
A preliminary evaluation of the hardware
acceleration of the Cray Gemini Interconnect

for PGAS languages and comparison with MPI

Hongzhang Shan Nicholas J. Wright
John Shalf Katherine Yelick

CRD and NERSC, Lawrence Berkeley National
Laboratory, Berkeley, CA 94720

hshan, njwright, jshalf, kayelick@lbl.gov

Marcus Wagner Nathan Wichmann
Cray Inc. 380 Jackson Street, Suite 210, St. Paul, MN

55101
marcus, wichmann@cray.com

Abstract
The Gemini interconnect on the Cray XE6 platform provides for
lightweight remote direct memory access (RDMA) between nodes,
which is useful for implementing partitioned global address space
languages like UPC and Co-Array Fortran. In this paper, we per-
form a study of Gemini performance using a set of communication
microbenchmarks and compare the performance of one-sided com-
munication in PGAS languages with two-sided MPI. Our results
demonstrate the performance benefits of the PGAS model on Gem-
ini hardware, showing in what circumstances and by how much
one-sided communication outperforms two-sided in terms of mes-
saging rate, aggregate bandwidth, and computation and communi-
cation overlap capability. For example, for 8-byte and 2KB mes-
sages the one-sided messaging rate is 5 and 10 times greater re-
spectively than the two-sided one. The study also reveals important
information about how to optimize one-sided Gemini communica-
tion.

Keywords PGAS, CAF, UPC, MPI, Gemini, Hardware Accelera-
tion, Performance, Message Rate, Overlap

1. Introduction
The classic parallel programming model, MPI, faces several new
challenges on petaflop computing platforms, which are dominated
by multicore-node architectures [9, 26]. These challenges include
a reduced amount of memory per core, reduced memory and net-
work bandwidth per core, and the inefficiency of using two-sided
messages to handle a large amount of fine-grain communication.
To address these challenges, researchers are starting to investigate
other programming models to understand whether they could re-
place or used in combination with MPI.

Among these studied programming models, the Partitioned
Global Address Space (PGAS) family of languages show great
promise as the near-term alternative to MPI. Co-Array Fortran
(CAF) [19] and Unified Parallel C (UPC) [5] are two representative
examples of such languages. Compared with MPI, a big difference
is that PGAS provides a global shared address space while con-
trolling locality. This is designed to simplify programming as with
this global shared space abstraction PGAS languages allow the
ability to directly build distributed data structures that can be ac-
cessed throughout the machine. By integrating communication and
synchronization into the language itself, PGAS languages allow
the compiler or runtime system to distribute and schedule remote
memory accesses in an optimal manner without the need for main-
taining a global, uniform access view of memory on a distributed

memory system [1]. In contrast in MPI each process has only a pri-
vate address space and the communication must be done explicitly.
It is therefore difficult for the compiler to optimize communication
and the MPI program developer has to be fully responsible for the
communication optimization, and obtaining any possible overlap
with computation.

In CAF, program instances are called images and global vari-
ables are allocated symmetrically across all images. An extended
array index in square brackets is used to reference data access
across different images. The subscripts for this extended array in-
dices are the image rank starting from 1, indicating the physical
location of the data. Accesses to these global data, called co-arrays,
will result in remote memory accesses that are similar to remote
memory put and get operations. In UPC, the global variables are
defined by language keyword “shared”, and they can be accessed
by all UPC threads. By default, the variables will be allocated on
thread 0. However, UPC provides a block-cyclic method to dis-
tribute the data in a round-robin fashion across all threads.

Both CAF and UPC have been around for a decade or so. How-
ever these two languages still have not been widely adopted by user
community; partly because of the lack of a developer environment,
and partly because not enough convincing performance results have
been presented to demonstrate they are superior and viable alterna-
tives to the MPI programming model.

Hopper is a 1.28 PF peak Cray XE6 computing platform re-
cently installed at NERSC. The defining feature of this platform
is the custom interconnect, called Gemini, which provides a hard-
ware accelerated global address space and allows remote direct
memory access (RDMA) from any node to any other in the sys-
tem. In this work, we will investigate what the effect of this special
Gemini hardware support for global address space and one-sided
messaging is upon the performance of the PGAS languages. We
compare whether PGAS languages can outperform MPI, with an
aim to determining if PGAS is a superior and viable alternative
to MPI and under which circumstances. Note that we only com-
pare PGAS performance with MPI two-sided messaging, because
in our experience MPI one-sided functions are rarely used in scien-
tific applications, which often leads to poor performance because
of sub-optimal implementations.

The principle contributions of this paper are

• We translated several popular MPI benchmarks into PGAS lan-
guages to measure network bandwidth and messaging rate and
facilitate comparisons. Our results show that in the bandwidth
limit, with large messages, MPI and PGAS performance is iden-
tical. For medium-sized and small messages, the lower over-

1

head of the single-sided PGAS messages allows greater effec-
tive bandwidths to be achieved.

• We developed a version of the STREAM benchmark using CAF
and showed that the RDMA operations executed by the Gem-
ini allow very high STREAM copy bandwidths to be achieved.
We also show that the STREAM benchmark can be optimized
to overlap computation and communication, enabling substan-
tial performance improvement over the naive version for the
remaining operations (Scale, Add and Triad.)

• We developed an independent micro-benchmark to measure
the capability to overlap computation and communication for
PGAS languages and MPI. Our results show that with large
messages almost complete overlap of computation and com-
munication is possible with PGAS languages using Gemini
whereas with MPI this is currently not possible.

• We translated the NAS FT benchmark into Co-Array Fortran
and achieved up to 2.8× the performance of the original MPI
version on 16K cores.

