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Abstract. The simplest semantics for parallel shared memory programs is se-
quential consistency in which memory operations appear to take place in the or-
der specified by the program. But many compiler optimizations and hardware fea-
tures explicitly reorder memory operations or make use of overlapping memory
operations which may violate this constraint. To ensure sequential consistency
while allowing for these optimizations, traditional data dependence analysis is
augmented with a parallel analysis called cycle detection. In this paper, we present
new algorithms to enforce sequential consistency for the special case of the Sin-
gle Program Multiple Data (SPMD) model of parallelism. First, we present an
algorithm for the basic cycle detection problem, which lowers the running time
from O(n3) to O(n2). Next, we present three polynomial-time methods that more
accurately support programs with array accesses. These results are a step toward
making sequentially consistent shared memory programming a practical model
across a wide range of languages and hardware platforms.

1 Introduction

In a uniprocessor environment, compiler and hardware transformations must adhere
to a simple data dependency constraint: the orders of all pairs of conflicting accesses
(accesses to the same memory location, with at least one a write) must be preserved.
The execution model for parallel programs is considerably more complicated, since
each thread executes its own portion of the program asynchronously, and there is no
predetermined ordering among accesses issued by different threads to shared memory
locations. A memory consistency model defines the memory semantics and restricts
the possible execution orders of memory operations. Of the various memory models
that have been proposed, the most intuitive is sequential consistency, which states that
a parallel execution must behave as if it is an interleaving of the serial executions by
individual threads, with each execution sequence preserving the program order [13].
Sequential consistency is a natural extension of the uniprocessor execution model and
is violated when the reordering operations performed by one thread can be observed by
another thread, and thus potentially visible to the user. Figure 1 shows a violation of
sequential consistency due to reordering of memory operations. Although there are no
dependencies between the two write operations in one thread or the two read operations
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Fig. 1. Violation of Sequential Consistency: The actual execution may produce results that would
not happen if execution follows program order.

in the other, if either pair is reordered, a surprising behavior may result, which does not
satisfy sequential consistency.

Despite its advantage in making parallel programs easier to understand, sequential
consistency can be expensive to enforce. A naive implementation would forbid any re-
ordering of shared memory operations by both restricting compile-time optimizations
and inserting a memory fence between every consecutive pair of shared memory ac-
cesses from a given thread. The fence instructions are often expensive, and the opti-
mization restrictions may prevent code motion, prefetching, and pipelining [17]. Rather
than restricting reordering between all pairs of accesses, a more practical approach com-
putes a subset that is sufficient to ensure sequential consistency. This set is called a
delay set, because the second access will be delayed until the first has completed. Sev-
eral researchers have proposed algorithms for finding a minimal delay set, which is the
set of pairs of memory accesses whose order must be preserved in order to guarantee
sequential consistency [20, 11, 15].

The problem of computing delay sets is relevant to any programming model that
is explicitly parallel and allows processors to access shared variables, including serial
languages extended with a thread library and languages like Java with a built-in notion
of threads. It is especially relevant to global address space languages like UPC [4],
Titanium [5], and Co-Array Fortran [19], which are designed to run on machines with
physically distributed memory, but allow one processor to read and write the remote
memory on another processor. For these languages, the equivalent of a memory barrier
thus may be a round-trip event.

In this paper, we focus on efficient algorithms to compute the delay sets for various
types of Single Program Multiple Data (SPMD) programs. For example, given the sam-
ple code in Figure 1, the analysis would determine that neither pair of accesses can be
reordered without violating sequential consistency. Our analysis framework is based on
the cycle detection problem first described by Shasha and Snir [20]; previous work [10]
showed that such analysis for SPMD programs can be performed in polynomial time.
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In this paper we substantially improve both the speed and the accuracy of the SPMD
cycle detection algorithm described in [10]. By utilizing the concept of strongly con-
nected components, we improve the running time of the analysis asymptotically from
O(n3) to O(n2), where n is the number of shared memory accesses in the program. We
then present three methods that extend SPMD cycle detection to handle programs with
array accesses by incorporating into our analysis data dependence information from
array indices. All three methods significantly improve the accuracy of the analysis for
programs with loops; each differs in their relative precision and offers varying degrees
of applicability and speed, so developers can efficiently exploit their tradeoffs.

