Global Address Space Applications

Kathy Yelick

NERSC/LBNL and U.C. Berkeley
Algorithm Space

- Reuse
 - Grobner Basis ("Symbolic LU")
 - Asynchronous discrete even simulation
 - Sparse direct solvers
- Regularity
 - Search
 - Sorting
 - Sparse iterative solvers
 - One-sided dense linear algebra
 - Two-sided dense linear algebra
 - FFTs
Scaling Applications

• Machine Parameters
 - Floating point performance
 - Application dependent, not theoretical peak
 - Amount of memory per processor
 - Use 1/10th for algorithm data
 - Communication Overhead
 - Time processor is busy sending a message
 - Cannot be overlapped
 - Communication Latency
 - Time across the network (can be overlapped)
 - Communication Bandwidth
 - Single node and bisection

• Back-of-the envelope calculations!
- 1 GHz * 8 pipes * 8 ALUs/Pipe = 64 GFLOPS/node peak
- 8 Address generators limit performance to 16 Gflops
- 500ns latency, 1 cycle put/get overhead, 100 cycle MP overhead
- Programmability differences too: packing vs. global address space
Effect of Memory Size

- Low overhead is important for
 - Small memory nodes or smaller problem sizes
 - Programmability
Parallel Applications in Titanium

- Genome Application
- Heart simulation
- AMR elliptic and hyperbolic solvers
- Scalable Poisson for infinite domains
- Genome application
- Several smaller benchmarks: EM3D, MatMul, LU, FFT, Join
MOOSE Application

- Problem: Microarray construction
 - Used for genome experiments
 - Possible medical applications long-term
- Microarray Optimal Oligo Selection Engine (MOOSE)
 - A parallel engine for selecting the best oligonucleotide sequences for genetic microarray testing
 - Uses dynamic load balancing within Titanium
Heart Simulation

• Problem: compute blood flow in the heart
 - Model as elastic structure in incompressible fluid.
 - “Immersed Boundary Method” [Peskin and McQueen]
 - Particle/Mesh method stress communication performance
 - 20 years of development in model
 - Many other applications: blood clotting, inner ear, insect flight, embryo growth,…

• Can be used for design of prosthetics
 - Artificial heart valves
 - Cochlear implants
Scalable Poisson Solver

- MLC for Finite-Differences by Balls and Colella
- Poisson equation with infinite boundaries
 - arise in astrophysics, some biological systems, etc.
- Method is scalable
 - Low communication
- Performance on
 - SP2 (shown) and t3e
 - scaled speedups
 - nearly ideal (flat)
- Currently 2D and non-adaptive
- Point charge example shown
 - Rings & star charges
 - Relative error shown

-6.47x10^{-9}
1.31x10^{-9}
• Developed by McCorquodale and Colella
• 2D Example (3D supported)
 - Mach-10 shock on solid surface at oblique angle

• Future: Self-gravitating gas dynamics package
UPC Application Investigations

- Pyramid
 - 3D Mesh generation [Shewchuk]
 - 2D version (triangle) critical in Quake project
 - Written in C, challenge to parallelize
- SuperLU
 - Sparse direct solver [Li,Demmel]
 - Written in C+MPI or threads
 - UPC may enable new algorithmic techniques
- N-Body simulation
 - “Simulating the Universe”
Summary

• UPC Killer App should
 - Leverage programmability: hard in MPI
 - Use fine-grained, irregular, asynchronous communication

• Libraries
 - Must allow for interface to libraries
 - MPI libraries, multithreaded libraries, serial libraries

• Compilation needs
 - High performance on at least one machine
 - Portability across many machines