The paper is organized as follows. Related work is discussed in Sec-
tion 2. Section 3 describes the experimental platforms. The messag-
ing rate is examined in Section 4. As the number of cores on the fu-
ture supercomputing platforms increases rapidly, the average mes-
sage size will become smaller, therefore overall performance will
become more sensitive to the performance of fine-grain communi-
cation thus the throughput of small messages is carefully studied
in this section. The performance and optimization of the STREAM
benchmark is discussed in Section 5. Section 6 examines the capa-
bility of PGAS and MPI to overlap computation and communica-
tion. In Section 7, we compare the performance differences of an
MPI and a CAF version of the NAS FT benchmark. Finally, we
summarize our conclusions and future work in Section 8.

2. Related Work
The related work can be divided into two categories based on
the programming models used: CAF and UPC. For CAF, Mellor-
Crummey et al. have proposed Co-array Fortran 2.0 [14]. Their
CAF2.0 compiler uses a source-to-source translator to convert CAF
code into Fortran 90 (F90) with calls to a low-level one-sided com-
munication library such as GASNet. The CAF programs have been
converted from their MPI counterparts and some optimizations
have been made to improve the CAF performance. The applications
include MG, CG, BT, and SP from the NAS parallel benchmark
suite and the Sweep3D neutron transport benchmark. The codes
have been tested on several small clusters which consist of dif-
ferent processors and networks. The CAF programs show nearly
equal or slightly better performance than their MPI counterparts
[6, 7]. Recently, the CAF2.0 version of High Performance Comput-
ing Challenge Benchmark suite has been developed and tested on a
Cray XT4 platform [10]. They have scaled several benchmark ap-
plications to 4096 CPU cores and shown CAF2.0 is a viable PGAS
programming model for scalable parallel computing.

Barrett [3] studied different Co-array Fortran implementations
of Finite Differencing Methods on Cray X1 and found that CAF
exhibits better performance for smaller grid sizes and similar re-
sults for larger ones. Numrich et al. [20] developed a Co-array
enabled Multigrid solver focusing primarily on programmability
aspects. Bala et al. [2] demonstrated performance improvements
over MPI in a molecular dynamics application on a legacy HPC
platform (Cray T3E). In addition, parallel linear algebra kernels
for tensors [18] and matrices [22] benefit from a Co-array based
one-sided communication model due to a raised level of abstrac-
tion with little or no loss of performance over MPI.

Comparing the performance of UPC and MPI have been the
subject of many papers [4, 8, 11, 13, 16, 23]. Mallon et.al. [13]
evaluated the performance of MPI, OpenMP, and UPC on a ma-
chine with 142 HP Integrity rx7640 nodes interconnected via In-
finiBand. The authors claim that MPI is the best choice to use on
multicore platforms, as it takes the highest advantage of data lo-
cality. El-Ghazawi and Cantonnet [8] discussed UPC performance
and potential advantage using NPB applications. With proper hand
tuning and optimized collective libraries, UPC delivered compa-
rable performance to MPI. Shan [23] and Jin [11] also compared
the performance of NPB on several different platforms and similar
conclusions were drawn. Nishtala and other researchers [4, 16] dis-
cussed the scaling behavior and better performance of NAS FT for
UPC on several different platforms using the Berkeley UPC com-
piler with GASNET communication system. The UPC version is
developed from scratch to take advantage of the lower overhead of
the one-sided communication and the overlap of communication
and computation.

The principle difference of our study is that it is performed on a
platform with the Cray Gemini interconnect which provides hard-
ware acceleration for one-sided communication, which is advan-
tageous for the performance of PGAS languages. In this study, we
examine how this special hardware support affects the performance
of PGAS languages as compared to MPI.

3. Experimental Platform
3.1 Hopper
A majority of our work has been performed on a Cray XE6 plat-
form, called Hopper, which is located at NERSC and consists of
6,384 dual-socket nodes each with 32GB of memory. Each socket
within a node contains an AMD “Magny-Cours” processor at 2.1
GHz with 12 cores. Each Magny-Cours package is itself a MCM
(Multi-Chip Module) containing two hex-core dies connected via
hyper-transport. (See Fig. 1.) Each die has its own memory con-
troller that is connected to two 4-GB DIMMS. This means each
node can effectively be viewed as having four chips and there are
large potential performance penalties for crossing the NUMA do-
mains. Every pair of nodes is connected via hypertransport to a
Cray Gemini network chip, which collectively form a 17x8x24 3-
D torus. (See Fig. 2.)

In this work we used the Cray compiler version 7.4.0 which
provides support for Co-Array Fortran (CAF) and Unified Parallel
C (UPC). The Cray compiler supports different kinds of compiler
directives to control synchronization points and different commu-
nication approaches. The most significant one for this work is the
#PRAGMA PGAS DEFER SYNC pragma which instructs the compiler
to make the PGAS communication event on the following source
code line non-blocking, thus allowing the potential for overlap of
computation and communication. Note that this is not analogous
to overlap of communication and computation with MPI. In that
case the aim is to allow both the sender and receiver can perform
computation whilst the message is in flight. In this case the thread
or image being put to (or got from) is not directly involved in the
single-sided communication event and is already able to compute
while it is being communicated with.

Figure 1. The node architecture of Hopper.

2

3.1.1 Gemini
The defining feature of the Cray XE6 architecture is the Gemini
interconnect, which provides a global address space. There are
two mechanisms to transfer the internode messages using one-
sided communication with Gemini. The first is uses Fast Memory
Access (FMA) and the second uses the Block Transfer Engine
(BTE). The FMA transport mechanism involves the CPU, has low
latency and more than one transfer can be active at the same time.
Transfers using the BTE are performed by the Gemini network
chip, asynchronously with CPU so that the communication and
computation can overlap. The FMA mechanism enables native
processor stores to a memory-mapped window to initiate network
transaction directly from user mode. For PUTs, the store contains
data to be stored at the remote destination. For GETs, the store
contains a control word that indicates where the result of the GET
should be deposited in local memory [12]. The BTE allows direct
memory transfers between different nodes. Transmit descriptors are
used to specify both the local and remote memory addresses of
the transfers. The descriptors have to be processed via a hardware
transmit queue which does not have direct access in user mode. In
general, FMA is used to transfer short messages and BTE for long
messages. The point at which this transition occurs is controlled by
the MPICH GNI RDMA THRESHOLD environment variable for MPI
and by PGAS OFFLOAD THRESHOLD for PGAS languages.