The rest of the paper is organized as follows. We formally define the problem in
Section 2 and summarize the earlier work on it in Section 3. Section 4 describes our
improvements to the analysis’ running time, while Section 5 present extensions to the
cycle detection analysis that significantly improve the quality of the results for programs
with array accesses. Section 6 concludes the paper.

2 Problem Formulation

Our analysis is designed for shared memory (or global address space) programs with
an SPMD model of parallelism. An SPMD program is specified by a single program
text, which defines an individual program order for each thread. Threads communicate
by explicitly issuing reads and writes to shared variables. For simplicity, we consider
the program to be represented by its control flow graph, P. An execution of an SPMD
program for n threads is a set of n sequences of operations, each of which is consistent
with P. An execution defines a partial order, ≺, which is the union of those n sequences.

Definition 1 (Sequential consistency). An execution is sequentially consistent if there
exists a total order consistent with the execution’s partial order, ≺, such that the total
order is a correct serial execution.

We are interested only in the behavior of the shared memory operations, and thus
restrict our attention to the subgraphs containing only such operations. In general, par-
allel hardware and conventional compilers will allow memory operations to execute out
of order as long as they preserve the program dependencies. We model this by relaxing
the program orders for each thread, and instead use a subset of P called the delay set,
D.

Definition 2 (Sufficient Delay Set). Given a program graph P and a subgraph D, D
is a sufficient delay set if all executions of D are equivalent to a sequentially consistent
execution of P.

All executions must now observe only the program dependencies within each thread and
the orderings given in D. Intuitively, the delay set contains pairs of memory operations
that execute in order. They are implemented by preventing program transformations
that would lead to reordering and by inserting memory fences during code generation
to ensure that the hardware preserves the order. A naive algorithm will take D to be the
entire program ordering P, forcing compilers and hardware to strictly follow program
order. A delay set is considered minimal if no strict subset is sufficient. We are now
ready to state the problem in its most general form:
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Given a program graph P for an SPMD parallel program, find a sufficient mini-
mal delay set D for P.

3 Background

3.1 Related Work

Shasha and Snir [20] pioneered the study of correct execution of explicitly parallel
programs and characterized the minimal set of delays required to preserve sequential
consistency. Their results are for an arbitrary set of parallel threads (not necessarily
an SPMD program), but does not address programs with branches, aliases or array
accesses. Midkiff and Padua [17] further demonstrated that the delay set computation
is necessary for performing a large number of standard compile-time optimizations.
They also extended Shasha and Snir’s characterization to work for programs with array
accesses, but did not provide a polynomial-time algorithm for performing the analysis.

Krishnamurthy and Yelick [11, 10] later showed that Shasha and Snir’s framework
for computing the delay set results in an intractable NP hard problem for MIMD pro-
grams and proposed a polynomial-time algorithm for analyzing SPMD programs. They
also improved the accuracy of the analysis by treating synchronization operations as
special accesses whose semantics is known to the compiler. They also demonstrated
that the analysis enables a number of techniques for optimizing communication, such
as message pipelining and prefetching.

Once the delay set has been computed, sequential consistency can be enforced by
inserting memory barriers into the program to satisfy the delays. Lee and Padua [14]
presented a compiler technique that reduces the number of fence instructions for a given
delay set, by exploiting the properties of fence and synchronization operations. Their
work is complementary to ours, as it assumes the delay set is already available, while
we focus on the earlier problem of computing the minimal set itself.

Recent studies have focused on data structures for correct and efficient application
of standard compile-time optimizations for explicitly parallel programs. Lee et al. [15]
introduced a concurrent CFG representation for summarizing control flow of parallel
code, and a concurrent SSA form that encodes sequential data flow information as well
as information about possibly conflicting accesses from concurrent threads. They also
showed how several classical analyses and optimizations can be extended to work on the
CSSA form to optimize parallel code without violating sequential consistency. Knoop
and Steffen [8] showed that unidirectional bitvector analyses can be performed for par-
allel programs to enable optimizations such as code motion and dead code elimination
without violating sequential consistency.

