Evaluation of High-Performance Networks as Compilation Targets for Global Address Space Languages

Mike Welcome

In conjunction with the joint UCB and NERSC/LBL UPC compiler development project

http://upc.nersc.gov
GAS Languages

• Access to remote memory is performed by de-referencing a variable
 • Cost of small (single word) messages is important

• Desirable Qualities of Target Architectures
 • Ability to perform one-sided communication
 • Low latency performance for remote accesses
 • Ability to hide network latency by overlapping communication with computation or other communication
 • Support for collective communication and synchronization operations
Purpose of this Study

• Measure the performance characteristics of various UPC/GAS target architectures.
 • We use micro-benchmarks to measure network parameters, including those defined in the LogP model.

• Given the characteristics of the communication subsystem, should we…
 • Overlap communication with computation?
 • Group communication operations together?
 • Aggregate (pack/unpack) small messages?
Target Architectures

- Cray T3E
 - 3D Torus Interconnect
 - Directly read/write E-registers
- IBM SP
- Quadrics/Alpha Quadrics/Intel
- Myrinet/Intel
- Dolphin/Intel
 - Torus Interconnect
 - NIC on PCI bus
- Giganet/Intel (old, but could foreshadow InfiniBand)
 - Virtual Interface Architecture
 - NIC on PCI bus
IBM SP

- Hardware: NERSC SP – Seaborg
 - 208 - 16 processor Power 3+ SMP nodes running AIX
- Switch Adapters
 - 2 Colony (switch2) adapters per node connected to a 2GB/sec 6XX memory bus (not PCI).
 - No RDMA, reliable delivery or hardware assist in protocol processing
- Software
 - “user space” protocol for kernel bypass
 - 2 MPI libraries – single threaded & thread-safe
 - LAPI
 - Non-blocking one-sided remote memory copy ops
 - Active messages
 - Synchronization via counters and fence (barrier) ops
 - Polling or Interrupt mode
Quadrics

- **Hardware: Oak Ridge —”Falcon” cluster**
 - 64 4-way Alpha 667 MHz SMP nodes running Tru64
- **Low latency network**
 - Onboard 100 MHz processor with 32 MB memory
 - NIC processor can duplicate up to 4 GB of page tables
 - Uses virtual addresses, can handle page faults
 - RDMA allows async, one-sided communication w/o interrupting remote processor.
 - Runs over 66 MHz, 64 bit PCI bus
 - Single switch can handle 128 nodes: federated switches can go up to 1024 nodes
- **Software:**
 - Supports MPI, T3E’s shmem, and ‘elan’ messaging APIs
 - Kernel bypass provided by elan layer
Myrinet 2000

- **Hardware:** UCB Millennium cluster
 - 4-way Intel SMP, 550 MHz with 4GB/node
 - 33 MHz 32 bit PCI bus
 - Myricom NIC: PCI64B
 - 2MB onboard ram
 - 133 MHz LANai 9.0 onboard processor

- **Software:** MPI & GM
 - GM provides:
 - Low-level API to control NIC sends/recvs/polls
 - User space API with kernel bypass
 - Support for zero-copy DMA directly to/from user address space
 - Uses physical addresses, requires memory pinning
The Network Parameters

- **EEL** – End to end latency or time spent sending a short message between two processes.
- **BW** – Large message network bandwidth
- **Parameters of the LogP Model**
 - **L** – “Latency” or time spent on the network
 - During this time, processor can be doing other work
 - **O** – “Overhead” or processor busy time on the sending or receiving side.
 - During this time, processor cannot be doing other work
 - We distinguish between “send” and “recv” overhead
 - **G** – “gap” the rate at which messages can be pushed onto the network.
 - **P** – the number of processors
LogP Parameters: Overhead & Latency

- Non-overlapping overhead

\[EEL = o_{send} + L + o_{recv} \]

- Send and recv overhead can overlap

\[EEL = f(o_{send}, L, o_{recv}) \]
LogP Parameters: gap

- The Gap is the delay between sending messages.
- Gap could be larger than send ovhd
 - NIC may be busy finishing the processing of last message and cannot accept a new one.
 - Flow control or backpressure on the network may prevent the NIC from accepting the next message to send.
- The gap represents the inverse bandwidth of the network for small message sends.
LogP Parameters and Optimizations

- If $\text{gap} > o_{\text{send}}$
 - Arrange code to overlap computation with communication

- The gap value can change if we queue multiple communication operations back-to-back
 - If the gap decreases with increased queue-depth
 - Arrange the code to overlap communication with communication (back-to-back).

