so we focus
on delaying its completion. The completion of a put oper-
ation can be postponed only until either a synchronization
event or a memory access that conflicts with the put is en-
countered. Ideally such code-motion inhibiting statements
should be identified at compile time so that a sync call of
the put could be placed right before them. However, in
practice static analysis alone results in overly conservative
synchronization placements, due to the imprecision of the
alias analysis, especially for C-based languages.

Automatic nonblocking transformation of upc memput
is thus best done dynamically in a demand-driven style by
the runtime system, when the exact dependence informa-
tion becomes available. When upc memput is called, it
is converted to a nonblocking call and added to a runtime-
managed list of outstanding puts (a tuple of 〈handle,
remote addr, src addr, nbytes〉). Completion of any out-
standing put operation is necessary at the following program
points:

1. Synchronization events: all outstanding put operations
are completed.

2. Statements that read or write the remote destination:
any outstanding put operation whose target overlaps
the remote memory region involved in the operation
has to be completed, in order to maintain local depen-
dencies. At these entry points, our runtime checks for

conflicts and retires the operation involved, if any.

3. Statements that modify the local source: any out-
standing put whose source is modified has to be com-
pleted. Since we do not rely on static program analy-
sis, any local write could potentially fall into this cat-
egory, and checking for local dependence would pose
scalability problems. To address this problem, we elim-
inate local conflicts by using a nonblocking put call in
our communication layer that allows the local source
memory to be modified once the initiation call returns.
Depending on the transfer size, this may result in the
source memory being copied into a temporary buffer
inside the communication layer prior to sending.

thread 0 T-1 (destination node)

List for conflict check

(handle, remote_addr, size)

List for barrier

of nodes written to

On remote put:
• check conflict
• issue nonblocking put (local
source buffered)
• add put to queue

On remote get:
• check conflict

On barrier/sync. call:
• Block for all outstanding puts

Algorithm sketch

Figure 1: Runtime structure for nonblocking puts

Figure 1 depicts the runtime data structure for nonblock-
ing put management. The outstanding puts are organized
into an array of lists indexed by destination node, so that
conflict checks will only be performed against puts with the
same destination. The lists store and capture the FIFO
order of the outstanding operations. To facilitate scalable
completion at synchronization points of all outstanding op-
erations, a separate array of pointers to the lists containing
active operations is maintained. Source buffering is per-
formed inside the communication layer and thus does not
require special support.

Our approach requires minimal compiler support, as it no
longer needs to guarantee code motion safety but only needs
to estimate the profitability of the nonblocking transforma-
tion. At each upc memput site, the translator performs a
forward traversal; if it encounters a communication call, a
loop, or a function call before reaching a barrier or other syn-
chronization events, it assumes that sufficient overlap exists
and marks the upc memput as a candidate for nonblocking
optimization.

The dynamic conflict checking required by our approach
constitutes a source of runtime overhead that we try to min-
imize. Since operations are maintained in per-target lists,
the overhead of conflict checks grows linearly with the num-
ber of outstanding requests to a specific node. However, our
application experience indicates that very often programs
issue communication requests to memory regions whose ad-
dress varies monotonically (e.g., traversing through a remote
array in a loop). This observation is also validated on a

number of numerical applications in [29]. Therefore, with
each list of outstanding accesses we dynamically maintain
a bounding box of the remote memory regions involved. If
the target address falls outside the bounding box, clearly no
conflict exists; otherwise, the runtime reverts to the slower
but precise list scanning.

In programs that issue memory accesses monotonically,
this technique reduces the conflict checking overhead to O(1)
complexity. For programs that do not exhibit this property,
a more sophisticated data structure such as balanced search
trees could be used to reduce the asymptotic complexity of
conflict checking1. However, as Section 4 indicates, even
with the simple approach conflict checking does not intro-
duce significant overhead in the benchmarks we have exam-
ined.

In order to further reduce list traversal costs, during a
conflict check the runtime also queries the networking layer
to test if the earliest nonblocking put is complete, and re-
moves it from the list accordingly. The runtime also im-
poses a tunable limit on the maximal put list length; when
the maximum is reached, the runtime synchronizes on all
the puts on the list before proceeding. Besides metadata
maintenance, the biggest source of runtime overhead is the
buffering required inside the networking system. Section 4.1
presents some performance results.

3.2 Optimizing Gets
The downward mobility of a upc memget’s synchroniza-

tion is limited by any use of the local destination buffer.
Therefore we would instead like to move the message initi-
ation up, effectively prefetching the remote data. The chal-
lenge here is that the runtime needs to have knowledge about
future accesses; the translator could help determine the ear-
liest safe place to initiate a nonblocking get, but its effec-
tiveness is severely restricted by the inherent imprecision of
static analysis.

