
Oversubscription on Multicore Processors

Costin Iancu, Steven Hofmeyr, Filip Blagojević, Yili Zheng
Lawrence Berkeley National Laboratory

{cciancu, shofmeyr, fblagojevic, yzheng}@lbl.gov

Abstract: Existing multicore systems already pro-
vide deep levels of thread parallelism. Hybrid pro-
gramming models and composability of parallel li-
braries are very active areas of research within the
scientific programming community. As more appli-
cations and libraries become parallel, scenarios
where multiple threads compete for a core are un-
avoidable. In this paper we evaluate the impact of
task oversubscription on the performance of MPI,
OpenMP and UPC implementations of the NAS
Parallel Benchmarks on UMA and NUMA multi-
socket architectures. We evaluate explicit thread
affinity management against the default Linux load
balancing and discuss sharing and partitioning
system management techniques. Our results indi-
cate that oversubscription provides beneficial ef-
fects for applications running in competitive envi-
ronments. Sharing all the available cores between
applications provides better throughput than ex-
plicit partitioning. Modest levels of oversubscrip-
tion improve system throughput by 27% and pro-
vide better performance isolation of applications
from their co-runners: best overall throughput is
always observed when applications share cores
and each is executed with multiple threads per
core. Rather than “resource” symbiosis, our re-
sults indicate that the determining behavioral fac-
tor when applications share a system is the gran-
ularity of the synchronization operations.

1. Introduction
The pervasiveness of multicore processors in con-
temporary computing systems will increase the

demand for techniques to adapt application level
parallelism to the available hardware parallelism.
Modern systems are increasingly asymmetric in
terms of both architecture (e.g. Intel Larrabee
or GPUs) and performance (e.g. Intel Nehalem
Turbo Boost). Parallel applications often have re-
strictions on the degree of parallelism and threads
might not be evenly distributed across cores, e.g.
square number of threads. Furthermore, applica-
tions using hybrid programming models and con-
current execution of parallel libraries are likely
to become more prevalent. Recent results illus-
trate the benefits of hybrid MPI+OpenMP [7, 13]
or MPI+UPC [4] programming for scientific ap-
plications in multicore environments. In this set-
ting MPI processes share cores with other threads.
Calls to parallel scientific libraries are also likely
to occur [3] in consumer applications that are ex-
ecuted in competitive environments on devices
where tasks are forced to share cores. As more
and more applications and libraries become paral-
lel, they will have to execute in asymmetric (either
hardware or load imbalanced) competitive envi-
ronments and one question is how well existing
programming models and OS support behave in
these situations. Existing runtimes for parallel sci-
entific computing are designed based on the im-
plicit assumption that applications run with one
Operating System level task per core in a dedi-
cated execution environment and this setting will
provide best performance.

In this paper we evaluate the impact of oversub-
scription on end-to-end application performance,
i.e. running an application with a number of OS



level tasks larger than the number of available
cores. We explore single and multi-application
usage scenarios with system partitioning or shar-
ing for several implementations of the NAS Par-
allel Benchmarks [20] (UPC, MPI+Fortran and
OpenMP+Fortran) on multi-socket NUMA (AMD
Barcelona and Intel Nehalem) and UMA (In-
tel Tigerton) multicore systems running Linux.
To our knowledge, this is the first evaluation of
oversubscription, sharing and partitioning on non-
simulated hardware at the core concurrency lev-
els available today. Our results indicate that while
task oversubscription sometimes affects perfor-
mance in dedicated environments, it is beneficial
for the performance of parallel workloads in com-
petitive environments, irrespective of the program-
ming model. Modest oversubscription (2,4,8 tasks
per core) improves system throughput by 27%
when compared to running applications in isola-
tion and in some cases end-to-end performance
(up to 46%). For the multi-socket systems ex-
amined, partitioning sockets between applications
in a combined workload almost halves the sys-
tem throughput, regardless of the programming
paradigm. Partitioning [17, 21, 26] has been in-
creasingly advocated recently and this particular
result provides a cautionary tale when considering
scientific workloads. Oversubscription provides
an easy way to reduce the impact of co-runners
on the performance of parallel applications and it
is also a feasible technique to allocate resources to
applications: there is correlation between the num-
ber of threads present in the system and observed
overall performance.

When examining an isolated application, our
results indicate that the average inter-barrier in-
terval is a good predictor of its behavior with
oversubscription. Fine grained applications (few
ms inter-barrier intervals) are likely to see perfor-
mance degradation, while coarser grained applica-
tions speed-up or are not affected. The observed
behavior is architecture or programming model
independent. When examining co-scheduling of
applications, again the synchronization granular-
ity is an accurate predictor of their behavior. The

results presented in this study suggest that symbi-
otic scheduling of parallel scientific applications
on multicore systems depends on the synchroniza-
tion behavior, rather than on cache or CPU usage.

One of the more surprising results of this study
is that, irrespective of the programming model,
best overall system throughput is obtained when
each application is allowed to run with multi-
ple threads per core in a non-dedicated environ-
ment. The throughput improvements provided by
oversubscription in a “symbiosis” agnostic man-
ner match or exceed the improvements reported
by existing studies of co-scheduling on multicore
or shared memory systems. As discussed in Sec-
tion 8, our evaluation of OpenMP oversubscription
exhibits different trends than previously reported.
Our results are obtained only when enforcing an
even thread distribution across cores at program
startup; oversubscription degrades performance in
all cases where the default Linux load balancing
is used. For the applications considered, an even
initial task distribution seems to be the only re-
quirement for good performance, rather than care-
ful thread to core mappings. The performance re-
sults for experiments where threads are randomly
pinned to cores are statistically indistinguishable.

2. Oversubscription and
Performance

When threads share cores several factors impact
the end-to-end application performance: 1) con-
text switching; 2) load balancing; 3) inter-thread
synchronization overhead and 4) system parti-
tioning. The impact of context switching is de-
termined by the direct OS overhead of schedul-
ing and performing the task switching and by the
indirect overhead of lost hardware state (local-
ity): caches and TLBs. Li et al [14] present mi-
crobenchmark results to quantify the impact of
task migration on modern multicore processors.
Their results indicate overheads with granularities
ranging from few microseconds for CPU inten-
sive tasks to few milliseconds for memory inten-
sive tasks; the scheduling time quanta is around
100ms. Our application results also indicate that



context switching and loss of hardware state do
not significantly impact performance for the ob-
served applications: therefore in the rest of this
paper we do not quantify these metrics.

Load balancing determines the “spatial” distri-
bution of tasks on available cores and sometimes
tries to address locality concerns. Recent studies
advocate explicit thread affinity management [18]
using the sched setaffinity system call and
better system load balancing [11,15] mechanisms.
Explicitly managing thread affinity can lead to
non-portable implementations since it cannot ac-
commodate un-even task distributions. In [11] we
present a user level load balancer able to provide
scalable performance for arbitrary task distribu-
tions: those results also substantiate the fact that
the impact of “hardware” locality can be ignored.
For conciseness reasons, in this paper we present
results for experiments performed with even task
distributions across cores and concentrate the ex-
position on the impact of synchronization and sys-
tem partitioning.