All the results shown here using two nodes are for two nodes
connected to different Gemini’s, unless otherwise mentioned.

Figure 2. The Gemini interconnect on Hopper.

3.2 Franklin
For comparison purposes, we also performed some of the tests
on a Cray XT4 platform, called Franklin, which is also located
at NERSC. Each node consists of a quad-core AMD Budapest
2.3GHz processor and 8 GB DDR3 800 MHz memory. The nodes
are connected through a proprietary SeaStar2 interconnect which is
designed to optimize MPI performance by handling the handshak-
ing protocol needed by MPI. As with Hopper the interconnect is a
3D-torus but in this case each node represents a distinct point on
the torus.

4. Messaging Rate
Messaging rate is an important performance metric for measuring
the viability of the interconnects on HPC platforms, especially for

PGAS programming languages [25]. Also, as we look towards ex-
ascale architectures, where because of memory constraints prob-
lems are likely to be strong-scaled, messaging rate is likely to be-
come a more and more important performance metric.

4.1 Implementation
The MPI version is obtained from OSU Micro benchmark suite [15]
and slightly changed to use a different buffer for each iteration. In
the MPI version, a process sends a series of same size messages to
its partner using nonblocking MPI Isend. The number of messages
in is determined by a variable called “window size” and our exper-
iments show that setting the window size to 64 is large enough to
achieve converged performance. After the partner has received all
the messages, it will send an acknowledgement back to the sender.
In the CAF implementation, the nonblocking MPI Isend is substi-
tuted by a loop with direct load/store assignment (corresponding
to one-sided put operation). However for each loop iteration the
starting address is incremented by one so that the data sent is not
contiguous between loop iterations. This prevents the compiler col-
lapsing the loop into one put. In order to ensure that non-blocking
communication was used the delayed synchronization compiler di-
rective pgas defer sync was used. Then, at the end, a synchroniza-
tion is called to ensure all data have been received.

4.2 Performance
The codes are executed using two sets of processes, one on each
node. The messaging rate between two nodes using 1, 6, and 24
communicating pairs per node for CAF and MPI are shown in
Fig. 3 and 4 respectively. (The two nodes have a 1-hop network
distance.) For small messages, MPI achieves the best performance
when 6 pairs are used, a rate of 9 million messages per second.
Using 24 pairs, the message rate drops slightly. 1 On the contrary,
the message rates of CAF for small messages increase steadily with
the number of communicating pairs used. The best performance is
obtained when 24 pairs are used, which is about 4.7 times better
than the best MPI message rate. CAF clearly shows much better
scalability for small messages.

We also measured the messaging rate using get instead of put
for CAF. In the bandwidth limit, as one might expect, the get
and put performance is identical. However, for small messages put
performs significantly better than get. The messaging rates with 8-
byte messages are 1.46, 1.64, and 3.46× greater than get using one,
six, and 24 pairs respectively.

0	

1,000,000	

2,000,000	

3,000,000	

4,000,000	

5,000,000	

6,000,000	

7,000,000	

8,000,000	

9,000,000	

10,000,000	

8	 16
	

32
	

64
	

12
8	

25
6	

51
2	 1K
	

2K
	

4K
	

8K
	

16
K	

32
K	

64
K	

12
8K

	

25
6K

	

51
2K

	

1M
	

2M
	

M
es
sa
ge
	 R
at
e	
fo
r	
M
PI
	

Message	 Size	 (Byte)	

6	 Pairs	

24	 Pairs	

1	 Pair	

Figure 3. The messaging rate for MPI using 1, 6, and 24 pairs per
node.

1 Note that in order to achieve this result with 24 pairs the environment
variable MPICH GNI MBOX PLACEMENT was changed to “nic”. With
it set to the default value the performance for 24 pairs is approximately
equal to that for one pair.

3

0	

5,000,000	

10,000,000	

15,000,000	

20,000,000	

25,000,000	

30,000,000	

35,000,000	

40,000,000	

45,000,000	

50,000,000	

8	 16
	

32
	

64
	

12
8	

25
6	

51
2	 1K
	

2K
	

4K
	

8K
	

16
K	

32
K	

64
K	

12
8K

	

25
6K

	

51
2K

	

1M
	

2M
	

M
es
sa
ge
	 R
at
e	
fo
r	
CA

F	

Message	 Size	 (byte)	

24	 Pairs	

6	 Pairs	

1	 Pair	

Figure 4. The messaging rate for CAF using 1, 6, and 24 pairs per
node.

Fig. 5 shows in detail the performance differences for 8 byte
messages between MPI and CAF using from 1 to 24 pairs between
two nodes. The peak performance of MPI increases up until when
6 pairs are used. After that point, the performance no longer im-
proves. On the contrary, the performance of CAF keeps going up
as more pairs are used and is several times better than MPI when 24
pairs are used. The increase with adding more and more communi-
cating pairs is not linear though, for example the sixth pair achieves
almost half of the overall aggregate rate. The principle difference
between MPI and CAF is that CAF is using the low-level single-
sided messaging, whereas MPI is using two-sided messaging.

The CAF rate drops slightly going from 6 to 7 and 11 to 12 pairs.
Presumably in these cases the extra amount of requests produced by
adding one core is offset by the increased contention introduced.

0	

5,000,000	

10,000,000	

15,000,000	

20,000,000	

25,000,000	

30,000,000	

35,000,000	

40,000,000	

45,000,000	

50,000,000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	

M
es
sa
ge
	 R
at
e	

No.	 of	 Pairs	

CAF	

MPI	

Figure 5. The scaling behavior of MPI and CAF between two
nodes for 8-byte message.