Our solution for this problem is to exploit the structured
nature of most parallel code. A large class of SPMD par-
allel programs exhibit spatial and temporal locality in their
communication pattern. While the data values being com-
municated are usually updated by local computation from
one program phase to the next, the communication structure
(size, source, and destination address of the upc memget
operations) often remains unchanged. For example, in a
stencil algorithm like the multigrid method, the communi-
cation ghost regions are allocated once and reused in sub-
sequent phases. Similarly, studies on the MPI NAS bench-
marks suggest a significant portion of the communication
calls are dynamically analyzable, with constant parameters
at runtime [19]. Thus, we contend that for an important
class of applications, one can use past history to predict fu-
ture access patterns by analyzing the communication when
a phase is first executed, and automatically prefetching the
gets for the phase in its subsequent executions.

Figure 2 describes the design for our nonblocking get op-
timization. We consider a program phase to be the set of
statements executed by a thread after any synchronization
event and before reaching the next synchronization event.
Each static source level instance of a synchronization event
is assigned a unique identifier by the compiler.

1The stored intervals are guaranteed to be non-overlapping
by virtue of the conflict-checking invariants, allowing them
to be unambiguously sorted based on start address.

When a given thread reaches a synchronization statement
for the first time, we create a data structure to store the
prefetch candidates for the subsequent phase. Subsequent
gets are recorded and associated with the event. This op-
eration is overlapped with the execution of the original get
and does not add any visible runtime overhead. On the first
execution of a phase no speculative actions are performed.

For subsequent executions of a phase, prefetch calls are is-
sued by each thread immediately upon entrance (e.g., right
after a barrier), to maximize the amount of available over-
lap. To avoid local dependency violations or spurious up-
dates to user data on a mispredict, the prefetched data are
stored into runtime-allocated temporary buffers. When a
upc memget call is encountered, if it matches one of the
prefetches, the runtime synchronizes the outstanding trans-
fer and copies the desired data from the prefetch buffer into
its destination. Otherwise, the runtime adds this previously
unseen get to the prefetch list and issues the get as usual.

At the end of a phase, the runtime synchronizes and deletes
any unused prefetches, to avoid performing useless commu-
nication in the future2. Any put operation within a phase re-
quires conflict checks against the outstanding gets, to ensure
that the application does not read stale values that violate
data dependencies. This means that no conflict checking is
required when issuing the prefetches.

On remote get:
• if get is in prefetch list,
sync prefetch and copy
from local tmp buffer
• else, add get to prefetch
list of the current phase

On remote put:
• check for conflict

Before a barrier:
• sync and remove unused
prefetches

After a barrier:
• issue prefetches for the
current phase

Algorithm sketch

<phase id> node list

List of nodes we’re prefetching from

<phase id, node> prefetch list

(handle, remote_addr,
local_tmp_addr, size)

Current
phase

id

Figure 2: Runtime structure for get prefetching

The runtime structures for nonblocking gets consist of
two hash tables. One maps the current phase to a list of
nodes that the thread has been prefetching from, while the
other maps 〈phase id, node id〉 to a list of prefetches. Sim-
ilar to the case for puts, the compiler algorithm complex-
ity is greatly reduced, since the use of prefetching tempo-
rary buffers and runtime conflict checking eliminates the
need for static data dependence analysis. The get optimiza-
tion notably assumes that remote addresses appearing in a
upc memget operation remain valid for the lifetime of the
program, such that subsequent speculative get operations
can be safely issued without danger of causing a runtime
fault (for example, if the relevant remote object has been
freed). In Berkeley UPC this is already guaranteed because

2Mispredicted gets must be retired before their target
buffers can be safely reused for subsequent prefetches, to
prevent a race between two outstanding gets to the same
buffer.

the shared memory allocator never unmaps memory pages.
To avoid prefetching a get whose copy overhead outweighs

its available overlap, each get’s profitability is estimated be-
fore its addition to the prefetch list. Profitability is de-
termined dynamically by comparing the amount of overlap
(time of upc memget - time of phase start) to the memory
copy overhead. The estimation overhead can be completely
overlapped by the cost of the remote get.

3.3 Automatic Communication Aggregation
Thus far in our framework, the gets and puts are issued

individually to hide their communication latencies through
overlapping. Many SPMD programs, however, have an al-
ternating phase structure with remote accesses grouped into
a phase separate from local computation. The accesses in a
communication phase are generally non-contiguous - how-
ever, combining puts and gets between the same pair of
node into larger transfers is often profitable, as it amortizes
the high per-message overheads of cluster network hardware
over larger data payloads, thereby achieving a higher effec-
tive transfer bandwidth. Manual packing and unpacking of
the non-contiguous accesses can be tedious and error-prone,
however, and departs from the one-sided communication
model since they typically require the cooperation of the
remote thread. An optimization that automatically detects
and aggregates the communication bursts would therefore
be very useful.