- If EEL is invariant of message size, at least for a range of message sizes
 - Aggregate (pack/unpack) short message if possible
Benchmarks

- Designed to measure the network parameters for each target network.
 - Also provide: gap as function of queue depth

- Implemented once in MPI
 - For portability and comparison to target specific layer

- Implemented again in target specific communication layer:
 - LAPI
 - ELAN
 - GM
 - SHMEM
 - VIPL
Benchmark: Ping-Pong

- Measure the round trip time (RTT) for messages of various size
- Report the average RTT of a large number (10000) of message sends.
- EEL = RTT/2 = f(L, o_{send}, o_{recv})
- Approximate:
 - f(L, o_{send}, o_{recv}) = L + o_{send} + o_{recv}
- Also provides large message bandwidth measurement
Benchmark: Flood Test

- Calculate the rate at which messages can be injected into the network.
- Issue N=10000 non-blocking send messages and wait for final ack from receiver.
 - Next send is issued as soon as previous send is complete at sender.
- \(F = 2o + L + N \cdot \max(o_{send}, g) \)
- \(F_{avg} = F/N \sim \max(o_{send}, g) \)
 - For large N
- Can run: Q_Depth >= 1
Benchmark: Overlap Test

- In the overlap test, we interleave send and receive communication calls with a cpu loop of known duration.
- Allows measurement of send and receive overhead.
- Similar to the Flood Test, we can measure the average value of T.
- We vary the “cpu” time until T begins to increase, at T*
 - $o_{send} = T^* - cpu$
- By moving the cpu loop to recv side we measure o_{recv}
Putting it all together…

• From Overlap Test, we get:
 • o_{send}
 • o_{recv}

• From Ping-Pong Test:
 • EEL
 • BW
 • If no overlap of send and receive processing:
 • $L = EEL - o_{send} - o_{recv}$

• From Flood Test:
 • $F_{avg} = \max(o_{send}, g)$
 • If ($F_{avg} > o_{send}$) then
 • $g = F_{avg}$
 • Otherwise
 • cannot measure gap, but its not important
Results: EEL and Overhead

![Bar chart showing send overhead, send & receive overhead, receive overhead, and added latency for different systems such as T3E/IMPI, Quadrics/MP2K, and Giganet/VIPL.](image-url)
Results: Gap and Overhead

<table>
<thead>
<tr>
<th>System</th>
<th>Gap</th>
<th>Send Overhead</th>
<th>Receive Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3E/MPI</td>
<td>6.7</td>
<td>1.2</td>
<td>0.2</td>
</tr>
<tr>
<td>T3E/Shmem</td>
<td>8.2</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>T3E/E-Reg</td>
<td>95.0</td>
<td>6.5</td>
<td>1.6</td>
</tr>
<tr>
<td>IBM/MPI</td>
<td>10.3</td>
<td>17.8</td>
<td>7.8</td>
</tr>
<tr>
<td>IBM/LAPI</td>
<td>4.6</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>Quadrics/MPI</td>
<td>6.7</td>
<td>1.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Quadrics/Put</td>
<td>9.5</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td>Quadrics/Get</td>
<td>6.5</td>
<td>17.8</td>
<td></td>
</tr>
<tr>
<td>M2K/MPI</td>
<td>4.6</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>M2K/GM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolphin/MPI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giganet/VIPL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **Gap**
- **Send Overhead**
- **Receive Overhead**
Flood Test: Overlapping Communication

![Bar chart showing performance of different communication tools under varying qd parameters.](image-url)
Benchmark Results: IBM

<table>
<thead>
<tr>
<th>IBM Performance</th>
<th>O_{send} usec</th>
<th>Gap usec</th>
<th>O_{recv} usec</th>
<th>EEL usec</th>
<th>L usec</th>
<th>BW MB/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM Published</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>17.9</td>
<td>2.5*</td>
<td>500*</td>
</tr>
<tr>
<td>MPI</td>
<td>7.8</td>
<td>7.6</td>
<td>5.4</td>
<td>19.5</td>
<td>6.3</td>
<td>242</td>
</tr>
<tr>
<td>LAPI</td>
<td>9.9</td>
<td>9.5</td>
<td>2.4</td>
<td>21.5</td>
<td>9.4</td>
<td>360</td>
</tr>
</tbody>
</table>

* Theoretical Peak

- High Latency, High Software Overhead
- Gap \sim O_{send}
 - No overlap of computation with communication
- Gap does not vary with number of queued ops
 - No overlap of communication with communication
- LAPI Cost to send 1 byte \sim cost to send 1KB
 - Short message packing is best option
Benchmark Results: Myrinet 2000