0.00	

1.00	

2.00	

3.00	

4.00	

5.00	

6.00	

7.00	

8	 16
	

32
	

64
	

12
8	

25
6	

51
2	 1K
	

2K
	

4K
	

8K
	

16
K	

32
K	

64
K	

12
8K

	
25
6K

	
51
2K

	
1M

	
2M

	

A
gg
re
ga
te
	 B
W
	 (G

B/
s)
	

Message	 Size	 (Bytes)	

CAF	 24	 Pairs	

CAF	 1	 Pair	

MPI	 24	 Pairs	

MPI	 1	 Pair	

Figure 6. The corresponding bandwidth of MPI and CAF for mes-
sage rates in Fig. 3 and 4.

The corresponding bandwidths for the message rates shown in
Fig. 3 and 4 are shown in Fig. 6. The CAF performance increases
much faster with increasing message size. The main performance
difference between CAF and MPI occurs for message sizes in the
middle of the range where the benefits of single-sided messaging
are mostly strongly felt. For a 512 byte message, using 24 pairs,
the CAF performance has reached 4.75 GB/s, which is much higher
than the corresponding MPI bandwidth of 2.4 GB/s. This result in-
dicates that for PGAS languages, by using more frequent medium-
sized messages instead of the large bulk transfers favored by ex-
plicit message passing, better performance can be achieved due to
increased messaging rate and less network contention. This is in
agreement with a recent study of the GTS fusion application on a
Cray XE6 [21].

For very small messages aggregation is still necessary. As
shown in Fig. 4, the messaging rate for 8-byte and 16-byte mes-
sages is very close, thus using 16-byte messages will achieve al-
most double the bandwidth of 8-byte messages. Even so, because
of the increased messaging rate, in the latency limit the PGAS
effective bandwidth for 8-bytes messages is about 4.5× the MPI
one.

As the message size increases there is a performance drop for
MPI when the message size reaches 1KB. This is the threshold
value for switching from using FMA to using the BTE for trans-
ferring internode MPI message data. The startup cost for the BTE
is the reason for the sudden performance drop, which cannot be
amortized well for such small message sizes.

There is also a performance drop for CAF when the message
size reaches 4096 bytes, which is the threshold in CAF to switch
from the FMA mechanism to using the BTE. We also note that
as more communicating pairs are used, the phenomenon becomes
more explicit, which is simply because the BTE processes requests
through the kernel and therefore sequentially which means the
startup cost will be accumulated as more communicating pairs are
used.

Using one pair the highest bandwidth for CAF is around 6GB/s,
which is close to the peak injection bandwidth to the Gemini in-
terconnect from a node. Using 24 pairs this is reduced to around 5
GB/s, presumably because of contention for resources. The highest
bandwidth for MPI is achieved using 1 pair and is a little lower than
the CAF result, around 5.5GB/s.

4.3 Performance on Cray XT4 with SeaStar Interconnect
In order to better understand the performance benefits of the Gem-
ini interconnect for PGAS languages, we examined the message
rates on Franklin, a Cray XT4 platform, with a custom SeaStar
interconnect. The SeaStar interconnect does not support a global
shared address space. Instead it was designed to optimize the MPI
performance, managing the handshaking protocol.

The XT4 messaging rates for MPI and CAF for one and four
pairs over two nodes are shown in Fig. 7 and the corresponding
aggregate bandwidths are displayed in Fig. 8. For large messages,
both MPI and CAF deliver very similar performance and the net-
work can be saturated easily by using 1 pair only. For the smallest
messages, especially 8 and 16 bytes, contrary to the Hopper results,
MPI performs much better than CAF. Across all the rest of the mes-
sage size range the differences in performance between MPI and
CAF are less significant, and the noticeable differences that were
present for Gemini are not longer present, due to the absence of
hardware acceleration for one-sided messaging.

The absolute message rate of CAF and MPI for 8 bytes and 2M
bytes messages on SeaStar and Gemini Interconnects are shown in
Table 1. They are measured using 1 communication pair. For 8-
byte messages, on SeaStar, it’s the MPI that achieves the best per-
formance while on Gemini, it’s CAF. From SeaStar to Gemini, the

4

Table 1. The message rate for 8B and 2MB messages using 1 pair on SeaStar and Gemini Interconnects
SeaStar Gemini Gemini/SeaStar

CAF MPI CAF/MPI CAF MPI CAF/MPI CAF MPI
8B 86,347 325,053 0.27 3,625,000 1,903,663 1.90 41.98 5.86

512B 87,850 203,633 0.43 2,315,000 1,201,215 1.93 26.35 5.90
2MB 846 847 1.00 3,074 2,812 1.09 3.63 3.32

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

400000	

450000	

8	 16
	

32
	

64
	

12
8	

25
6	

51
2	 1K
	

2K
	

4K
	

8K
	

16
K	

32
K	

64
K	

12
8K

	
25
6K

	
51
2K

	
1M

	
2M

	

M
es
sa
ge
	 R
at
e	

Message	 Size	 (Bytes)	

MPI	 4	 Pairs	

MPI	 1	 Pair	

CAF	 4	 Pairs	

CAF	 1	 Pair	

Figure 7. The message rates for MPI and CAF on XT4 for 1 and
4 pairs communicating per node.

0.0000	

0.2000	

0.4000	

0.6000	

0.8000	

1.0000	

1.2000	

1.4000	

1.6000	

1.8000	

8	 16
	

32
	

64
	

12
8	

25
6	

51
2	 1K
	

2K
	

4K
	

8K
	

16
K	

32
K	

64
K	

12
8K

	

25
6K

	

51
2K

	

1M
	

2M
	

A
gg
re
ga
te
	 B
W
	 (G

B/
s)
	

Message	 Size	 (Bytes)	

MPI	 4	 Pairs	

MPI	 1	 Pair	

CAF	 4	 Pairs	

CAF	 1	 pair	

Figure 8. The bandwidth corresponding to the Message Rate Mea-
surements for MPI and CAF on XT4 for one and four communicat-
ing pairs per node.