Parallel applications have data and control de-
pendencies and threads will “stall” waiting for
other threads. In these cases oversubscription has
the potential to improve application performance
with better load balancing and CPU utilization. On
the other hand, increasing the number of threads
has the potential to increase the duration of syn-
chronization operations due to greater operational
complexity and hardware contention. The imple-
mentation of these operations often interacts with
the per-core task scheduler through the
sched yield system call which influences the
temporal ordering of task execution. In order to
increase CPU utilization and system responsive-
ness, most implementations use a combination of
polling and task yielding rather than blocking op-
erations. Similar techniques are used in communi-
cation libraries when checking for completion of
outstanding operations.

System partitioning answers the question of
how should multicore systems be managed: threads
either competitively share a set of cores or can
be isolated into their own runtime partitions. Sev-

eral [17, 21, 25, 26] research efforts advocate for
system partitioning as a way of improving both
performance and isolation.

We evaluate the performance in the presence
of oversubscription of three programming mod-
els: MPI, UPC and OpenMP. MPI is the domi-
nant programming paradigm for parallel scientific
applications and UPC [23] belongs to the emerg-
ing family of Partitioned Global Address Space
languages. MPI uses OS processes while UPC
uses pthreads and exhibits a lower context
switch cost. Both UPC and MPI programs per-
form inter-task synchronization in barrier opera-
tions while MPI programs might also synchronize
in Send/Rcv pairs. OpenMP runs with pthreads
and performs barrier synchronization when exiting
parallel regions and might synchronize inside par-
allel regions. The three runtimes considered yield
inside synchronization operations in the presence
of oversubscription. Hybrid implementations us-
ing combinations of these programming models
are already encountered in practice [4, 7, 13].

3. Experimental Setup
We experimented on the multicore architectures
shown in Table 1. The Tigerton system is a UMA
quad-socket, quad-core Intel Xeon where each
pair of cores shares an L2 cache and each socket
shares a front-side bus. The Barcelona system is
a NUMA quad-socket, quad-core AMD Opteron
where cores within a socket share an L3 cache.
The Nehalem system is a dual-socket quad-core
Intel Nehalem system with hyperthreading; each
core supports two hardware execution contexts.
All systems run recent Linux kernels (2.6.28 on
the Tigerton , 2.6.27 on the Barcelona and 2.6.30
on the Nehalem ).

We use implementations of the NAS Parallel
Benchmarks (NPB), classes S, A, B and C: ver-
sion 2.4 for UPC [10] and 3.3 for OpenMP and
MPI [20]. All programs (CG, MG, IS, FT, EP,
SP) have been compiled with the Intel 10.1 com-
pilers (icc, ifort) which provide good se-
rial performance on both architectures. The UPC
benchmarks are compiled with the Berkeley UPC



Processor Clock GHz Cores L1 data/instr L2 cache L3 cache Memory/core NUMA
Tigerton Intel Xeon E7310 1.6 16 (4x4) 32K/32K 4M / 2 cores none 2GB no
Barcelona AMD Opteron 8350 2 16 (4x4) 64K/64K 512K / core 2M / socket 4GB socket
Nehalem Intel Xeon E5530 2.4 16 (2x4x2) 32K/32K 256K / core 8M / socket 1.5G / core socket

Table 1. Test systems.

0 

10 

20 

30 

40 

50 

60 

1/core 2/core 4/core 1/core 2/core 4/core 1/core 2/core 4/core 

UPC  OpenMP  MPI 

Tim
e (

mi
cro

sec
) 

Barrier Performance ‐ AMD Barcelona 

1 

2 

4 

8 

16 

160 

Figure 1. Barrier performance with oversubscription
at different core counts (legend) on AMD Barcelona. Sim-
ilar results are observed on all systems.

 0.1

 1

 10

 100

 1000

 10000

A B C A B C A B C A B C A B C A B C A B C

Int
er

-b
ar

rie
r t

im
e (

ms
)

UPC NPB 2.4 Barrier Stats, 16 threads

3777

17877

17877

13

13

13

56

140

50

91

91

91

378
1114

1240

13677

13677

13677

7688

7688

7688

btspmgisftepcg

Figure 2. Average time between two barriers and bar-
rier count for the UPC benchmarks on Nehalem . Similar
trends are observed on all systems and implementations.

2.8.0 compiler which uses -O3 for the icc back-
end compiler, while the Fortran benchmarks were
compiled with -fast, which includes -O3. Un-
less specified otherwise, OpenMP is compiled and
executed with static scheduling. We have used
MPICH 2 on all architectures. Due to space re-
strictions we will not discuss the details of the
NAS benchmarks (for a detailed discussion kindly
see [20]).

The execution time across all benchmarks ranges
from a few seconds to hundreds of seconds while
the memory footprints range from few MB to
GB. For example, the data domain in FT class
C is a grid of size 512x512x512 of complex data
points: this amounts to more than 2GB of data.
Thus, we have a reasonable sample of short and
long lived applications and a sample of small and
large memory footprints. For all benchmarks, we
compare executions using the default Linux load
balancing with explicit thread affinity manage-
ment, referred to as PIN. For PIN we generate
random initial pinnings to capture different initial
conditions and thread interactions and pin tasks
to cores using the sched setaffinity sys-
tem call at the beginning of program execution. To
capture variation in execution times each experi-
ment has been repeated five or more times; most
experiments have at least 15 settings for the initial
task layout. As a performance metric we use the
average benchmark running time across all repeti-
tions.

4. Benchmark Characteristics
Figure 1 presents the behavior of barrier imple-
mentations for the three programming models in
the presence of oversubscription: increasing the
number of threads per core increases the barrier
latency from few µs to tens of µs. The MPI over-
subscribed barrier latency is greater than UPC
and OpenMP due to the more expensive pro-
cess context switch. Note that these microbench-
mark results provide a lower bound for the bar-
rier latency when used in application settings.
UPC and MPI call sched yield inside bar-
riers when oversubscribed. The Intel OpenMP
runtime provides a tunable implementation con-
trolled by the KMP BLOCKTIME environment
variable. Unless specified otherwise, all results use
the default behavior of polling for 200 ms before
threads sleep. The other relevant settings are
KMP BLOCKTIME=0 where threads sleep im-
mediately and is designed for sharing the system
with other applications and
KMP BLOCKTIME=infinite where threads never
sleep and is designed for dedicated system use.
The barrier results with the default setting are rep-
resentative for the other two settings.

Figure 2 presents the synchronization behav-
ior of the UPC implementations on Nehalem : the
height of the bars indicates the average time be-
tween two barriers in ms, while the labels show
the number of executed barriers. The OpenMP
and MPI results are very similar and are omitted



for brevity. Profiling data shows that most bench-
marks exhibit a multi-modal inter-barrier interval
distribution, however, as our results indicate, the
average interval is a robust predictor for the behav-
ior with oversubscription. We also omit the data
about application memory footprints (see [20] for
more details).

All implementations exhibit a good load bal-
ance: the UPC and MPI implementations have
been developed for clusters and have an even do-
main decomposition, the OpenMP implementa-
tions distribute loops evenly across threads.

5. Scalability and Oversubscription
In this section we discuss the effects of oversub-
scription (up to eight tasks per core) on end-to-
end benchmark performance in a dedicated en-
vironment: each benchmark is run by itself. All
benchmarks in the workload (class A,B,C) scale
up to 16 cores on all systems. Figures 3, 4, 7 and 8
present selected results for all workloads. For each
benchmark we present performance normalized to
the performance of the experiment with one thread
per core: values greater than one indicate perfor-
mance improvements. The total height of the bars
indicates the behavior when tasks are evenly dis-
tributed and explicitly pinned to cores at startup.