3.2 Cycle Detection

Analyses in this paper are based on Shasha and Snir’s [20] cycle detection algorithm,
which we briefly describe here. All violations of sequential consistency can be attributed
to conflicting accesses:
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Definition 3 (Conflicting Accesses). Two shared memory operations u,v from different
threads are said to conflict if they access the same memory location, and at least one of
them is a write.

Conflicting accesses are the mechanism by which parallel threads communicate,
and also the means by which one thread can observe memory operations reordered by
another. The program order P defines a partial order on individual threads’ memory
accesses, but does not impose any restrictions on how operations from different threads
should be interleaved, so there is not a single program behavior against which we can
define correct reorderings. Instead, a happens-before relation for shared memory ac-
cesses originating from different threads is defined at runtime based on the time of their
occurrences to fully capture the essence of a parallel execution. Due to its nondeter-
ministic nature, each instance of parallel execution defines a different happens-before
relation, which may affect execution results depending on how it orders conflicting ac-
cesses.

For a given parallel execution, let E be the partial order on conflicting accesses
that is exhibited at runtime, which is determined by the values returned by reads from
writes. The graph given by P∪E captures all information necessary to reproduce the
results of a parallel execution: P orders accesses on the same thread, while E orders
accesses from different threads to the same memory location. If there is a violation of
sequential consistency, then for two accesses u,v issued by the same thread, both (u,v)
and (v,u) are related in P∪E. Viewed as a graph, such a situation occurs exactly when
P∪E contains a cycle that includes E edges.3 Since we cannot predict at compilation
time which access in a conflicting pair will happen first, we approximate E by C, the
conflict relation which is a superset of E and contains all pairs of conflicting accesses.
The conflict relation is irreflexive, symmetric, and not transitive, and can be represented
in a graph as bidirectional edges between two conflicting accesses.

The goal of Shasha and Snir’s analysis is thus to perform cycle detection on the
graph P∪C of a parallel program. Their algorithm uses the notion of critical cycle to
find the minimal delay set necessary for sequential consistency:

Definition 4 (Critical Cycle). A critical cycle in P∪C is a simple cycle with the prop-
erty that for any two non-adjacent nodes u,v in the cycle, (u,v) /∈ P.

In other words, when detecting cycles we always attempt to find minimal cycles,
and a critical cycle can have at most two (successive) nodes in any thread. Shasha and
Snir proved the following theorem [20] that the P edges in the set of critical cycles form
a delay set that guarantees sequential consistency:

Theorem 1 (Existence of a Minimal Delay Set for SC). Let D be the set of edges
(u,v) in straight-line code, where (u,v) ∈ P is part of a critical cycle. Then any execu-
tion order that preserves delay D is sequentially consistent; furthermore, the set D is
minimal.

Figure 2 shows how a critical cycle can be used to compute the minimal delay set
for sequential consistency, for the sample code from Figure 1.

3 Intrinsic cycles in P due to loops are ruled out.
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3.3 Cycle Detection for SPMD Programs

Detecting critical cycles for an arbitrary program order P, unfortunately, is NP-hard as
the running time is exponential in the number of threads. Krishnamurthy and Yelick
[10] proposed a polynomial time algorithm for the common special case of SPMD
programs, taking advantage of the fact that all threads execute identical code. Their
algorithm, explained in detail in [9], works as follows:

Definition 5 (Conflict Graphs for SPMD Programs). Consider Pl ,Pr to be two copies
of the original program P, so that ul ∈ Pl and ur ∈ Pr if u ∈ P. Define C to be the set of
conflicting accesses, and

T1 = {(ul ,vr),(vl ,ur)|(u,v) ∈C} (1)

T2 = {(ur,vr)|(u,v) ∈C} (2)

T3 = {(ur,vr)|(u,v) ∈ P} (3)

CG = T1 ∪T2 ∪T3 (4)

The graph CG, named the conflict graph, will also be used in other analyses de-
scribed later in this paper. The right side of the conflict graph Pr is identical to P∪C,
while the left side Pl has no internal edges and connects to the right side via the conflict
edges. Krishnamurthy and Yelick described an algorithm that computes the delay set by
detecting a back-path in the transformed graph for each P edge (ul ,vl) and proved the
following theorem in [10]:

Theorem 2 (Cycle Detection for SPMD Programs). For an edge (u,v) ∈ P, if there
exists a path from vl to ul in CG, then (u,v) belongs to the minimal delay set. Further-
more, the delay set computed is the same as the one defined in Theorem 1.