We augment the framework to perform communication
aggregation by targeting the non-contiguous remote access
methods called the VIS (vector/indexed/strided) functions
in the GASNet communication layer [6]. The VIS calls ac-
cept a list of non-contiguous put/get as arguments, and
the communication algorithm is selected at runtime based
on network characteristics and transfer parameters. The
VIS calls perform message aggregation using GASNet Ac-
tive Messages, packing non-contiguous data at the source
into large packets and unpacking it at the destination. In
Section 4.3 we present some micro-benchmark results on the
performance of VIS calls.

When the translator detects at compile time a potential
burst of gets or puts (e.g., a upc memget inside a loop), it
inserts special begin aggregate and end aggregate run-
time calls to mark the aggregation region. When the runtime
encounters a remote access inside the region, instead of is-
suing the access immediately (for puts) or adding it to the
prefetch list (for gets), it stores it into an aggregation queue,
which is again organized based on the remote node. Upon
exiting the aggregation region, the runtime issues the com-
munication using a single VIS call per remote node, letting
the network decide the best way to combine and schedule
the accesses. Special patterns such as strided accesses and
accesses with identical size are recognized and supported
using the more efficient VIS calls with reduced metadata
overhead. Conflict checks proceed as usual inside an ag-
gregation region, and a conflict terminates the aggregation
region prematurely by switching to the default behavior de-
scribed earlier.

In the current design, no buffering is done for the accesses
in an aggregation region, and the translator must guarantee
that local memory used by the gets and puts is not modi-
fied by other code falling within the aggregation region. As
most communication phases (the candidates for our aggre-
gation regions) are short and contain no computation code,

so far our translator has been successful in proving that the
upc memget and upc memput operations inside aggre-
gation regions can safely be reordered without violating data
dependences. We are planning to add a runtime check func-
tion that the translator can issue when it cannot verify if
a local access may be in conflict with the upc memget or
upc memput calls.

4. EXPERIMENTAL RESULTS
The last section presented the basic design for our auto-

matic nonblocking communication framework. In this sec-
tion, we provide a performance analysis for our framework.
Our optimizations are primarily designed for cluster archi-
tectures where remote communication latency is high rela-
tive to the processor speed. For space constraints we only
present experimental results from the cluster listed in Ta-
ble 1, though our findings are applicable to any cluster sys-
tems where communication overlap is available (i.e., message
overhead is smaller than the network latency). The get and
put time in the table refer to the cost of a blocking 8-byte
remote access.

4.1 Buffering Overhead
The put initiation cost depends on the message startup

overhead of the network, as well as the overhead imposed by
the communication layer’s buffering of the local source. Fig-
ure 3 compares the cost of issuing a nonblocking put with-
out source buffering and with source buffering; the semantic
difference between the two is that the former poses the addi-
tional requirement that the local source memory cannot be
safely modified until the nonblocking put completes. The la-
tency of a blocking put is also included for comparison. For
very small puts (up to 72 bytes on this GASNet network),
the transfer is automatically performed using PIO and thus
incurs no buffering overhead. Larger puts incur a cost for
copying the source to a bounce-buffer, and beyond about
1KB this memory copy begins to affect the nonblocking put
initiation time, and grows roughly linearly with the trans-
fer size. Even with buffering, however, the cost of issuing
a nonblocking put is still significantly less than the latency
of a blocking put. It should also be noted since the buffer-
ing is done at the discretion of the communication layer, a
nonblocking buffered put should never perform worse than
a blocking put.

Two main sources of overhead exist in the case of get op-
erations. If the get has been prefetched, there may be a
cost for the synchronization of the matching prefetch, which
should never be higher than that of the original blocking get.
Additionally, since the prefetch stores the remote data into
a temporary buffer, the runtime needs to pay a copy over-
head. Figure 4 measures the copy overhead by comparing
the execution time of a local memcpy to that of a blocking
get. While the copy overhead is negligible for small gets,
it could equal about 30% of the communication latency for
large transfers; this motivates our profitability analysis de-
scribed in Section 3.2.