The UPC workload is not affected by oversub-
scription. The average performance of the whole
workload decreases or increases by −2% and
2% respectively, depending on the number of
threads per core. We observe several types of be-
havior when considering individual benchmarks.
EP, which is computationally intensive and very
coarse grained, is oblivious to oversubscription.
This also indicates that the OS overhead for man-
aging the increased thread parallelism is not pro-
hibitive. Oversubscription improves performance
for FT and IS with a maximum improvement of
46%. The performance improvements increase
with the degree of oversubscription. As the prob-
lem size increases, the synchronization granularity
of SP and MG also increases and oversubscription
is able to provide better performance; increasing
the degree of oversubscription enhances the re-

spective trend. CG performance proportionally de-
creases with the degree of oversubscription, with a
maximum slowdown of 44%. Note that all bench-
marks where performance degrades with oversub-
scription are characterized by a short inter-barrier
interval (e.g. 1-5 ms on Nehalem) and a large
number of barrier operations.

The MPI workload is affected more by oversub-
scription and overall workload performance de-
creases by 10% when applications are run with
two threads per core. Again, most benchmarks
are oblivious to oversubscription and performance
degradation is observed only for the very fine
grained benchmarks. The UPC and MPI imple-
mentations use similar domain decomposition for
each benchmark and some of the differences from
the UPC workload could be attributed to both
higher task context switch cost (MPI uses pro-
cesses, while UPC uses pthreads) and to the
higher overhead of the MPI barriers with oversub-
scription. We isolate the impact of context switch-
ing by running 1 the UPC workload with processes
and shared memory inter-process communication
mechanisms. The behavior of the UPC workload
remains almost identical when running with pro-
cesses, therefore we attribute any different trends
in the MPI behavior to the barrier performance.

The OpenMP behavior on Nehalem is presented
in Figure 8, similar behavior is observed on the
other architectures. Oversubscription slightly de-
creases overall (classes A,B,C) throughput, again
due to the decrease in performance for the fine
grained benchmarks. For reference, we also present
the behavior of class S. For this problem size the
base implementations scale poorly with the in-
crease in cores even when executing with one
thread per core. The results presented are with
the default setting of KMP BLOCKTIME and
OMP STATIC. The OpenMP runtime concurrency
and scheduling can be changed using the environ-
ment variables OMP DYNAMIC and OMP GUIDED.
We have experimented with these settings, but best
performance for this implementation of the NAS
benchmarks is obtained OMP STATIC. Liao et

1 This Berkeley UPC runtime will be soon made available.



UPC Tigerton

 0

 0.5

 1

 1.5

 2

248 248 248

Pe
rfo

rm
an

ce
 re

lat
ive

 to
 1

/co
re

ep
CBA

24 248 248

ft
CBA

248 248 248

is
CBA

4 4 4

sp
CBA

248 248 248

mg
CBA

24 248 248

cg

CFS
PSX yield

PIN

CBA

Figure 3. UMA oversubscription UPC. Perfor-
mance is normalized to that of experiments with 1
task per core. Number of tasks per core can be 2, 4
or 8. SP requires a square number of threads. Overall
workload performance varies from -2% to 2%.

UPC Barcelona

 0

 0.5

 1

 1.5

 2

248 248 248

Pe
rfo

rm
an

ce
 re

lat
ive

 to
 1

/co
re

ep
CBA

24 248 248

ft
CBA

248 248 248

is
CBA

4 4 4

sp
CBA

248 248 248

mg
CBA

24 248 248

cg

CFS
PSX yield

PIN

CBA

Figure 4. NUMA oversubscription UPC. Perfor-
mance is normalized to that of experiments with 1
task per core. Number of tasks per core can be 2, 4
or 8. SP requires a square number of threads. Overall
workload performance varies from -2% to 2%.

Balance UPC Tigerton

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

248 248 248

Im
pr

ov
em

en
t o

ve
r 1

/co
re

ep
CBA

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

24 248 248

ft
CBA

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

248 248 248

is
CBA

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

4 4 4

sp
CBA

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

248 248 248

mg
CBA

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

24 248 248

cg
CBA

Figure 5. Changes in balance on UMA, reported
as the ratio between the lowest and highest user time
across all cores compared to the 1/core setting.

Cache miss rate UPC Tigerton

-0.4

-0.2

 0

 0.2

 0.4

248 248 248

Im
pr

ov
em

en
t o

ve
r 1

/co
re

ep
CBA

-0.4

-0.2

 0

 0.2

 0.4

24 248 248

ft
CBA

-0.4

-0.2

 0

 0.2

 0.4

248 248 248

is
CBA

-0.4

-0.2

 0

 0.2

 0.4

4 4 4

sp
CBA

-0.4

-0.2

 0

 0.2

 0.4

248 248 248

mg
CBA

-0.4

-0.2

 0

 0.2

 0.4

24 248 248

cg
CBA

Figure 6. Changes in the total number of cache
misses per 1000 instructions, across all cores com-
pared to 1/core. The EP miss rate is very low.

MPI Tigerton

 0

 0.5

 1

 1.5

 2

24 24 24

Pe
rfo

rm
an

ce
 re

lat
ive

 to
 1

/co
re

ep
CBA

2 4 2 4 2 4

ft
CBA

2 4 2 4 2 4

is
CBA

4 4 4

sp
CBA

2 4 2 4 2 4

mg
CBA

2 4 2 4 2 4

cg

CFS
PSX yield

PIN

CBA

Figure 7. UMA oversubscription MPI. Perfor-
mance is normalized to that of experiments with 1
task per core. Number of tasks per core can be 2 or
4. Overall workload performance decreases by 10%
to 18%.

OMP Nehalem

 0

 0.5

 1

 1.5

 2

248 248 248 248

Pe
rfo

rm
an

ce
 re

lat
ive

 to
 1

/co
re

ep
SCBA

248 248 248 248

ft
SCBA

248 248 248 248

is
SCBA

248 248 248 248

sp
SCBA

248 248 248 248

mg
SCBA

248 248 248 248

cg

CFS
PSX yield

PIN

SCBA

Figure 8. NUMA oversubscription OpenMP. Per-
formance is normalized to that of experiments with
1 task per core. Number of tasks per core can be 2,
4 or 8. Workload performance decreases by 6% to
14%.

0.8	  

0.9	  

1	  

1.1	  

1.2	  

0	   2	   4	   6	   8	   10	   12	   14	   16	  

Re
la.

ve
	  Pe

rfo
rm

an
ce
	  

OMP	  Barcelona,	  KMP_BLOCKTIME=0	  
DEF1/KMP1	   DEF2/KMP2	   DEF4/KMP4	  

Figure 9. OpenMP performance with cooperative syn-
chronization on Barcelona. DEF1/KMP1 stands for the
default/kmp=0 value with one thread per core. Values
greater than 1 indicate performance improvement.