MPI performance has been improved about 6 times while the CAF
performance have been increased over 40 times. The results clearly
demonstrated the critical importance of the hardware support to
programming models and languages. For 2MB messages, the per-
formance will be bound by the network bandwidth. On SeaStar,
both MPI and CAF deliver similar performance while on Gemini,
CAF performs slightly better. As one might expect in the bandwidth
limit the importance of the hardware support is diminished.

The performance differences between the XE6 and XT4 are
shown in figures 9 and 10. Fig. 9 shows the ratio of the CAF to MPI
performance for the two systems as a function of message size and
illustrates the benefits of the hardware acceleration for PGAS. In
the best case, for 1024 byte messages, CAF is almost 10 times faster
than MPI on the XE6, whereas on the XT4 CAF is never faster.
Fig.10 shows the Gemini/Seastar (XE6/XT4)performance ratio for
CAF and MPI. Apart from the fluctuations in the performance
caused by the change in protocol the MPI performance ratio is

0.10	

1.00	

10.00	

8	 16
	

32
	

64
	

12
8	

25
6	

51
2	

10
24
	

20
48
	

40
96
	

81
92
	

16
38
4	

32
76
8	

65
53
6	

13
10
72
	

26
21
44
	

52
42
88
	

10
48
57
6	

20
97
15
2	

CA
F	
/	
M
PI
	

Message	 Size	 (Bytes)	

SeaStar	

Gemini	

Figure 9. Ratio of the CAF performance to the MPI for the Gemini
(XE6) and SeaStar (XT4) based machines.

1.00	

10.00	

100.00	

8	 16
	

32
	

64
	

12
8	

25
6	

51
2	

10
24
	

20
48
	

40
96
	

81
92
	

16
38
4	

32
76
8	

65
53
6	

13
10
72
	

26
21
44
	

52
42
88
	

10
48
57
6	

20
97
15
2	

G
em

in
i	 /
	 S
ea
St
ar
	

Message	 Size	 (Bytes)	

CAF	

MPI	

Figure 10. Ratio of the Gemini (XE6) to SeaStar (XT4) perfor-
mance for CAF and MPI.

always significantly less than the CAF one. For both machines, the
performance differences between MPI and CAF are not present in
the bandwidth limit.

5. STREAM
STREAM is a benchmark that has been used extensively to mea-
sure memory bandwidth [24]. It measures the performance for four
array operations: Copy, Scale, Add, and Triad. In this section, we
created a CAF version of STREAM. Instead of measuring the
memory bandwidth, we focus on communication. Compared with
Message Rate benchmarks, it involves computation as well as com-
munication and measures the compilers ability to coalesce off-node
memory accesses for optimal performance.

5.1 Implementation
Table 2 lists how the four local array operations are adapted into
communication in our CAF implementation. Similar to the Mes-
sage Rate benchmark, each CAF image has a peer to communi-
cate with it and the communication is done via get-style operations.

5

Table 2. STREAM Operations in CAF.
Sequential CAF

Copy c(1:n) = a(1:n) c(1:n) = a(1:n)[peer]
Scale b(1:n) = scalar*c(1:n) b(1:n) = scalar*c(1:n)[peer]
Add c(1:n) = a(1:n) + b(1:n) c(1:n) = a(1:n)[peer] + b(1:n)[peer]
Triad a(1:n) = b(1:n) + scalar*c(1:n) a(1:n) = b(1:n)[peer] + scalar*c(1:n)[peer]

These experiments are performed using two nodes, with either one
or 24 communicating pairs per node. (The communication is bi-
directional.)

5.2 Performance
The performance of these four array operations using two different
nodes are shown in Fig. 11 (labeled as CAF). (Each array is 4
Million double-precision words long - about 32 MB.)

0.0	

5.0	

10.0	

15.0	

20.0	

CAF	 Naïve	 CAF	 OPT	

A
gg
re
ga
te
	 B
W
	 (G

B/
s)
	

Copy	 Scale	 Add	 Triad	

Figure 11. The STREAM bandwidth between two nodes using 1
pair.

0.0	

5.0	

10.0	

15.0	

20.0	

CAF	 Naïve	 CAF	 OPT	

A
gg
re
ga
te
	 B
W
	 (G

B/
s)
	

Copy	 Scale	 Add	 Triad	

Figure 12. The STREAM bandwidth between two nodes using 24
pairs.

Firstly, focusing our attention of the first set of bars that repre-
sent the results for the naive CAF implementation, we notice that
the Copy bandwidth is much higher than the peak injection band-
widths (2*6 GB/s). This is related with the bandwidth calculation
formula. In STREAM, the sizes of both the source array a and des-
tination array c are included in the computation of the bandwidth.
However, when the BTE is used only the source array a needs to be
accessed across the interconnect and destination array c is directly
overwritten in place using an RDMA style operation, thus the total
amount of data moved is overestimated by a factor of two. If we
divide the STREAM copy bandwidth by two, the result falls below
the peak injection bandwidth. If we replace the peer in our CAF
code to this image(), i.e., using local memory operations to replace

the communication, all four operations deliver almost identical per-
formance, albeit with a slightly reduced bandwidth as RDMA op-
erations will no longer be used.

For other three operations the whole arrays have been di-
vided into 2048-byte blocks. For each block, in addition to calling
pgas memget nb to fetch the data, they also need to be routed to
CPU to perform additional computations on them, leading to the
lower reported bandwidth. There are two problems with the above
approach generated by the compiler. First, using 2048-byte mes-
sages is not the optimal option to saturate the network bandwidth
using one core on each node. From Fig. 6, we find that for such
message size, using 1 pair, the corresponding bandwidth is below
than 3 GB/s, far from the 6GB/s peak. Secondly, there is no overlap
between the data transfer and computations.