An additional potential performance penalty for buffering
is that it may increase memory pressure by evicting live
data from the caches. We have not observed this effect in
our experiments, however. Without our optimization, the
data fetched by a get sits in memory after a remote direct
memory access (RDMA), and the application would need to
pull it into cache on demand on first use. Since it is likely

Processor Network Software Get Put
2.2GHz Opteron Infiniband 4X Linux 2.6.5, pathcc 2.4 11.6us 8.4us

Table 1: Machine summary

Put initiation overhead

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 10000 100000
put size (bytes)

tim
e

(u
s)

nonblocking, no buffer

nonblocking, buffer

blocking

Figure 3: Put initiation overhead

Percentage of memcpy overhead

0%
5%
10%
15%
20%
25%
30%
35%

10 100 1000 10000 100000 1000000
get size (bytes)

Figure 4: Memory copy overhead for prefetched
gets.

that the application will immediately use the data after a
get, our copy operation has the effect of streaming the data
from the prefetch buffer into cache. Finally, the penalties
imposed by get prefetch “misses” in an RDMA system are
almost entirely constrained to NIC resources and memory
bus bandwidth. Mistakenly prefetched data should never
occupy space in cache.

4.2 Communication-Related Overhead of Spec-
ulative Prefetch

The costs of prefetch synchronization before a barrier is
affected by the number of mispredicted prefetches in the
phase, as the useful ones would have been synchronized ear-
lier when their matching upc memget call was encoun-
tered. To improve prefetching accuracy, the runtime re-
moves from the list prefetches that are never used in the
phase. Furthermore, the prefetch clearing time can be over-

lapped with the barrier latency by using split-phase barriers.
In a split-phase barrier, a thread first notifies other threads
that it has reached the barrier, then waits until all threads
have executed the notification call. By inserting prefetch
synchronization code between the notify and the wait call,
we can effectively overlap its overhead with the barrier la-
tency. Micro-benchmark results on our target platform sug-
gest that even in the absence of load imbalance, a barrier still
takes 55us for 16 nodes and up to 87us for 64 nodes, well
above the round trip latency for small- and medium-sized
gets. We therefore expect the overhead of list clearing to be
completely hidden by barrier latency for most applications3.

Overhead of get pipelining

0.1

1

10

100

1 10 100 1000
number of nonblocking gets

tim
e

(u
s)

8
256
4096
32768

Figure 5: Prefetch initiation overhead, for each in-
dividual get.

The prefetch initiation overhead is primarily determined
by the network’s ability to issue consecutive nonblocking
gets, specifically the message gap parameter in the LogP
model [2]. Since the initiation occurs after a barrier and
before user code executes, it falls in the critical path and
we cannot easily hide this synchronous overhead. Figure 5
measures the initiation overhead of a sequence of nonblock-
ing gets on our target platform. Four different message sizes
are measured: 8 bytes, 256 bytes, 4KB, and 32KB. While the
per-get overhead of initiating 64 nonblocking gets is the same
as that of one get, at 128 gets performance begins to suffer
dramatically for all message sizes, due to the (tunable) net-
work queue depth being exceeded. Once the network queue
depth is exceeded, subsequent initiation operations stall un-
til the head of the queue is retired, and the stall time is
primarily determined by the message size and the network
bandwidth.

We implement a simple flow-control mechanism to prevent
a flood of messages during prefetch initiation and avoid these

3This optimization does not apply to nonblocking puts, be-
cause UPC’s memory model requires a thread to globally
complete its put operations before issuing the notify oper-
ation. The reordering is legal on the prefetches, however,
because the fetched data is never used.

costs of exceeding the network queue depth. Instead of issu-
ing all prefetches immediately after the barrier, the runtime
issues them in 64-element chunks. When a upc memget
is encountered, our system checks (without blocking) if the
previously issued prefetches to the same destination node
have finished; their completion indicates that the network
is likely not busy, and the system issues the next chunk of
prefetches. Since the array of prefetches for each node is
kept in FIFO order, our system will also first prefetch for
upc memget operations that occur earlier in program ex-
ecution. This technique thus would work well for iterative
code with locality in communication schedule, and these ap-
plications are exactly the kind we are targeting for the get
prefetching optimizations.

4.3 Effectiveness of Communication Aggrega-
tion

Strided Get Performance Comparison

0

100

200

300

400

500

600

700

800

900

100 1000 10000 100000
Total Payload (bytes)

B
an

dw
id

th
 (M

B
/s

ec
)

contiguous (for reference)
non-contiguous, with VIS aggregation
non-contiguous, no VIS aggregation

Figure 6: Strided get performance microbenchmark

Figure 6 compares the effective bandwidth of performing a
logically non-contiguous get operation using a single aggre-
gated VIS call versus a flood of individual (non-aggregated)
get operations that achieve the same data movement. The
microbenchmark specifically measures the bandwidth for a
1-d strided get operation with 256-byte elements and a stride
of 850 bytes at both the source and destination, while vary-
ing the number of elements to vary the total transfer size –
this setup was chosen because it closely matches the most
common access pattern for the BT benchmark examined in
section 4.4.