0.8	  

0.9	  

1	  

1.1	  

1.2	  

0	   2	   4	   6	   8	   10	   12	   14	   16	  

Re
la.

ve
	  Pe

rfo
rm

an
ce
	  

OMP	  Barcelona,	  KMP_BLOCKTIME=inf	  
DEF1/INF1	   DEF2/INF2	   DEF4/INF4	  

Figure 10. OpenMP performance with “non-
cooperative” synchronization on Barcelona. DEF1/INF1
stands for the default/kmp=inf value with one thread
per core. Values greater than 1 indicate performance
improvement.



al [16] also report better performance when run-
ning OpenMP with a static number of threads,
evenly distributed. Enabling dynamic adjustment
of the number of threads does not affect the overall
trends when oversubscribing.

The synchronization behavior of OpenMP can
be adjusted using the variable KMP BLOCKTIME.
A setting of KMP BLOCKTIME=0 forces threads
to sleep immediately inside synchronization op-
erations for a more cooperative behavior. This
setting determines a slight decrease in perfor-
mance when running with one thread per core,
but it improves performance when oversubscrib-
ing. Figure 9 presents the performance compared
to the default setting. As illustrated, the perfor-
mance of the coarse grained benchmarks is not
affected, while for the fine grained benchmarks
we observe improvements as high as 10%. Fig-
ure 10 presents the performance with the setting
KMP BLOCKTIME=infinite, where threads are
less cooperative and never sleep. This setting pro-
vides best overall performance for the OpenMP
implementations.

All of our results and analysis indicate that the
best predictor of application behavior when over-
subscribing is the average inter-barrier interval.
Applications with barriers executed every few ms
are affected, while coarser grained applications are
oblivious or their performance improves.

In order to gain more insight about applica-
tion behavior in the presence of oversubscription
we have also collected data from hardware per-
formance counters (cache miss, total cycles, TLB)
and detailed scheduling information from the sys-
tem logs (user, system time, number of thread mi-
grations, virtual memory behavior). Some of these
metrics directly capture the benefits of oversub-
scription and we illustrate the observed UPC be-
havior on Tigerton. Figure 5 presents the ratio be-
tween the lowest and the highest amount of ob-
served user time across all cores normalized to the
ratio for the execution with one thread per core.
This measure captures the variation of core utiliza-
tion with oversubscription. Oversubscription im-
proves CPU utilization for FT (all classes), IS-

A and CG (A and C). Figure 6 presents the rel-
ative behavior of the L2 cache, which is shared
on Tigerton. We report the normalized total num-
ber of cache misses per 1000 instructions across
all cores. The results are normalized to the exe-
cution with one thread per core. Oversubscription
improves memory behavior for the behavior of IS-
C and MG (A and B). The behavior of the remain-
ing benchmarks could be explained by a combina-
tion of these two metrics.

The UPC performance trends capture another
potential benefit of oversubscription: it decreases
resource contention and serialization of opera-
tions. The benchmarks where performance im-
proves (FT, IS, SP) are characterized by resource
contention. They all contain a hand coded commu-
nication phase where each thread transfers large
amounts of data from the memory space of all
(FT,IS) or many (SP) other threads. This por-
tion of the code is written in such a manner that
all transfers start from the same thread and pro-
ceed in sequence (0, 1, 2...). Oversubscription de-
creases the granularity of these contending trans-
fers and allows for less serialization. In all three
benchmarks, most of the performance improve-
ments occur in these particular parts of the code:
this also accounts for the better CPU utilization.
Note that this behavior also explains the better im-
provements of UPC on Tigerton when compared
to Barcelona: Tigerton has a much lower memory
bandwidth and the front-side bus is a source of
contention. The MPI benchmarks use the same do-
main decomposition as the UPC implementations,
but call into tuned implementations of collective
and scatter-gather communication. This explains
the lower benefits of oversubscription for the MPI
implementations.

5.1 Interaction With Per-Core Scheduling
Figures 3,4,7, and 8 also illustrate the impact of
scheduling decisions inside the operating system.
The new Linux distributions allow two different
behaviors for the sched yield system call. The
default behavior (referred to as CFS) does not sus-
pend the calling thread if its quanta has not ex-



pired, while the Posix conforming implementa-
tion un-schedules the caller. The former is de-
signed to improve interactive behavior in desktop
and server workloads, while the latter is the behav-
ior assumed by the implementations of synchro-
nization operations in scientific programming. In
the figures, the bars labeled PSX show the ad-
ditional performance improvements when replac-
ing2 the default Linux sched yield implemen-
tation with the Posix conforming implementation.
The results show that Posix yield performs better
than CFS yield and usually the performance dif-
ferences increase with the degree of oversubscrip-
tion. The impact on a benchmark is relatively in-
dependent on the problem class and it is an indi-
cation of the frequency of synchronization opera-
tions present in the benchmark.

The UPC workload is less affected by the
sched yield implementation than the OpenMP
workload. This behavior is explained by the finer
granularity of parallelism in the OpenMP imple-
mentations. The performance of OpenMP runs
with eight threads per core is completely domi-
nated by the impact of more cooperative yielding.
The impact on the MPI workload is small.

For all implementations, runs where threads are
explicitly managed are improved less than runs
subject to the default Linux load balancing. The
detailed comparison of CFS-Load with CFS-PIN
is omitted for brevity. For example, the average
improvements in the UPC workload performance
are 6% for pinned, 9% for load balancing, with
ranges [-7% , 35%] and [-10% , 40%] respec-
tively. As explained in the next section, this be-
havior is caused by the inability of the Linux load
balancing to migrate threads after startup and ini-
tial memory allocation. Based on these observa-
tions all other experimental results presented are
with Posix yield.

5.2 Thread Affinity Management
Figures 3,4,7, and 8 also present the impact of
thread affinity management on application per-

2 Behavior is controlled by writing 1 in
/proc/sys/kernel/sched compat yield.

formance. The bars labeled PIN show the aver-
age performance improvements when threads are
evenly distributed across the available cores when
compared to the default Linux load balancing. As
expected, the impact of affinity management is
higher for the NUMA architectures, as illustrated
for UPC by Figures 3 and 4. UPC and OpenMP are
sensitive to thread affinity management regardless
of the degree of oversubscription. For example, on
Barcelona UPC runtime performance improves by
as much as 57%, while OpenMP performance im-
proves by 31%. MPI performance is less affected
by affinity management in the presence of over-
subscription. Explicit thread affinity management
also increases performance reproducibility: runs
with the default Linux load balancing exhibit a
variation as high as 120%, while runs with pinned
threads vary by at most 10%.

The performance differences are explained by a
combination of load balancing behavior, NUMA
memory affinity and runtime implementation. With
the default load balancing, threads are started on
few cores and later migrated. With first-touch
memory affinity management, pages are bound to
a memory controller before threads have a chance
to migrate to an available core. OpenMP performs
an implicit barrier after spawning threads; threads
might sleep inside the barrier which determines
the Linux load balancing to migrate threads. UPC,
which is the most sensitive to affinity manage-
ment, allocates the shared heap at program startup
and each thread touches its memory pages. How-
ever, this first touch happens before threads have a
chance to migrate to an idle core.

For the benchmark implementations examined
in this paper, the performance impact of thread
affinity management is an artifact of the charac-
teristics of Linux thread startup and load balanc-
ing, rather than of the application itself. Ensuring
that threads are directly started on the idle cores
eliminates most of the effects of explicit affinity
management. Our experiments with different ran-
dom thread to core mappings show indistinguish-
able performance between pinnings. The differ-
ences between the average workload performance



with any two pinnings are within few percent (well
within the variation for a given pinning), with a
maximum for a particular (SP) benchmark of 12%.