To address these two problems, we perform two optimizations .
First, we use a larger block size, then we overlap the computa-

tion and communication. For this purpose, we divide the array into
blocks, and overlap the communication and computation through
pipelining. The changed code for Scale is shown as following:

b(1:block) = c(1:block)[peer]
DO i = 1, nblock-1
!dir$ pgas defer_sync
b(i*block+1 : (i+1)*block) =

c(i*block+1 : (i+1)*block)[peer]
b((i-1)*block+1 : i*block) =

scalar *b((i-1)*block+1 : i*block)
call sync_memory();

ENDDO
i = nblock
b((i-1)*block+1 : i*block) =

scalar * b((i-1)*block+1 : i*block)

One can imagine using similar schemes for Add and Triad, using
an extra buffer array of size block. The overlapped results are also
shown in Fig. 11 labelled as CAF OPT, which is obtained when the
block size is 256K double precision words. The performances of
all three operations, Scale, Add, and Triad, improves substantially,
more than three times better than the naive results.

Fig. 12 shows the STREAM performance using 24 pairs (two
full nodes) to communicate. The performance of Copy is slightly
lower than that of using 1 pair, probably due to greater contention
for resources, as all of the Gemini traffic is routed through die 0 as
that is the one with the direct HT link. These results are consistent
with Fig. 6. Using 24 pairs, the Scale, Sum, and Triad operations
perform much better than using 1 pair. Using more pairs signifi-
cantly improves the aggregate network bandwidth. The difference
between the performance of Copy and other three operations also
becomes smaller, especially the Scale operation.

5.3 Effects of Compiler Optimization Flags
To further study the effects of the compiler optimizations upon per-
formance, we examine the bandwidth differences for STREAM be-
tween two different optimization flags “-O0” and “-O2” (the default
case). The results are reported in Table 3 for the naive CAF ver-
sion using 1 pair between two nodes. With“-O2” optimization op-
tion, the performance significantly better than that with “-O0”, with

6

hundreds of times better bandwidth. With “-O0” flags, the compiler
does not perform any optimization, each element of the array is re-
motely fetched as a single word. This illustrates the importance of
the compiler in achieving good performance for a PGAS code and
its ability to recognize communication patterns. In the case that the
compiler does not recognize the communication pattern involved
correctly the performance will be reduced to the “-O0” case. For
example, we also developed a put version of STREAM. (For Scale,
the code becomes “b(1:n)[peer]=scalar*c(1:n)” and so on.) In this
case the compiler could not recognize the communication pattern
correctly and generated code to fetch one word at a time. Applying
the pipelining and communication-computation overlap strategies
outlined above lead to the performance of the put version being
within 5% of the get ones for both the one and 24 tasks per node
cases.

Table 3. The Performance Effects of Compiler Flags on STREAM
results (GB/s)

-O0 -O2 Ratio
Copy 0.0193 17.78 921
Scale 0.0190 2.50 131
Add 0.0148 2.31 156
Triad 0.0148 2.32 156

6. Computation and Communication Overlap
One important technique to tolerate the cost of communication is
to overlap it with local computation. To measure the overlap capa-
bility of different programming models using Gemini, a synthetic
micro-benchmark has been developed.

6.1 Implementation
The micro benchmark has two input parameters, one is the commu-
nication message size (S), another is the time ratio of computation
to communication (R). The communication time is first measured
based on the input message size and is used to determine the loop
length of the computational kernel

for (i = 0; i < Length; i++) {
temp += buf1[i] * buf2[i] }

so that Computation Time = Ratio * Communication Time.
The arrays used for the communication kernel and the ar-

rays used for the computation kernel are independent. Therefore,
ideally, the computation and communication can be completely
overlapped. The MPI version uses the nonblocking MPI Isend,
MPI Irecv, and MPI Wait functions. In UPC, the nonblocking call
upc memput nb is used. In CAF, get statements are used with the
compiler directive, pgas defer sync, as above in the STREAM ex-
ample. In principle, such statements can also be used in UPC,
however, we found that this approach does not work for UPC using
the Cray compiler currently.

6.2 Performance
A metric called overlapped fraction is computed using following
formula:

overlapped fraction =

1−
(
TTotalRunningTime −max(TComp, TComm)

min(TComp, TComm)

)
where Tcomp is the computation time and Tcomm is the communi-
cation time. In the case that the runtime is equal to the maximum
of the separate measurements of computation and communication

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

8	 128	 2K	 32K	 512K	

O
ve
rl
ap

	 F
ra
c+
o
n
	

Message	 Size	 (Bytes)	

MPI	 UPC	 CAF	

Figure 13. The overlap capability of MPI, UPC, and CAF.

the overlap is perfect. This fraction represents the amount of work
that it was not possible to overlap.

Fig. 13 shows the results for MPI, UPC, and CAF using two
cores, one on each node. The computation time to communication
time ratio is set as 1. Several message sizes are tested, ranging from
8 to 512 KB bytes. For MPI, we observe around 20% overlap frac-
tion for messages up to 2 KB. Beyond that point, the overlapped
fraction goes down dramatically and the overlap almost completely
disappears when the message size reaches 512 KB. UPC and CAF
show the opposite overlap capability to MPI as a function of mes-
sage size. For small messages, the overlap fraction is only around
5%. However, for large messages, such as 512KB, the overlap frac-
tion can reach above 80%. CAF performs even better than UPC, for
message size 512KB, over 90% of the communication time is over-
lapped with computation time. Presumably the difference between
the CAF and UPC results is due to the slightly different mecha-
nisms used in each case, as described above.

The higher overlap capability of UPC and CAF for large mes-
sages is related to the BTE message transfer mechanism. The BTE
is part of the Gemini, and works asynchronously with respect to the
CPU.

The poor overlap capability of MPI is related with the hand-
shaking protocol needed between the sender and the receiver in
MPI programming model, which may consume a lot of CPU cy-
cles. The Gemini has no special hardware support for this, unlike
SeaStar interconnect, and therefore it is much more difficult for
MPI to overlap the communication and computation. (We note that
a software based mechanism for this is in development at Cray cur-
rently.)

For smaller messages using PGAS, FMA is used to transfer
the message data. FMA needs CPU involvement to initiate the
transfer activity leading to lower overlap capability. Setting the
input parameter R higher (i.e. more local computation time), could
improve the overlapped fraction.