The figure demonstrates that performing the non-contiguous
get using message aggregation provides a huge bandwidth
advantage over the non-aggregated approach; the latter has
consistently poor bandwidth due to the high message count
and relatively heavy per-message overheads. The non-aggregation
curve is flat because in the experiment all NIC-level mes-
sages are 256 bytes independent of the total payload for the
higher-level strided operation (shown on the x-axis). Thus,
we observe a constant bandwidth equal to the flood band-
width for 256-byte messages. For comparison purposes, the
figure also includes the raw bandwidth for fully contiguous
transfers of the given total payload size (where no aggre-
gation is necessary), to represent the theoretical maximal

bandwidth for a get of the given payload size. The non-
contiguous, aggregated transfer pays CPU and memory sys-
tem overheads for gathering and scattering the payload from
the non-contiguous source and destination locations to con-
tiguous transfer buffers at the network layer, which explains
the degradation relative to the raw contiguous transfer per-
formance.

4.4 Benchmarks
Table 2 lists the benchmarks used in our performance eval-

uation. BT, IS, MG, and SP are derived from the MPI NAS
benchmarks, and their implementations are described in [14,
18]. The FT benchmark is designed to aggressively over-
lap communication with computation [3], and FT-pencils
is a variant of the benchmark that issues smaller messages
for better overlap. The implementation of CG is described
in [4], and gups is a version of the HPCS RandomAccess
benchmark that uses bulk communication. Cfd is an appli-
cation that solves the time dependent Euler equations for
computational fluid flow in a rectangular computational do-
main, with the high level data structures and algorithms
implemented in UPC. Class B input size is used for the
NAS benchmarks, while the gups benchmark executes eight
million updates. Communication ratio refers to the per-
centage of execution time spent inside upc memget and
upc memput calls, and thus represents a upper bound on
the performance improvements from our optimizations. Col-
lectively the benchmarks cover a wide range of communica-
tion patterns, from a large number of small messages (BT,
SP) to a small number of large transfers (FT, IS).

Effectiveness of overlap -- 16 threads

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

BT CG FT

FT
-pe
nc
ils IS MG SP gu

ps cfd AV
G

no
rm

al
iz

ed
 ti

m
e

blocking
manual
auto

Figure 7: Optimization speedup for 16 threads.

Figure 7 presents the optimization speedup of our opti-
mization framework. Three configurations are compared: a
blocking version that uses fully blocking communication, a
manual version where the communication calls are manually
converted to nonblocking in a way that maximizes overlap,
and finally an auto version with our optimizations. Since
the cfd program contains more than 10,000 lines of UPC
code, we have not manually converted the communication
calls to be nonblocking; this underscores the importance of
optimizations that could automatically generate nonblock-
ing communication. Sixteen threads are used in the experi-
ments, with one thread per node. As expected, nonblocking
communication is an effective method for hiding communi-

Name Get or Put Comm. Ratio(%) Get/Put count (thousands) Avg/Max Size (KB)
BT both 27.1 2100 0.15 / 1
CG get 8.2 34 33 / 38
FT put 22.3 5 131 / 131

FT-pencils put 22.3 164 4 / 4
IS get 50.9 0.352 239 / 512

MG put 30.3 19 2.6 / 135
SP put 9.8 636 1.7 / 216

Gups put 61.9 8 0.5 / 1
Cfd get 23 123 0.1 / 0.25

Table 2: Benchmark characteristics. The results were collected on 16-thread runs, using data from thread
zero.

Effectiveness of overlap -- 64 threads

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

BT CG FT

FT
-pe
nc
ils IS MG SP gu

ps cfd AV
G

no
rm

al
iz

ed
 ti

m
e

blocking
manual
auto

Figure 8: Optimization speedup for 64 threads.

cation latencies, with the manual version speeding up the
benchmarks by 22% on average; for some benchmarks (e.g.,
FT and SP) the communication latency is almost entirely
eliminated. Our automatic optimization framework is some-
what less effective and removes 16% of the communication
overhead overall, and is faster than the blocking version for
all benchmarks. BT and cfd benefit the most from commu-
nication aggregation due to their large number of small-sized
gets.

The largest performance discrepancy between the manual
and the auto version occurs on the FT benchmark, whose
large transfer size induces a high local buffering overhead
that negates most of the advantages from overlapping. Dis-
abling network buffering for puts (this happens to be correct
for this benchmark) brings the auto version’s performance
to within 3% of that of manual blocking, but has no ef-
fects on the other benchmarks. Thus, while our framework
is effective for small to medium transfer sizes, a zero-copy
consistency checking algorithm could further benefit appli-
cations with large-sized puts.