In [11] we present a user level load balancer
that enforces an even initial thread distribution and
constrains threads to a NUMA domain, rather than
a particular core. Results for the same workload
presented here indicate that threads can freely mi-
grate inside a NUMA domain without experienc-
ing performance degradation. Also note that new
implementations of job spawners on large scale
systems enforce an even thread distribution at pro-
gram startup. We therefore expect explicit thread
affinity management to play a smaller role in code
optimization of scientific applications.

6. Competitive Environments
We explore two alternatives for system manage-
ment in competitive environments: 1) sharing
(best effort) and 2) partitioning (managed). For
the sharing experiments, each application is al-
lowed to run on all the system cores, while for the
partitioned experiments each application is given
an equal number of processors. We consider only
fully isolated partitions, i.e. applications do not
share sockets. The application combinations we
present (EP, CG, FT and MG) have been chosen
to contain co-runners with relatively equal dura-
tions3and different behavior. For lack of space we
do not present a full set of experiments and con-
centrate mostly on UPC and OpenMP behavior.
EP is a CPU intensive application while CG, MG
and FT are memory intensive. FT performance im-
proves (UPC) or it is not affected by oversubscrip-
tion (OpenMP), while MG performance slightly
degrades with oversubscription. EP performance
is not affected by oversubscription, while CG per-
forms fine grained synchronization and perfor-
mance degrades. We do not present data for IS,
which runs for at most 2s and for SP which re-
quires a square number of threads in UPC.

Figure 11 presents the comparative performance
of combined workloads when sharing or partition-
3 On Barcelona: ep-C=21.11s, cg-B=24.426s, ft-B=9.5s and
mg-C=27.64s for OpenMP.

ing the system. We plot the speedup of each appli-
cation in a pair (x-axis) when sharing the system
compared to the its performance with partitioning.
In the partitioning experiment, each application is
run on eight cores, with one thread per core. In the
sharing experiments, each application receives 16
cores and the number of threads per core indicated
on the x-axis. The results indicate that partitioning
cores between applications decreases performance
and system throughput. For example, a cg-B+cg-
B OpenMP experiment on Barcelona observes a
20% slowdown, while in mg-C+cg-B we observe
≈ 70% improvement for mg-C and a 20% slow-
down for cg-B. A cg-B+cg-B UPC experiment on
Barcelona observes a 10% slowdown when shar-
ing cores, while in the mg-C+cg-B experiment
mg-C observes a 90% speedup and cg-B observes
a 30% speedup. Overall, when each application is
executed with one thread per core, sharing the sys-
tem shows a 33% and 23% improvement for the
UPC and OpenMP workloads respectively.

Oversubscription increases the benefits of shar-
ing the system for the CMP architectures: the
UPC improvements are 38% and 45%, while the
OpenMP improvements are 46% and 28% when
running with two and four threads per core re-
spectively. The best overall throughout is obtained
when sharing the system and allowing each appli-
cation to run with multiple (2,4) threads per core.
The results on the Nehalem SMT architecture are
presented in Figure 13. On this architecture, shar-
ing the system provides identical throughput to the
partitioned runs.

Figure 12 shows the impact of sharing the
Barcelona system. For each benchmark, the fig-
ure plots the fraction of its performance when
compared to the dedicated run with one thread
per core. When sharing we expect each bench-
mark to run close to 50% of its original speed.
Any fraction larger than 50% indicates a poten-
tial increase in throughput. These results also give
an indication of application symbiosis. For exam-
ple, in the ep-C+ep-C combination each instance
runs at 50% of the original speed. The cg-B+ep-
C contains a memory intensive benchmark and a



OMP Barcelona

-20

 0

 20

 40

 60

 80

 100

 120

124 124 124 124Im
pr

ov
em

en
t o

ve
r p

ar
titi

on
ing

 (%
)

cg-B
mgftepcg

-20

 0

 20

 40

 60

 80

 100

 120

124 124 124 124

ep-C
mgftepcg

-20

 0

 20

 40

 60

 80

 100

 120

124 124 124 124

ft-B
mgftepcg

-20

 0

 20

 40

 60

 80

 100

 120

124 124 124 124

mg-C
mgftepcg

Figure 11. Performance for OMP benchmarks when
sharing the system compared to partitioning.

OMP Barcelona

 30

 40

 50

 60

 70

 80

 90

 100

124 124 124 124

Ti
m

e 
de

dic
at

ed
/sh

ar
ed

 (%
)

cg-B
mgftepcg

 30

 40

 50

 60

 70

 80

 90

 100

124 124 124 124

ep-C
mgftepcg

 30

 40

 50

 60

 70

 80

 90

 100

124 124 124 124

ft-B
mgftepcg

 30

 40

 50

 60

 70

 80

 90

 100

124 124 124 124

mg-C
mgftepcg

Figure 12. Percentage of performance sharing com-
pared with dedicated one per core. The benchmarks are
sharing the whole system.

OMP Nehalem

-60

-40

-20

 0

 20

 40

 60

 80

 100

 120

1 2 1 2 1 2 1 2Im
pr

ov
em

en
t o

ve
r p

ar
titi

on
ing

 (%
)

cg-B
mgftepcg

-60

-40

-20

 0

 20

 40

 60

 80

 100

 120

1 2 1 2 1 2 1 2

ep-C
mgftepcg

-60

-40

-20

 0

 20

 40

 60

 80

 100

 120

1 2 1 2 1 2 1 2

ft-B
mgftepcg

-60

-40

-20

 0

 20

 40

 60

 80

 100

 120

1 2 1 2 1 2 1 2

mg-C
mgftepcg

Figure 13. Performance for OMP benchmarks when
sharing the system compared to partitioning.

OMP Nehalem

 30

 40

 50

 60

 70

 80

 90

 100

1 2 1 2 1 2 1 2

Ti
m

e 
de

dic
at

ed
/sh

ar
ed

 (%
)

cg-B
mgftepcg

 30

 40

 50

 60

 70

 80

 90

 100

1 2 1 2 1 2 1 2

ep-C
mgftepcg

 30

 40

 50

 60

 70

 80

 90

 100

1 2 1 2 1 2 1 2

ft-B
mgftepcg

 30

 40

 50

 60

 70

 80

 90

 100

1 2 1 2 1 2 1 2

mg-C
mgftepcg

Figure 14. Percentage of performance sharing com-
pared with dedicated one per core. The benchmarks are
sharing the whole system.

-60

-40

-20

 0

 20

 40

 60

 80

 100

cg-B+cg-B

cg-B+ep-C

cg-B+ft-B

cg-B+m
g-C

ep-C+ep-C

ep-C+ft-B

ep-C+m
g-C

ft-B+ft-B

ft-B+m
g-C

m
g-C+m

g-C

Im
pr

ov
em

en
t o

ve
r d

ed
ic

at
ed

 (%
)

OMP+MPI Tigerton Throughput

1/
2/
4/

Figure 15. Throughput for
OMP/MPI sharing.