Based on the above theorem, they claimed that cycle detection for SPMD programs
can be performed in O(n3) time (Algorithm 1), where n is the number of shared memory
accesses in P.

4 A Faster Algorithm for SPMD Cycle Detection

In this section, we show a slight modification of Krishnamurthy and Yelick’s algorithm
that can compute the identical delay set in O(n2) time. Algorithm 1 is easy to under-
stand but inefficient due to the breadth-first search required for each node. Instead, we
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Input: P and C of a SPMD program
Output: delay set for P
1. Construct CG following the descriptions in Definition 5;
2. For every ul ∈ P, perform a breadth-first search with the vertex as root;
3. Check for every (u,v)∈ P whether ul is reachable starting from vl in CG, using results
from step 2. If yes, then (u,v) belongs to the delay set.

Algorithm 1: Krishnamurthy and Yelick’s Algorithm for SPMD Cycle Detection

can improve its running time by using strongly connected components (SCC) to avoid
the redundant computations performed for each node. Note that proofs to theorems pre-
sented in this paper have been omitted due to space constraints; interested readers can
refer to them in our technical report [2] that contains the full version of the paper.

Input: P and C of a SPMD program
Output: delay set for P
1. Create the graph Pr as appeared in Definition 5, by taking P∪C;
2. Identify the strongly connected components in Pr;
3. For every node u ∈ P, find the strongly connected component SCCu that u’s conflicting
accesses belong to. (We will prove that they must all be in the same SCC.);
4. For each (u,v) ∈ P, if there is a path from SCCv to SCCu in the direct acyclic graph of
SCCs, we add (u,v) to the delay set.

Algorithm 2: A O(n2) Algorithm for Computing Delay Set

Our algorithm is similar to the one proposed in [12] in that both rely on the concept
of strong connnectivity; an important distinction, however, is that we do not require
initialization writes for every variable. If all accesses are read-only, step 3 fails due to the
absence of conflicts, and no edges will be added to the delay set. This difference is vital
if we want to combine the algorithm with synchronization analysis of barriers, since it
is common for SPMD variables to be read-only in some phases of the program. Before
proving Algorithm 2, we first explain the claim in step 3 that all conflicting accesses of
a node will belong to the same strongly connected component in Pr. Consider a node
u and any two of its conflicting accesses v 1,v 2; Since there exist bidirectional edges
between u,v 1 and u,v 2 in T 2 (the C edges), it is clear that they all belong to the same
SCC. We can now show that for a SPMD program this modified algorithm is equivalent
to Algorithm 1, and calculate its running time:

Theorem 3. Algorithm 2 returns the same delay set as Algorithm 1 for any SPMD
program.

Proof. The proof can be found in [2].

Theorem 4. Algorithm 2 runs in O(n2) time, where n is the number of shared accesses
in P.

Proof. The proof can be found in [2].
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5 Extending SPMD Cycle Detection for Array Accesses

Another area in which the SPMD cycle detection algorithm can be improved is the
quality of the delay set for array accesses. Although Theorem 2 states that the delay
set computed by the algorithm is “minimal”, the claim holds only for straight-line code
with perfect alias information. The algorithm is therefore overly conservative when an-
alyzing array accesses in loops; every P edge inside a loop can be included in the delay
set, as a back-path can be constructed using the loop’s back edge. This has an unde-
sirable effect on performance, as the false delays can thwart useful loop optimizations
such as loop-invariant code motion and software pipelining.

In this section, we present an analysis framework that extends SPMD cycle detec-
tion to handle array accesses. After describing an existing approach that requires ex-
ponential time in Section 5.1, we present three polynomial-time algorithms that could
significantly reduce the number of delays inside loops. While all three techniques col-
lect information from array subscripts to make the analysis more precise, they differ in
their approaches for representing and propagating information: classical graph theory
algorithms, data-flow analysis, and integer programming methods. The choice of the
three methods largely depends on the amount of information that can be statically ex-
tracted from the array subscripts; for instance, the data-flow analysis approach sacrifices
some precision for a more efficient algorithm, and the integer programming techniques
supports complex affine array expressions at the cost of increased complexity.