As mentioned in previous sections, conflict checks repre-
sent pure overhead introduced by our system. To quantify
its potential impact on performance, we compute the ratio of
conflict check time versus the speedup time achieved by our
system (i.e., time for blocking - time for auto); this ratio ap-
proximates the additional improvement expected from our
system if such checks could be disabled. The ratio is under

one percent for all of the benchmarks except BT, suggest-
ing that conflict checking is virtually free. For get-based
benchmarks (CG,IS) and gups, which pack communication
to the same node into a single transfer, conflict checks oc-
cur rarely and thus incur no overhead. The other put-based
benchmarks issue the accesses with monotonically increas-
ing remote addresses, and our bounding box optimization is
effective at reducing their conflict check overhead.

To test the scalability of our framework, we run the bench-
marks with the same input size using 64 threads in Fig-
ure 8. Manual tuning improves performance by 25%, while
our system achieves a 19% speedup overall. Nonblocking
communication is effective on all benchmarks with the ex-
ception of IS, which fails to benefit from either automatic
or manual optimizations. The communication part of the IS
benchmark is implemented as a collective all-to-all exchange,
with the total number of messages in the program increas-
ing quadratically as more threads are added. In the absence
of independent computation to be overlapped, the result-
ing network contention reduces the effectiveness of pipelined
communication. Compared to 16-processor runs, our auto-
matic optimization becomes much more effective on the FT
benchmark due to a reduction in message size; because the
input size is fixed, quadrupling the thread count decreases
transfer size by the same ratio, and therefore results in a
much smaller buffering overhead.

5. RELATED WORK
Overlapping communication and computation has long

been recognized as an important technique for hiding com-
munication latencies [8, 12, 20, 25]. Consequently, there
have been ongoing efforts in promoting nonblocking commu-
nication as a standard feature in the PGAS language com-
munity. Nonblocking array copy operations have recently
been introduced into Titanium’s standard library [17], and
a similar proposal is currently awaiting approval by the UPC
consortium. The Rice Co-Array Fortran compiler allows
programmers to explicitly create nonblocking communica-
tion via the use of a nonblocking region [13], and Split-C [16]
also supports explicit split-phase operations. Manual com-
munication scheduling improves performance, but also ex-
poses the complexity of nonblocking communication to the
programmer.

Chen et al. [11] described an SSA-based optimization frame-
work that uses static analysis to generate split-phase remote
accesses. While their algorithm is effective for fine-grained
irregular accesses, static scheduling of bulk communication

is more difficult because it is not always possible to stat-
ically determine the memory locations that a communica-
tion or computation statement will access, especially for a
language like C. Iancu et al. [21] attempted to overcome
the limitation of compiler analysis by utilizing virtual mem-
ory support. When a nonblocking communication is issued,
the local memory pages involved in the communication are
marked as having no access through the mprotect system
call, so that synchronization will happen on-demand when
the computation statements attempt to access those pages
and receive a memory protection error. The scheme maxi-
mizes the amount of overlap, but may not be portable; the
POSIX standard [30] requires that the protected memory
be obtained from the mmap call, but the local memory in-
volved in nonblocking communication generally either lives
on stack or comes from malloc, which may not use mmap to
obtain new memory.

Su and Yelick [33] developed an array prefetching algo-
rithm for irregular array accesses in Titanium using inspector-
executor techniques. Their optimization supports loops with
indirect accesses (A[B[i]]) and not bulk communication in
general. Kamil et al. [24] developed compiler analysis tech-
niques to reduce the number of memory fences required for
enforcing sequential consistency, and used the analysis to au-
tomatically convert blocking array copies in Titanium into
nonblocking operations. Their optimization significantly im-
proves the performance of two matrix vector multiply bench-
marks.

Intelligent run-time systems have received renewed inter-
est in recent years and show very promising potential in
terms of performance, scalability and programmer produc-
tivity. The approach most closely related to ours is the
Charm++ [9] runtime. Charm++ provides for latency hid-
ing through an abstract execution model based on processor
virtualization and message-driven execution. Charm++ de-
composes the computation and achieves overlap by reschedul-
ing threads that block for communication. In a sense, our
approaches are converses – Charm++ schedules computa-
tions while our optimizations aggregate and schedule com-
munication. Sorensen and Baden [23] present a data-driven
programming model and run time library that manages com-
munication pipelining and scheduling through task graph,
actor-like execution.

Software caching of remote memory has been studied ex-
tensively in the context of distributed shared memory (DSM)
systems [7, 22, 26, 32], and is available in a number of UPC
compilers [15, 31]. While remote reference caching can be
very effective for shared memory style code which is oblivi-
ous to data locality [36], it may not help programs for which
the user has manually replaced fine-grained accesses with
bulk communication. Most well-tuned PGAS applications
use bulk communication to amortize the high remote access
latencies on clusters, and our optimizations are specifically
designed to further improve the performance for these kind
of programs.