-60

-40

-20

 0

 20

 40

 60

 80

 100

cg-B+cg-B

cg-B+ep-C

cg-B+ft-B

cg-B+m
g-C

ep-C+ep-C

ep-C+ft-B

ep-C+m
g-C

ft-B+ft-B

ft-B+m
g-C

m
g-C+m

g-C

Im
pr

ov
em

en
t o

ve
r d

ed
ic

at
ed

 (%
)

OMP+UPC Barcelona Throughput kmp0

1/
2/
4/

Figure 16. Through-
put for OMP/UPC sharing.
KMP BLOCKTIME=0.

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

cg-B+cg-B

cg-B+ep-C

cg-B+ft-B

cg-B+m
g-C

ep-C+ep-C

ep-C+ft-B

ep-C+m
g-C

ft-B+ft-B

ft-B+m
g-C

m
g-C+m

g-C

Im
pr

ov
em

en
t o

ve
r d

ed
ic

at
ed

 (%
)

OMP+UPC Barcelona Throughput infinite

1/
2/
4/

Figure 17. Through-
put for OMP/UPC sharing.
KMP BLOCKTIME=inf.

Fewer threads UPC Tigerton

-40

-20

 0

 20

 40

 60

1
2

2
4

1
2

2
4

1
2

2
4

1
2

2
4

Im
pr

ov
em

en
t o

ve
r f

air
 (%

)

cg-B
mgftepcg

-40

-20

 0

 20

 40

 60

1
2

2
4

1
2

2
4

1
2

2
4

1
2

2
4

ep-C
mgftepcg

-40

-20

 0

 20

 40

 60

1
2

2
4

1
2

2
4

1
2

2
4

1
2

2
4

ft-B
mgftepcg

-40

-20

 0

 20

 40

 60

1
2

2
4

1
2

2
4

1
2

2
4

1
2

2
4

mg-C
mgftepcg

Figure 18. Relative differences in performance when
the application is given fewer threads. x-axis presents the
number of application and co-runner threads. (1/2 and
2/4).

More threads UPC Tigerton

-40

-20

 0

 20

 40

 60

2
1

4
2

2
1

4
2

2
1

4
2

2
1

4
2

Im
pr

ov
em

en
t o

ve
r f

air
 (%

)

cg-B
mgftepcg

-40

-20

 0

 20

 40

 60

2
1

4
2

2
1

4
2

2
1

4
2

2
1

4
2

ep-C
mgftepcg

-40

-20

 0

 20

 40

 60

2
1

4
2

2
1

4
2

2
1

4
2

2
1

4
2

ft-B
mgftepcg

-40

-20

 0

 20

 40

 60

2
1

4
2

2
1

4
2

2
1

4
2

2
1

4
2

mg-C
mgftepcg

Figure 19. Relative differences in performance when
the application is given more threads. x-axis presents the
number of application and co-runner threads. (2/1 and
4/2).



CPU intensive benchmark: cg-B runs at 60% of its
original speed, while ep-C runs at 90% of its orig-
inal speed. For combinations of memory intensive
(mg-C+cg-B) applications, mg-C runs at 85% of
its original speed, while cg-B runs at 45%. Fig-
ure 14 shows the behavior on Nehalem where we
observe a 7% overall improvement.

The UPC programs respond better to oversub-
scription than OpenMP and therefore respond bet-
ter to sharing the system. The overall through-
put of the UPC+UPC workload is improved by
20% and 27% when applications are executed
with one and two threads per core respectively.
The OpenMP+OpenMP workload throughput is
improved by 9% and 24% respectively. These im-
provements are relative to the performance when
applications are run on a dedicated system with
one thread per core. For reference, Figure 15
shows the throughput improvements when the sys-
tem is shared between MPI and OpenMP imple-
mentations. We plot the speedup of an application
combination when sharing compared to executing
each application in sequence (max(T (A), T (B))
at the given concurrency compared with T (A) +
T (B) when executed with one thread per core).
Any combination of programming models ex-
hibits similar trends on all architectures. Fig-
ures 16 and 17 show the behavior of a UPC+OpenMP
workload for different settings of KMP BLOCKTIME.
All results indicate that best throughput is obtained
when sharing with each application running with
multiple threads per core.

Figures 11 and 12 present results for experi-
ments (PIN) where thread affinity is explicitly
managed. With the default Linux load balanc-
ing, results are very noisy and throughput is low-
ered when sharing cores. In particular, when us-
ing the default Linux load balancing the total ex-
ecution time in a shared environment is greater
than the time of executing the benchmarks in se-
quence. Runs with explicitly pinned threads not
only outperform the runs with the default Linux
load balancing, but also exhibit very low perfor-
mance variability, less than 10%, compared to the
high variability of the later, which is up to 100%.

For any given benchmark combination, sharing
or partitioning, the performance variability of the
total duration of the run (A‖B) is small, usually
less than 10%. Partitioning provides performance
reproducibility: for every benchmark pair, the per-
formance variation of any benchmark in the pair
is less than 10%, irrespective of co-runners. When
sharing the system, the variability of each bench-
mark across individual runs is higher, up to 81%
across all combinations.

There is a direct correlation between the over-
subscription trends presented in Section 5 for a
dedicated environment and application symbiosis
when sharing the system. The applications with
coarse grained synchronization share the system
very well, while the applications with fine grained
synchronization might observe some performance
degradation. For any given pair of benchmarks,
if one benchmark in the pair is not affected by
oversubscription, the overall throughput improves
irrespective of its co-runner behavior and the num-
ber of threads per core in each application: there
is a direct correlation between behavior with over-
subscription and behavior when sharing. This also
indicates that synchronization granularity is per-
haps the most important symbiosis metric and it
suggests that oversubscription could potentially
diminish any advantages of symbiotic schedul-
ing of parallel applications. Increasing the number
of threads per core in each application improves
overall throughput. Intuitively, oversubscription
increases diversity in the system and decreases the
potential for resource conflicts.

Oversubscription also changes the relative or-
dering of the performance of implementations. In
a dedicated environment, the NAS OpenMP im-
plementations have a performance advantage over
the UPC and MPI implementations (≈ 10% −
30%). Sharing reverses the relative performance
trends observed in dedicated environments, and
the shared UPC workloads provide the shortest
time to solution (≈ 10%faster).



6.1 Imbalanced Sharing
The per-core scheduling mechanism (CFS) in
Linux attempts to provide a fair repartition of
execution time to the tasks sharing the core and
oversubscription might provide a mechanism to
proportionally allocate system resources to appli-
cations.

Figures 18 and 19 present results for sharing
the system when one application is given prefer-
ence and it is allowed to run with a larger number
of threads. Figure 18 presents the impact on the
application that receives the smaller number of
threads, while Figure 19 presents the impact on
the application with the larger number of threads.
Both figures present the performance normalized
to the performance observed when both applica-
tions run concurrently with one thread per core.
CG performance degrades with oversubscription
in dedicated environments and, for these experi-
ments, allocating more threads to CG than to co-
runners does not improve its performance. EP is
compute bound and allocating more threads de-
termines a throughput increase proportional to
the thread ratio with respect to co-runners. FT
which benefits from oversubscription observes
good throughput increases when given preference.
MG also observes throughput increases, albeit
smaller than FT.