For simplicity, we consider nested well-behaved loops
¯

in C, where each dimension
of the loop is of the form f or(i = init;cond(i); i+ = k){loop body}, with the following
provisions: both k and loop body may be different for each thread, the loop index i is not
modified in the loop body, and array subscripts are affine expressions of loop indices.
While the definition may seem restrictive, in practice loops in scientific applications
with regular access patterns frequently exhibit this characteristic. We further assume
that the base address of the array access is a constant, and that different array variables
do not overlap (i.e., arrays but not pointers in C).

5.1 Existing Approach

Midkiff et al. [18] proposed a technique that extends Shasha and Snir’s analysis to
support array accesses. Under their approach, every edge of the conflict graph (named
a s-level graph in their work) is associated with a linear constraint that relates the array
subscripts on its two nodes. A conflict edge generates an equality constraint, since the
existence of a conflict implies the subscripts must be equal. Also, the constraint of each
conflict edge will use a fresh variable for the loop index, as in general the conflicts
can happen in different iterations. The constraint for a P edge is only slightly more
complicated. Consider (A[ f (i)],B[g(i′)])∈ P, where i and i′ represent possibly different
loop index values, and f and g are affine functions. From the definition of P we could
immediately derive i′ = i+k1 where k1 is a multiple of the loop increment, since A[ f (i)]
happens first by program order. The inequality constraint for k1 depends on the context
of the P edge; we specify k1 ≥ 1 if it is the back edge, and k1 ≥ 0 otherwise. Figure 3
shows the constraints generated by each edge in the sample graph.
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if (MYTHREAD == 1)
for (i = 0; i < N; i+= 3) { 

A[i] = c1;      (S1)
B[i+1] = c2;  (S2)

}
if (MYTHREAD == 2)

for (j = 2; j < N; j+=2) { 
B[j] = c3;      (S3)
A[j-2] = c4;   (S4)

}

S1 (i)

S4 (j)S2 (i’)

S3 (j’)

T1 T2

1 -2

4

2 00

S1 -> S4:  i = j – 2 S2 -> S3:  i’ + 1 = j’
S1 -> S2:  i’ = i + 3k1, k1 >= 0 S3 -> S4:  j  = j’ + 2k2, k2 >= 0
S2 -> S1:  i = i’ + 3k1, k1 >= 1 S4 -> S3:  j’ = j + 2k2, k2 >= 1

Fig. 3. Conflict Graph with Corresponding Constraints

if (MYTHREAD == 1) 
for (i = 1; i < N; i++) {

A[i] = 1;  (S1)
B[i+1] = 2; (S2)

} 
if (MYTHREAD == 2) 

for (i = 1; i < N; i++) {
B[i] = 3;  (S3)
A[i-1] = 4; (S4)

}

S1

S4S2

S3

T1 T2

1 -1 20 00

P edges

C edges

Fig. 4. Adding Edge Weights for Cycle Detection

Once the constraints are specified, the next step is to generate all cycles in the graph
that may correspond to critical cycles (Definition 4). Midkiff et al. showed that the prob-
lem can be reduced to finding solutions to the linear system formed by the constraints of
every edge in the cycle; a delay is necessary only for edges on a cycle with a consistent
linear system. If a cycle satisfies the criteria, a final filtering step is applied to see if it
can be discarded because it shares common solutions with another smaller cycle.