6. CONCLUSION
Effective use of communication networks is critical to the

scalability of parallel applications. Partitioned Global Ad-
dress Space languages have proven effective at utilizing mod-
ern networks because their one-sided communication is a
good match to underlying network hardware. These lan-
guages also provide the means to leverage communication

overlap for latency hiding, however the use of split-phase
communication operations has primarily been manually ap-
plied by programmers. We have presented a runtime al-
gorithm for automatically optimizing PGAS programs by
transparently converting blocking remote data transfers into
nonblocking ones in a way that maximizes the overlap of
communication with computation, while still maintaining
the memory consistency guarantees of the language. Data
dependence is preserved via runtime conflict checks and tem-
porary buffers, with a number of techniques applied to lower
the metadata maintenance overhead. The system also rec-
ognizes special access patterns and automatically aggregates
communication to further improve performance.

We have implemented the system in an optimizing UPC
compiler. Our experimental results show that the auto-
matic optimizations can be quite effective at hiding com-
munication costs for a wide variety of UPC programs. Av-
erage speedups from our techniques are 16% on 16 proces-
sors and 19% on 64, relative to the blocking communica-
tion specified in the source program. While the automati-
cally optimized versions do not yet match the performance
of the versions with manually-optimized nonblocking com-
munication (which use application-specific knowledge to re-
solve dependencies), the system is transparent to users and
thus frees them from the details of communication manage-
ment. Additionally, since the system does not depend on
the SPMD model or other specific parallelism constructs in
UPC, the principles are applicable to other parallel program-
ming models that use one-sided communication and permit
non-conflicting accesses to be reordered.

7. REFERENCES
[1] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.

Browning, R. L. Carter, D. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga. The NAS Parallel Benchmarks. The
International Journal of Supercomputer Applications,
5(3):63–73, Fall 1991.

[2] C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove,
P. Husbands, C. Iancu, M. Welcome, and K. Yelick.
An Evaluation of Current High-Performance
Networks. In the 17th International Parallel and
Distributed Processing Symposium (IPDPS), 2003.

[3] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick.
Optimizing Bandwidth Limited Problems Using
One-sided Communication and Overlap. In 20th
International Parallel and Distributed Processing
Symposium (IPDPS), 2006.

[4] K. Berlin, J. Huan, M. Jacob, et al. Evaluating the
Impact of Programming Language Features on the
Performance of Parallel Applications on Cluster
Architectures. In 16th International Workshop on
Languages and Compilers for Parallel Processing
(LCPC), October 2003.

[5] D. Bonachea. GASNet specification. Technical Report
CSD-02-1207, University of California, Berkeley,
October 2002.

[6] D. Bonachea. Proposal for Extending the UPC
Memory Copy Library Functions and Supporting
Extensions to GASNet. Technical Report
LBNL-56495, Lawrence Berkeley National Lab,
October 2004.

[7] J. B. Carter, J. K. Bennett, and W. Zwaenepoel.
Implementation and Performance of Munin. In Proc.
of the 13th ACM Symp. on Operating Systems
Principles (SOSP-13), pages 152–164, 1991.

[8] S. Chakrabarti, M. Gupta, and J. Choi. Global
Communication Analysis and Optimization. In
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 68–78,
1996.

[9] CHARM++ project web page. Available at
http://charm.cs.uiuc.edu.

[10] W. Chen, D. Bonachea, J. Duell, P. Husband,
C. Iancu, and K. Yelick. A Performance Analysis of
the Berkeley UPC Compiler. In Proceedings of the
17th International Conference on Supercomputing
(ICS), June 2003.

[11] W. Chen, C. Iancu, and K. Yelick. Communication
Optimizations for Fine-grained UPC Applications. In
14th International Conference on Parallel
Architectures and Compilation Techniques (PACT),
2005.

[12] S.-E. Choi and L. Snyder. Quantifying the Effects of
Communication Optimizations. ICPP, 00:218, 1997.

[13] C. Coarfa, Y. Dotsenko, and J. Mellor-Crummey. A
Multi-platform Co-Array Fortran Compiler. In the
13th International Conference on Parallel Architecture
and Compilation Techniques (PACT 2004), 2004.

[14] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, et al. An
Evaluation of Global Address Space Languages:
Co-Array Fortran and Unified Parallel C. In ACM
SIGPLAN Symposium on Principles and Practices of
Parallel Programming (PPoPP), pages 36–47, 2005.

[15] Compaq UPC version 2.0 for Tru64 UNIX.
http://h30097.www3.hp.com/upc/.

[16] D. Culler, A. Dusseau, S. Goldstein,
A. Krishnamurthy, S. Lumetta, T. Eicken, and
K. Yelick. Parallel programming in Split-C. In
Supercomputing (SC1993), 1993.