<table>
<thead>
<tr>
<th>Myrinet Performance</th>
<th>O\textsubscript{send} usec</th>
<th>Gap usec</th>
<th>O\textsubscript{recv} usec</th>
<th>EEL usec</th>
<th>L usec</th>
<th>BW MB/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myricom Published</td>
<td>0.3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>9</td>
<td>100-130</td>
</tr>
<tr>
<td>GM (measured)</td>
<td>1.3</td>
<td>17.8</td>
<td>~0</td>
<td>12.0</td>
<td>10.7</td>
<td>88</td>
</tr>
</tbody>
</table>

- Small O_{send} and large gap: $g - O_{\text{send}} = 16.5$ usec
 - Overlap of computation with communication a big win
- Big reduction in Gap with queue depth > 1 (5-7 usec)
 - Overlap of communication with communication is useful
- RDMA capability allows for minimal O_{recv}
- Bandwidth limited by 33MHz 32bit PCI bus. Should improve with better bus.
Benchmark Results: Quadrics

<table>
<thead>
<tr>
<th>Quadrics Performance</th>
<th>O_{send} usec</th>
<th>Gap usec</th>
<th>O_{recv} usec</th>
<th>EEL usec</th>
<th>L usec</th>
<th>BW MB/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadrics Published</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>MPI (measured)</td>
<td>1.7</td>
<td>95.0*</td>
<td>6.2</td>
<td>9.9</td>
<td>2.0</td>
<td>470*</td>
</tr>
<tr>
<td>Quadrics Put</td>
<td>0.5</td>
<td>1.6</td>
<td>~0</td>
<td>1.7</td>
<td>1.2</td>
<td>180</td>
</tr>
</tbody>
</table>

- Observed one-way msg time slightly better than advertised!
- Using shmem/elan is big savings over MPI for latency and CPU overhead.
- No CPU overhead on remote processor w/shmem
- Some computation overlap is possible
- MPI implementation a bit flaky…

* MPI Bugs?
General Conclusions

- **Overlap of Computation with Communication**
 - A win on systems with HW support for protocol processing
 - Myrinet, Quadrics, Giganet
 - $\text{MPI } o_{\text{send}} \sim$ gap on most systems: no overlap.

- **Overlap of Communication with Communication**
 - Win on Myrinet, Quadrics, Giganet
 - Most MPI implementation exhibit this to a minor extent

- **Aggregation of small messages (pack/unpack)**
 - A win on all systems
Old/Extra Slides
Quadrics

Advertised Bandwidth/latency, with PCI bottleneck shown
IBM SP – Hardware Used

- **NERSC SP – Seaborg**
 - 208 - 16 processor Power 3+ SMP nodes
 - 16 – 64 GB memory per node

- **Switch Adapters**
 - 2 Colony (switch2) adapters per node connected to a 2GB/sec 6XX memory bus (not PCI).
 - Csss “bonding” driver will multiplex through both adapters
 - On-board 740 PowerPC processor
 - On-board firmware and RamBus memory for segmentation and re-assembly of user packets to and from 1KB switch packets.
 - No RDMA, reliable delivery or hardware assist in protocol processing
IBM SP - Software

• AIX “user space” protocol for kernel bypass access to switch adapter
• 2 MPI libraries – single threaded and thread-safe
 • Thread-safe version increases RTT latency by 10-15 usec
• LAPI – Lowest level comm API exported to user
 • Non-blocking one-sided remote memory copy ops
 • Active messages
 • Synchronization via counters and fence (barrier) ops
 • Thread-safe (locking overhead)
• Mulit-threaded implementation:
 • Notification thread (progress engine)
 • Completion handler thread for active messages
• Polling or Interrupt mode
• Software based flow-control and reliable delivery (overhead)
Quadrics

• Low latency network, w/100 MHz processor on NIC
 • RDMA allows async, one-sided communication w/o interrupting remote processor.
 • Supports MPI, T3E’s shmem, and ‘elan’ messaging APIs.
 • Advertised one way latency as low as 2 us (5 us for MPI).
 • Single switch can handle 128 nodes: federated switches can go up to 1024 nodes (Pittsburgh running 750 nodes).
 • NIC processor can duplicate up to 4 GB of page tables—good for global address space languages.
 • Runs over PCI bus—limits both latency & bandwidth

4 node cluster at Oak Ridge Nat’l Lab—”Falcon”

 4 4-way Alpha 667 MHz SMP nodes running Tru64

 6 MHz, 64 bit PCI bus

Future work: look at Intel/Linux Quadrics cluster at LLNL
Myrinet 2000

- **Hardware:** UCB Millennium cluster
 - 4-way Intel SMP, 550 MHz with 4GB/node
 - 33 MHz 32 bit PCI bus
 - Myricom NIC: PCI64B
 - 2MB onboard ram
 - 133 MHz LANai 9.0 onboard processor

- **Software:** GM
 - Low-level API to control NIC sends/recvs/polls
 - User space API with kernel bypass
 - Support for zero-copy DMA directly to/from user address space