While their technique successfully incorporates dependence information to improve
accuracy of the analysis, its applicability appears limited due to two factors. First, it does
not specify how to generate the cycles in the conflict graph; the total number of (simple
and non-simple) cycles is exponential in the number of nodes, so a brute force method
that examines all is clearly not practical. Another limitation is the cost of solving each
linear system, which is equivalent to integer linear programming, a well-known NP-
complete problem. Since a cycle can contain O(n) edges and thus constraints, solving
the system again requires exponential time. As a result, in the next section we will
present several polynomial-time algorithms that make cycle detection practical for pro-
grams with loops.
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5.2 Polynomial-time Cycle Detection for Array Accesses

Our analysis framework combines array dependence information with the conflict graph,
except that we assign each P edge with an integer weight equal to the difference be-
tween the array subscripts of its two nodes. Scalars can be considered as array ref-
erences with a zero subscript. Also, an optional preprocessing step can apply affine
memory disambiguation techniques [16] to eliminate conflict edges between indepen-
dent array accesses. Figure 4 illustrates this construction4, where the two edges in the
loop body receive weights of 1 and −1, and the back edges are assigned the value of 0
and 2 to reflect both the difference between the array subscripts and the increment on
the loop index variable after each iteration. Conflict edges always have zero weight, as
the presence of a conflict implies the two array subscripts must be equal. For an edge
(ul ,vl) ∈ P, the goal of the analysis is not only to detect a path from vl to ul in the
conflict graph, but also to verify that the back-path together with the edge forms a (not
necessarily simple) cycle with zero weight:

Theorem 5 (Cycle Detection with Weighted Edges). With the above construction,
an edge (ul ,vl) ∈ P is in the delay set if it satisfies the conditions in Theorem 2, and
W (ul ,vl)+W (backpath(vl ,ul)) = 0, where W (e) is the weight of edge e.

Proof. The proof can be found in [2].

Zero Cycle Detection: If all edge weights are compile-time constants, Theorem 5
can be reduced to the problem of finding zero cycles in the conflict graph. On the surface
the reduced problem still seems difficult to solve, as finding a simple cycle with zero
total weight is known to be NP-complete. For our purposes, however, we are interested
in finding zero cycles that need not be simple, as a zero cycle that visit a node multi-
ple times conveys a delay due to conflicts among array accesses in different iterations.
Several studies [7, 6] have presented recurrence equations and linear programming tech-
niques to solve the general form of the ZERO-CYCLE problem, which determines for
a graph G with k-dimensional vector edge weights if it contains a cycle whose weight
sums to the zero vector. In particular, Cohen and Megiddo [3] proved that zero cycle
detection for a graph with fixed k can be performed in polynomial time; they further
showed that the special case of k = 1 can be answered in O(n3) time using a modified
all pairs shortest path algorithm, where n is the number of nodes. Algorithm 3 computes
the delay set based on this result.

As each invocation of the zero cycle detection algorithm takes O(n3) time, this algo-
rithm unfortunately has a running time of O(n5). The loss in efficiency is compensated,
however, by obtaining a much more accurate delay set. Figure 5 demonstrates the anal-
ysis’s benefit: while plain SPMD cycle detection (Algorithm 1) will incorrectly include
every P edge in the delay set due to spurious cycles created by the loop back edge,
Algorithm 3 can accurately eliminate these unnecessary delays. Another benefit of this
algorithm is that it can be easily extended to support multidimensional arrays. For a
k-dimensional iteration space, we simply construct CG using k-dimensional vectors as
its edge weights, with each element corresponding to a loop index variable. As the level

4 We showed only the right part of the conflict graph, as the left part remains unchanged
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Input: P and C of a SPMD program
Output: delay set for P
Construct CG following the descriptions in Definition 5;
Annotate each P edge in CG with its corresponding weight;
foreach (u,v) ∈ P do

Add (ul ,vl) to Pl , with its edge weight;
Run the zero cycle detection algorithm from [3] on CG;
If (ul ,vl) is part of a zero cycle, add it to the delay set;

end

Algorithm 3: Handling Array Accesses Through Zero Cycle Detection

for (i = 0; i < N; i++) 
if ( cond ) { 

A[i] = 1;   (S1)
B[i] = 2;   (S2)

}
//each thread runs 
//same code

S1

S2S2

S1

P edges

C edges

T1 T2

0 0 11

Fig. 5. SPMD Code for which Algorithm 3 Is More Accurate Than Algorithm 1

of loop nests in real programs rarely exceed 4 or 5, this more complex scenario can still
be solved in the same asymptotic time as the scalar-weight case.

