UPC Applications

Parry Husbands
Roadmap

- Benchmark small applications and kernels
 - SPMV (for iterative linear/eigen solvers)
 - Multigrid
- Develop sense of portable UPC programming style (using T3E and Compaq AlphaServer)
- Motivate and evaluate compiler optimizations
- Move to larger applications
 - Candidates should be hard with current techniques:
 - Large N-body problems
 - Sparse Direct Methods
 - 3-D Mesh Generation
...
Sparse Matrix-Vector Multiplication

- $Ax=b$ with A sparse
- Distributed Compressed Row Format Used for A
- Vectors distributed across processors
- Communication of elements of x needed to compute b

\[
\begin{array}{cccc}
 x_0 & x_1 & x_2 & x_3 \\
 \hline
 A_0 & & & b_0 \\
 A_1 & & & b_1 \\
 A_2 & & & b_2 \\
 A_3 & & & b_3 \\
\end{array}
\]
Communication Strategies

• Need to send elements of x to processors that need them
 — Individual sends?
 — Pack?
 — Prefetch?

• Try to overlap communication with computation
 — Initiate communication
 — Do some local computation
 — Wait for remote elements
 — Compute on remote elements
T3E Results

SPMV on T3E in UPC

MFLOPS

Processors

Lawrence Berkeley National Laboratory
Compaq Results (1)

SPMV on Compaq in UPC

MFLOPS vs. Processors

- MPI (Aztec)
- UPC Small
SPMV on Compaq in UPC and MPI (4 procs/node)
Discussion

• Small message version required access to low latency messaging for performance
 – Manually done on T3E
 – Under investigation on Compaq
• Pack/Unpack version gives best portable performance
 – Relies on large messages (usually best performing)
 – Requires more source code
 – Investigating inspector/executor techniques
• Proposal
 – Make life easy for the compiler and add a pragma:
 #pragma prefetch(vector, indices)
Multigrid

- Taken from NAS Parallel Benchmarks
 - Hierarchy of grids ($256^3 \rightarrow 2^3$)
 - Project down to coarsest grid
 - Solve
 - Prolongate and smooth back up to finest grid
- Operators all involve nearest neighbour computations in 3-d and ghost region exchanges
- Code based on OpenMP version from RWCP
- Simple domain decomposition scheme used to map 3-d grid to a 3-d processor grid.
- On T3E computation compiled with CC (multidimensional array performance poor with gcc)
Data Structures

- For grid large, static distributed array not feasible
 - Difficult to change sizes at runtime
 - Need to access through local pointers for performance
 (avoid A[i] for pointer to shared A)
- Pointers to local regions (upc_local_alloc()’d) used instead
 - Can easily access any global element
 - Directory can be cached locally
T3E Results – Class B (256³)

MG Class B -- T3E

- Mops/s
- Processors

Lines represent:
- UPC
- MPI
- Linear
T3E Results - Class C (512³)

MG Class C -- T3E

Mops/s

Processors

UPC
MPI
linear
Outperform MPI Fortran version on T3E!
Single processor performance an issue
No speedups past 8 processors on Compaq
 - Spins to signal incoming variables
 - May need to reorganize communication
No small message version yet. Probably not worth it on Compaq.