The above computational kernel involves a lot of data access to
memory; it is a STREAM-like loop. We also developed a compu-
tation intensive kernel with reduced memory activity that worked
only on data in cache and obtained similar results, which indicates
we are not subject to contention for memory bandwidth between
the CPU and the BTE, at least for these experiments.

7. NAS FT
In this section, we examine the performance differences between a
MPI and a CAF version of a popular benchmark application, NAS
FT. The NAS FT benchmark solves partial differential equations
using Fast Fourier Transform (FFT) method. The MPI version is
obtained directly from NPB3.3 benchmark suite [17]. The CAF
version is converted from the MPI version by replacing the dom-

7

Table 4. The message sizes for NAS FT Class B (BYTE)
64 128 256 512 1024 2048 4096 8192 16384 32768 65536

transpose 1 131072 32768 8192 4096 2048 1024 512 256 128 64 32
transpose 2 524288 131072 32768 8192 2048 512 128 32

inant MPI call, an MPI Alltoall, with a CAF implementation. We
also added some necessary synchronizations, and changed the cor-
responding data array to a co-array. The implementation of the CAF
alltoall communication uses a round-robin communication pattern.

The performance in terms of Mflops for the Class B problem
size is shown in Fig. 14 for up to 64K cores. The 3D grid size
is 512 × 256 × 256 in X, Y, and Z direction individually. When
the total number of processes (nprocs) is less or equal to grid size
in Z direction (256 for Class B), a 1-D partitioning scheme is
used and the grid will be partitioned among the cores along the
Z direction. When the total number of processes becomes greater
than the grid size in the Z direction, 2-D partitioning will be used
and in addition to partitioning the grid along Z direction, the grid
will also be partitioned in Y direction. The corresponding process
grid is 256*(nprocs/256) and two new sub-communicators will be
created. Therefore, there will be two transposes under 2-D partition,
one for each new communicator. Table 4 shows the alltoall message
size for different number of processes.

The overall performance comparison between MPI and CAF
in terms of mflops is shown in Fig. 14 and the corresponding
communication times are shown in Fig. 15.

0 

200000 

400000 

600000 

800000 

1000000 

1200000 

64
 

12
8 

25
6 

51
2 

10
24
 

20
48
 

40
96
 

81
92
 

16
38
4 

32
76
8 

65
53
6 

M
flo

ps
/s
 

No. of Cores 

CAF 

MPI 

Figure 14. The performance of NAS FT for Class B for the CAF
and MPI versions.

0.000 

0.100 

0.200 

0.300 

0.400 

0.500 

0.600 

0.700 

0.800 

0.900 

1.000 

64
 

12
8 

25
6 

51
2 

10
24
 

20
48
 

40
96
 

81
92
 

16
38
4 

32
76
8 

65
53
6 

G
lo
ba

l C
om

m
 T
im

e 
(s
) 

No. of Cores 

MPI 
CAF 

Figure 15. The global communication time of NAS FT for Class
B in CAF and MPI .

Up to 256 tasks, MPI and CAF deliver similar performance.
This is for two reasons. Firstly, for these three cases, 1-D partition-

ing is used, and the message size is large, in the regime where CAF
and MPI performance is almost the same. This is clearly shown in
Fig. 15 which compares the alltoall communication times in CAF
to those of the MPI version. Secondly, local computation and lo-
cal transpose time dominate the runtime at these core counts and
affect the overall performance much more than global communi-
cation time. For 512 processes, we notice that the communication
time for CAF has a sudden jump. This is because the message size
for the first global alltoall communication is 4 KB bytes, which is
the switch threshold from using FMA to the BTE. We have seen
this phenomena in our earlier micro benchmarks. If we change
the PGAS OFFLOAD THRESHOLD to 1MB, the performance of
CAF is significantly improved at 512 cores and the performance
is no longer anomalous. For MPI a similar effect occurs at 2048
cores, as shown in Fig. 15, where we can see that MPI has the
highest global communication time at this core count.

For all other core counts, CAF performs significantly better than
MPI as the message sizes become smaller. The best performance is
obtained by using 16K cores, at which CAF is about 2.8 times faster
than MPI. However, the performance gap shrinks when 64K cores
are used. As shown in Fig. 15, from 16K to 64K cores, the global
communication time for CAF is relatively stable while for MPI,
it continues to drop but maintains higher than corresponding CAF
time. Again this is due to a change in communication protocol, for
messages smaller than 128 bytes, MPI uses a store and forward
protocol instead of the default, as it has better performance. At
65536 cores both transposes involve messages below this limit, and
hence the improved algorithm is used. Experiments increasing the
threshold of the cutoff for the change in algorithm to 1 KB bytes at
16384 and 32768 cores show performance improvements of almost
50% for the MPI version.

8. Summary and Conclusions
Compared with the popular MPI programming model, PGAS lan-
guages provide substantial ease of programming, and the ability
to construct globally accessible data structures. However, they still
have not been widely adopted by user community today. This is
mainly due to lack of the direct hardware support, a mature devel-
oper environment and lack of convincing performance results that
they are superior to MPI.

In this work we evaluated the performance of PGAS languages
on a Cray XE6 high-performance computing platform for which the
Gemini interconnect provides direct support for a globally address-
able memory and hardware-accelerated one-sided messaging. We
examined the performance in terms of bandwidth, message rate,
and capability to overlap computation with communication. The
results demonstrated that with this special hardware acceleration,
PGAS languages can outperform MPI, especially for messages a
few KB in size, and therefore provide a viable alternative. How-
ever, they also show that simply swapping MPI calls for equivalent
PGAS constructs may not necessarily be the optimal path forward
for achieving good performance with PGAS, as the performance
in the bandwidth limit is identical to that of MPI. Codes may need
to be modified to send smaller messages more frequently than one
would with MPI in order to achieve the greatest benefit from using
PGAS languages, Our future work will focus on converting exis-

8

tent scientific applications into PGAS codes and study their perfor-
mance on Hopper.