[17] K. Datta, D. Bonachea, and K. Yelick. Titanium
Performance and Potential: an NPB Experimental
Study. In 18th International Workshop on Languages
and Compilers for Parallel Processing (LCPC), 2005.

[18] T. El-Ghazawi and F. Cantonnet. UPC Performance
and Potential: A NPB Experimental Study. In
Supercomputing2002 (SC2002), November 2002.

[19] A. Faraj and X. Yuan. Communication characteristics
in the NAS parallel benchmarks. In 14th IASTED
International Conference on Parallel and Distributed
Computing and Systems (PDCS 2002), November
2002.

[20] M. Gupta, E. Schonberg, and H. Srinivasan. A unified
framework for optimizing communication in
data-parallel programs. IEEE Transactions on
Parallel and Distributed Systems, July 1996.

[21] C. Iancu, P. Husbands, and P. Hargrove. HUNTing
the overlap. In 14th International Conference on
Parallel Architectures and Compilation Techniques
(PACT), 2005.

[22] L. Iftode and J. P. Singh. Shared Virtual Memory:
Progress and Challenges. Proc. of the IEEE, Special
Issue on Distributed Shared Memory, 87(3):498–507,
1999.

[23] Jacob Sorensen and Scott Baden. A Data Driven
Model for Tolerating Communication Delays. In
Proceedings of the 12th SIAM Conference on Parallel
Processing for Scientific Computing , 2006.

[24] A. Kamil, J. Su, and K. Yelick. Making Sequential
Consistency Practical in Titanium. In Supercomputing
2005 (SC’05), November 2005.

[25] M. T. Kandemir, A. N. Choudhary, P. Banerjee,
J. Ramanujam, and N. Shenoy. Minimizing Data and
Synchronization Costs in One-Way Communication.
IEEE Transactions on Parallel and Distributed
Systems, 11(12):1232–1251, 2000.

[26] P. Keleher, S. Dwarkadas, A. Cox, and
W. Zwaenepoel. TreadMarks: Distributed Shared
Memory on Standard Workstations and Operating
Systems. In Proceedings of the Winter 94 Usenix
Conference, 1994.

[27] R. Netzer and B. Miller. What are race conditions?
some issues and formalization. ACM Letters on
Programmming Languages and Systems, I(1), March
1992.

[28] R. Numrich and J. Reid. Co-Array Fortran for Parallel
Programming. Technical Report RAL-TR-1998-060,
Rutherford Appleton Laboratory, 1998.

[29] Y. Paek, J. Hoeflinger, and D. Padua. Efficient and
Precise Array Access Analysis. ACM Trans. Program.
Lang. Syst., 24(1):65–109, 2002.

[30] POSIX standard.
http://www.opengroup.org/onlinepubs/009695399/.

[31] J. Savant and S. Seidel. MuPC: A Run Time System
for Unified Parallel C. Technical Report CS-TR-02-03,
Department of Computer Science, Michigan Techincal
University, September 2002.

[32] D. J. Scales, K. Gharachorloo, and C. A. Thekkath.
Shasta: A Low Overhead, Software-Only Approach for
Supporting Fine-Grain Shared Memory. In Proc. of
the 7th Symp. on Architectural Support for
Programming Languages and Operating Systems
(ASPLOSVII), pages 174–185, 1996.

[33] J. Su and K. Yelick. Array Prefetching for Irregular
Array Accesses in Titanium. In Sixth Annual
Workshop on Java for Parallel and Distributed
Computing, 2004.

[34] UPC language specifications, v1.2. Technical Report
LBNL-59208, Berkeley National Lab, 2005.

[35] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto,
B. Liblit, A. Krishnamurthy, P. Hilfinger, S. Graham,
D. Gay, P. Colella, and A. Aiken. Titanium: A
high-performance Java dialect. Concurrency: Practice
and Experience, 10:825–836, 1998.

[36] Z. Zhang and S. Seidel. Benchmark Measurements of
Current UPC Platforms. In 4th International
Workshop on Performance Modeling, Evaluation, and
Optimization of Parallel and Distributed Systems,
April 2005.

[37] Y. Zhu and L. J. Hendren. Communication
Optimizations for Parallel C Programs. In Proceedings
of the ACM SIGPLAN Conference on Programming
Language Design and Implementation(PLDI), pages
199–211, 1998.

	1 Introduction
	2 Background
	3 Runtime Communication Optimizations
	3.1 Optimizing Puts
	3.2 Optimizing Gets
	3.3 Automatic Communication Aggregation

	4 Experimental Results
	4.1 Buffering Overhead
	4.2 Communication-Related Overhead of Speculative Prefetch
	4.3 Effectiveness of Communication Aggregation
	4.4 Benchmarks

	5 Related Work
	6 Conclusion
	7 References