The results show a strong correlation between
the application behavior with oversubscription in
dedicated environments and the observed results
in these scenarios. Overall, the performance of
the applications that receive the smaller number
of threads does not degrade and for the consid-
ered benchmarks we observe little (1% and -7%
when receiving 33% and 20% per core share re-
spectively) throughput changes when compared
to balanced sharing. The performance of applica-
tions that receive a larger number of threads im-
proves and we observe an overall improvement
in throughput. The improvement in throughput is
correlated to the task share received by the ap-
plication, e.g. we observe 10% overall through-
put improvement for two threads and 8% for four
threads. These results are heavily skewed by the

behavior of CG. Without CG, the improvements
are 12% and 20% respectively. Our experiments
indicate that imbalanced sharing should not be
considered for OpenMP. We plan to examine in
future work the impact of gang scheduling on the
OpenMP performance in this scenario.

These trends indicate that, besides priorities and
partitioning, controlling the number of threads an
application receives is worth exploring as a way
of controlling its system share. The magnitude
of the performance differences indicates that for
modest sharing (two, three applications) and mod-
est oversubscription (two, four eight threads) gang
scheduling techniques might not provide large ad-
ditional performance improvements for the SPMD
programming models (UPC and MPI) evaluated.

7. Discussion
All implementations examined in this study have
even per-thread domain decompositions and are
well balanced. We expect the benefits of oversub-
scription to be even more pronounced for irregular
applications that suffer from load imbalance.

There are several implications from our evalua-
tion of sharing and partitioning. Partitioning gives
each application a share of dedicated resources at
the expense of lower parallelism. Sharing time-
slices resources across applications. Performance
is determined by a combination of load balanc-
ing, degree of parallelism and contention with re-
spect to resource usage: CPU, caches and mem-
ory bandwidth. The fact that partitioning produces
lower performance than sharing indicates that for
our workloads parallelism and load balance con-
cerns still trump contention concerns.

We examine reference implementations com-
piled with commercially available compilers. Bet-
ter optimizations or applying autotuning tech-
niques to these applications might produce code
(better cache locality, increased memory band-
width requirements) that require contention aware-
ness and system partitioning. However, current
autotuning techniques improve short term local-
ity and reuse and the granularity of the OS time
quantum is likely to remain larger than the du-



ration of the computation blocks affected by au-
totuning. We believe that better code generation
techniques will not affect the trends reported in
this study for the current system sizes: parallelism
and load balancing concerns will continue to be
the determining performance factors. Determining
the system size at which contention and schedul-
ing interactions require careful partitioning is an
open research question.

While we clearly advocate running in competi-
tive environments and sharing cores for improved
throughput, the question of the proper environ-
ment for code tuning remains open. The results
with system partitioning indicate a good perfor-
mance isolation between competing applications
and seems to be the preferred alternative.

We believe that further performance improve-
ments can be achieved for the fine grained ap-
plications by re-examining the implementations
of the collective and barrier synchronization op-
erations. The current implementations are heav-
ily optimized for execution with one thread per
core in dedicated environments. In [5] we present
kernel level extensions for cooperative schedul-
ing on the CellBE in the presence of oversub-
scription. In that particular environment, over-
subscription was required for good performance
and we have extended Linux with a new system
call sched yield to. Similar support and a
re-thinking of the barrier implementations might
be able to improve the performance of oversub-
scribed fine grained applications. As future work
we also plan to examine the interaction between
oversubscription and networking behavior on large
scale clusters.

The reversal of performance trends between
UPC and OpenMP in the presence of competition
and oversubscription, indicates that these factors
might be valuable when evaluating parallel pro-
gramming models in desktop and shared servers
competitive environments.

8. Related Work
Charm [1] and AMPI [12] are research projects
that advocate oversubscription as an efficient way

of hiding communication latency and improving
application level load balancing for MPI programs
running on clusters. They use thread virtualiza-
tion and provide a runtime scheduler to multiplex
tasks waiting for communication. Cilk and X10
provide work stealing runtimes for load balanc-
ing. All these approaches provide their implemen-
tation specific load balancing mechanism and as-
sume execution in dedicated environments with
one “meta-thread” per core. The behavior of these
models in competitive environments has not been
studied. We believe that oversubscription can pro-
vide an orthogonal mechanism to increase perfor-
mance robustness in competitive environments.

Oversubscription for OpenMP programs is dis-
cussed by Curtis-Maury [19] et al for SMT and
CMP (simulated) processors. For the NAS bench-
marks they report a much higher impact of over-
subscription than the impact we observe in this
study on existing architectures and mostly advo-
cate against it. For SMT, they also indicate that
symbiosis with the hardware context co-runner is
very important. Our results using a similar work-
load on Nehalem processors indicate that the de-
termining performance factor is the granularity of
the synchronization operations. The differences in
reported trends might be caused by the fact that we
evaluate systems with a larger number of cores.
Liao et al [16] discuss OpenMP performance on
CMP and SMT architectures running in dedicated
mode and consider both static and dynamic
schedules. Their results indicate little difference in
performance when using different schedules.

A large body of research in multiprocessor
scheduling can be loosely classified as symbiotic
scheduling: threads are scheduled according to re-
source usage patterns. Surprisingly, there is little
information available about the impact of sharing
or partitioning multicore processors for fully par-
allel workloads. Most available studies consider
either symbiotic scheduling of parallel workloads
on clusters (e.g. [24] computation + I/O) or sym-
biotic scheduling of multiprogrammed workloads
on multicore systems. Snavely and Tullsen [22] in-
troduce symbiotic co-scheduling on SMT proces-



sors for a workload heavily biased towards multi-
programmed single-threaded jobs. Their approach
samples different possible schedules and assigns
threads to SMT hardware contexts. Fedorova et
al [8] present an OS scheduler able to improve
the cache symbiosis of multiprogrammed work-
loads. Our results indicate that for parallel scien-
tific workloads in competitive environments over-
subscription is a robust way to increase symbiosis
without specialized support.

Boneti et al [6] present a scheduler for balanc-
ing high performance computing MPI applications
on the POWER5 processor. Their implementation
targets SMT processors and uses hardware sup-
port to manipulate instruction priorities within one
core. Li et al [15] present an implementation of
Linux load balancing for performance asymmetric
multicore architectures and discuss performance
under parallel and server workloads. They mod-
ify the Linux load balance to use the notions of
scaled core speed and scaled load but balancing is
performed based on run queue length.

Job scheduling for parallel systems has an ac-
tive research community. Feitelson [2] maintains
the Parallel Workload Archive that contains stan-
dardized job traces from many large scale in-
stallations. Feitelson and Rudolph [9] provide an
insightful discussion about the impact of gang
scheduling on the performance of fine grained ap-
plications. Their study is conducted in 1992 on
the Makbilan processor. Zhang et al [27] provide
a comparison of existing techniques and discuss
migration based gang scheduling for large scale
systems. Gang scheduling is increasingly men-
tioned in multicore research studies, e.g. [17],
but without a practical, working implementation.
Gang scheduling has been also shown to reduce
OS jitter on large scale systems. The new operat-
ing systems for the IBM BG/Q and Cray XT6 sys-
tems have been announced to support dedicated
OS service cores in an attempt to minimize jitter
at very large scale. Mann and Mittaly present a
Linux kernel implementation able to reduce jitter
by reduction of kernel threads, intelligent inter-
rupt handling and manipulating hardware SMT

thread priorities. Our results provide encouraging
evidence that oversubscription might provide an
alternate way for reducing the impact of OS jitter
on the performance of scientific applications and
alleviating some of the need for gang scheduling.