9. Acknowledgements
We would like to thank Ryan Olson of Cray for useful comments
and suggestions. All authors from Lawrence Berkeley National
Laboratory were supported by the Office of Advanced Scientific
Computing Research in the Department of Energy Office of Sci-
ence under contract number DE-AC02-05CH11231. This research
used resources of the National Energy Research Scientific Comput-
ing Center (NERSC), which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

References
[1] S. Alam, W. Sawyer, T. Stitt, N. Stringfellow, and A. Tineo. Evaluation

of productivity and performance characteristics of CCE CAF and UPC
compilers. In CUG 2010, Edinburgh, Scotland, May 2010.

[2] P. Bala, T. Clark, and S. L. Ridgway. Application of pfortran and
co-array fortran in the parallelization of the gromos96 molecular dy-
namics module. In Scientific Programming 9:61-68, January 2001.

[3] R. Barrett. Co-array fortran experiences with finite differencing meth-
ods. In The 48th Cray User Group meeting, Lugano, Italy, May 2006.

[4] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick. Optimizing band-
width limited problems using one-sided communication and overlap.
In 20th International Parallel and Distributed Processing Symposium
IPDPS, April 2006.

[5] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and
K. Warren. Introduction to UPC and language specification. In Tech.
Rep. CCS-TR-99-157 May, May 1999.

[6] C. Coarfa, Y. Dotsenko, J. Eckhardt, and J. M. Crummey. Co-Array
fortran performance and potential: An NPB experimental study. In
In Proc. of the 16th Intl. Workshop on Languages and Compilers for
Parallel Computing, 2003.

[7] C. Coarfa, Y. Dotsenko, and J. Mellor-Crummey. Experiences with
sweep3d implementations in co-array fortran. In The Journal of
Supercomputing, 36:101-121, May 2006.

[8] T. El-Ghazawi and F. Cantonnet. Upc performance and potential: A
npb experimental study. In In Supercomputing, 2002.

[9] AI Geist. Sustained petascale: The next MPI challenge. In Eu-
roPVMMPI, October 2007.

[10] G. Jin, J. Mellor-Crummey, L. Adhianto, W. N. Scherer III, and
C. Yang. Implementation and performance evaluation of the hpc chal-
lenge benchmarks in coarray fortran 2.0. In 25th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Anchorage,
AK. May 16-20, 2011.

[11] Haoqiang Jin, Robert Hood, and Piyush Mehrota. A practical study
of UPC with the NAS parallel benchmarks. In Partitioned Global
Address Space Languages, Oct., 2009.

[12] L. Kaplan, M. T. Bruggencate, T. Johnson, S. Vormwald, D. Knaak,
K. McMahon, J. Godfrey, and I. Gorodetsky. Softwares one-sided
challenge. In Cray User Group Meeting (CUG) 2011, May 2011.

[13] D. A. Mallon, G. L. Taboada, C. Teijeiro, J. Tourino, B. B. Fraguela,
Andres Gomez, Ramon Doallo, and J. Carlos Mourino. Performance
evaluation of MPI, UPC, and OpenMP on multicore architectures. In
Euro PVM/MPI 2009, Sept 7-10, 2009.

[14] J. Mellor-Crummey, L. Adhianto, W. N. Scherer III, and G. Jin. A new
vision for coarray fortran. In In Proceedings of the 3rd Conference on
Partitioned Global Address Space Programming Models, PGAS ’09,
pages 5:1-5:9, New York, NY, USA, 2009.

[15] Osu micro-benchmark. http://mvapich.cse.ohio-state.edu/
benchmarks/.

[16] R. Nishtala, P. Hargrove, D. Bonachea, and K. Yelick. Scaling
communication-intensive applications on bluegene/p using one-sided

communication and overlap. In 23rd International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2009.

[17] NAS Parallel Benchmarks. http://www.nas.nasa.gov/
Resources/Software/npb.html.

[18] R. W. Numrich. Parallel numerical algorithms based on tensor notation
and co-array fortran syntax. In Parallel Computing, 31:588-607, June
2005.

[19] R. W. Numrich and J. Reid. Co-array Fortran for parallel program-
ming. In ACM SIGPLAN Fortran Forum, vol. 17, no. 2, pp. 131, Au-
gust 1998.

[20] R. W. Numrich, J. Reid, and K. Kieun. Writing a multigrid solver
using co-array fortran. In In Proceedings of the 4th International
Workshop on Applied Parallel Computing, Large Scale Scienti
c and Industrial Problems, PARA ’98, pages 390-399, London, UK,
1998.

[21] R. Preissl, N. Wichmann, B. Long, J. Shalf, S. Ethier, and A. Koniges.
Multithreaded global address space communication techniques for
gyrokinetic fusion applications on ultra-scale platforms. In SC2011,
to appear, November 2011.

[22] J Reid. Co-array fortran for full and sparse matrices. In In Proceedings
of the 6th International Conference on Applied Parallel Computing
Advanced Scientific Computing, PARA ’02, London, 2002.

[23] H. Shan, F. Blagojevic, S. J. Min, P. Hargrove, H. Jin, K. Fuerlinger,
A. Koniges, and N. J. Wright. A programming model performance
study using the nas parallel benchmarks. In Scientific Programming-
Exploring Languages for Expressing Medium to Massive On-Chip
Parallelism, Vol. 18, Issue 3-4, August 2010.

[24] STREAM: Sustainable memory bandwidth in high performance com-
puters. http://www.cs.virginia.edu/stream.

[25] K. D. Underwood, M. J. Levenhagen, and R. Brightwell. Evaluat-
ing NIC hardware requirements to achieve high message rate PGAS
support on multi-core processors. In SC07: Proceedings of the 2007
ACM/IEEE conference on Supercomputing. New York, NY, USA, 2007.

[26] Challenges for the message passing interface in the petaflops era.
www.cs.uiuc.edu/homes/wgropp/bib/talks/tdata/2007/
mpifuture-uiuc.pdf.

9