9. Conclusion
In this paper we evaluate the impact of execut-
ing MPI, UPC and OpenMP applications with task
oversubscription. We use implementations of the
NAS Parallel Benchmarks on multi-socket multi-
core systems using both UMA and NUMA mem-
ory systems. In addition to the default Linux load
balancing we evaluate the impact of explicit thread
affinity management. We also evaluate the impact
of sharing or partitioning the cores within a system
on the throughput of parallel workloads.

Our results indicate that oversubscription with
proper support should be given real considera-
tion when running parallel applications. For com-
petitive environments, oversubscription decreases
the impact of co-runners and the performance
variability. In these environments, oversubscrip-
tion also improves system throughput by up to
27%. For the systems evaluated, partitioning in
competitive environments reduces throughput by
up to 46%. On all architectures evaluated, best
throughput is obtained when applications share all
the cores and are executed with multiple threads
per core. The granularity of the synchronization
present in an application in a dedicated environ-
ment is perhaps the best measure of its degree of
symbiosis with other applications.

References
[1] CHARM++ project web page. Available at

http://charm.cs.uiuc.edu.
[2] Parallel Workload Archive. Available at http://

www.cs.huji.ac.il/labs/parallel/workload/.
[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J.

Gebis, P. Husbands, K. Keutzer, D. A. Patterson,
W. L. Plishker, J. Shalf, S. W. Williams, and K. A.
Yelick. The Landscape of Parallel Computing
Research: A View from Berkeley. Technical
Report UCB/EECS-2006-183, EECS Department,
University of California, Berkeley, Dec 2006.

[4] P. Balaji, R. Thakur, E. Lusk, and J. Dinan.
Hybrid Parallel Programming with MPI and



PGAS (UPC). Available at http://meetings.mpi-
forum.org/secretary/2009/07/slides/2009-07-27-
mpi-upc.pdf.

[5] F. Blagojevic, C. Iancu, K. Yelick, M. Curtis-
Maury, D. S. Nikolopoulos, and B. Rose. Schedul-
ing Dynamic Parallelism On Accelerators. In CF
’09: Proceedings of the 6th ACM conference on
Computing frontiers, 2009.

[6] C. Boneti, R. Gioiosa, F. J. Cazorla, and M. Valero.
A Dynamic Scheduler for Balancing HPC Ap-
plications. In SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, 2008.

[7] F. Cappello and D. Etiemble. MPI Versus
MPI+OpenMP on IBM SP for the NAS Bench-
marks. In Supercomputing ’00: Proceedings of the
2000 ACM/IEEE Conference on Supercomputing,
2000.

[8] A. Fedorova, M. I. Seltzer, and M. D. Smith. Im-
proving Performance Isolation on Chip Multipro-
cessors via an Operating System Scheduler. In
Proceedings of Parallel Architectures and Compi-
lation Techniques (PACT), 2007.

[9] D. G. Feitelson and L. Rudolph. Gang Scheduling
Performance Benefits for Fine-Grain Synchroniza-
tion. Journal of Parallel and Distributed Comput-
ing, 16:306–318, 1992.

[10] The GWU NAS Benchmarks. Available at
http://upc.gwu.edu/ download.html.

[11] S. Hofmeyr, C. Iancu, and F. Blagojevic. Load
Balancing on Speed. To appear in Proceedings of
Principles and Practice of Parallel Programming
(PPoPP’10), 2010.

[12] C. Huang, O. Lawlor, and L. V. Kal. Adaptive
MPI. In In Proceedings of the 16th International
Workshop on Languages and Compilers for Paral-
lel Computing (LCPC 03, pages 306–322, 2003.

[13] G. Krawezik. Performance Comparison of MPI
And Three OpenMP Programming Styles On
Shared Memory Multiprocessors. In SPAA ’03:
Proceedings Of The Fifteenth Annual Acm Sym-
posium On Parallel Algorithms And Architectures,
2003.

[14] T. Li, D. Baumberger, and S. Hahn. Efficient And
Scalable Multiprocessor Fair Scheduling Using
Distributed Weighted Round-Robin. In PPoPP
’09: Proceedings of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, pages 65–74, New York, NY, USA,
2009. ACM.

[15] T. Li, D. Baumberger, D. A. Koufaty, and
S. Hahn. Efficient Operating System Schedul-
ing for Performance-Asymmetric Multi-Core Ar-
chitectures. In SC ’07: Proceedings of the 2007
ACM/IEEE conference on Supercomputing, 2007.

[16] C. Liao, Z. Liu, L. Huang, , and B. Chapman.
Evaluating OpenMP on Chip MultiThreading
Platforms. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2008.

[17] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanovic,
and J. Kubiatowicz. Tessellation: Space-Time Par-
titioning in a Manycore Client OS. Proceedings
of the First Usenix Workshop on Hot Topics in
Parallelism, 2009.

[18] A. Mandal, A. Porterfield, R. J. Fowler, and M. Y.
Lim. Performance Consistency on Multi-Socket
AMD Opteron Systems. Technical Report TR-08-
07, RENCI, 2008.

[19] Matthew Curtis-Maury and Xiaoning Ding and
Christos Antonopoulos andDimitrios Nikolopou-
los. An Evaluation of OpenMP on Current and
Emerging Multithreaded/Multicore Processors. In
Proceedings of the 1st International Workshop on
OpenMP (IWOMP’05).

[20] The NAS Parallel Benchmarks. Available at
http://www.nas.nasa.gov/Software/NPB.

[21] K. J. Nesbit, M. Moreto, F. J. Cazorla, A. Ramirez,
M. Valero, and J. E. Smith. Multicore Resource
Management. IEEE Micro, 28(3), 2008.

[22] A. Snavely. Symbiotic Jobscheduling For A Si-
multaneous Multithreading Processor. In In Eighth
International Conference on Architectural Support
for Programming Languages and Operating Sys-
tems (ASPLOS), pages 234–244, 2000.

[23] UPC Language Specification, Version 1.0. Avail-
able at http://upc.gwu.edu.

[24] J. Weinberg and A. Snavely. User-guided sym-
biotic space-sharing of real workloads. In ICS
’06: Proceedings of the 20th annual international
conference on Supercomputing, 2006.

[25] S. B. Wickizer, H. Chen, R. Chen, Y. Mao,
F. Kaashoek, R. Morris, A. Pesterev, L. Stein,
M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey: An
Operating System for Many Cores. In Proceedings
of the 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’08),
2008.

[26] L. Xue, O. ozturk, F. Li, M. Kandemir, and
I. Kolcu. Dynamic partitioning of processing and
memory resources in embedded mpsoc architec-
tures. In DATE ’06: Proceedings of the conference
on Design, automation and test in Europe, pages
690–695, 3001 Leuven, Belgium, Belgium, 2006.
European Design and Automation Association.

[27] Y. Zhang, H. Franke, J. Moreira, and A. Sivasub-
ramaniam. An Integrated Approach to Parallel
Scheduling Using Gang-Scheduling, Backfilling
and Migration. In IEEE Transactions on Parallel
and Distributed Systems (TPDS), 2003.