Data-flow Analysis Approximation: The major limitation of Algorithm 3 is that
edge weights in general may not be compile-time constants; for example, it is common
in scientific code to have a loop performing strided array accesses with an either dy-
namic or run-time constant stride value. The signs of the weights, however, are usually
statically known, and using abstract interpretation techniques [1] we can deduce the
sign of a cycle’s weight sum. If every edge of the cycle has the same sign, it can never
be a zero cycle; otherwise we conservatively assume that it may satisfy the conditions
in Theorem 5. Algorithm 4 generalizes this notion by applying data-flow analysis with
the lattice and flow equations in Figure 6 to estimate the weight sum of each potential
cycle. For each P edge (u,v), sgn(w) represents the possible sign of any paths from u
to w; therefore, if ul is reachable from vl (indicating a back-path) and sgn(ul) is either
+ or −, by definition (u,v) will not be part of any zero cycle.

This approach is a sound but conservative approximation of the zero cycle detec-
tion problem, and thus may compute some false positive delays. While it gives the same
result as Algorithm 3 for Figure 4 (delays) and 5 (no delays), a more complicated exam-
ple in Figure 3 illustrates their differences. Although the zero cycle detection algorithm
correctly concludes that sequential consistency could never be violated there due to
the absence of zero cycles, Algorithm 4, affected by the negative edge from S3 to S4,
will conservatively place every P edge in the delay set. For the common cases of loops
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T

+ -

0

• OUT(B) = IN(B)

• IN(B) = U (Sgn(P,B) U OUT(P)),
where P is a predecessor of B.

Fig. 6. Lattice and Flow Equations for Algorithm 4

Input: P and C of a SPMD program, with weighted edges
Output: delay set for P
Construct CG following the descriptions in Definition 5;
foreach (u,v) ∈ P do

Initialize sgn(vl) to be the sign of W (u,v) (one of 0,+,−), and sgn(w) to be 0 for
all other nodes w;
Apply data-flow analysis starting from vl until no nodes have their signs changed;
If ul is reachable from vl and sgn(ul) ∈ {0,T}, then add (u,v) to the delay set.

end

Algorithm 4: Handling Array Accesses Using Data-flow Analysis

with monotonic array subscripts, however, this analysis is as accurate as the one in the
previous section.

Since the lattice has a height of two, the data-flow analysis step will finish in at most
O(n2) time. As the analysis step needs to be done for each P edge, it appears that we
have a O(n4) algorithm. The insight here, however, is that when initializing the data-
flow analysis for an edge (u,v), vl can take only one of the three different values; it thus
suffices to run the data-flow analysis three times for each node in the graph to cover all
possible initial conditions of the analysis. So Algorithm 4 has a worst-case O(n3) time
bound. Extensions of this approach to support nested loops is straightforward; we can
run the analysis separately for each dimension, and add an edge to the delay set only
when all dimensions return a sign of either 0 or T .

Integer Programming Based Method: In the most general case, array subscripts
will be affine expressions with arbitrary constant coefficients and symbolic terms, so
the previous methods are no longer applicable as neither the value nor sign of edge
weights are statically known. In this case, we can still attempt to perform cycle detec-
tion by adopting the technique from Section 5.1 to convert it into an integer program-
ming problem. To avoid the exponential cost of exhaustively searching for cycles and
solving linear systems, we can take advantage of the properties of our conflict graph
representation. A P edge (u,v) can be a delay only if it has a back-path (vl , t1, ...t2,ul)
such that the generated cycle has a consistent system. While the number of back-paths
may be exponential, they all share the structure that both (vl , t1) and (t2,ul) are C edges
crossing between the left and right part of the graph. If the internal path (t1, ..., t2) con-



LCPC 2003 13

tains no C edges, it can be viewed as a single P edge and represented as one constraint
on the subscripts of t1 and t2.

We have thus significantly reduced the number of cycles that need to be considered
for each P edge; since a node can participate in at most O(n) conflicts, the number
of such cycles never exceeds O(n2). Furthermore, since each cycle examined can now
have only four edges, the cost of solving a linear system is constant independent of
problem size. This technique is in a sense a conservative approximation of Section 5.1,
as it ignores the C edges in the internal path, which results in additional constraints
that may cause the system to become inconsistent. Such an approximation, however,
is necessary for soundness anyway, since it may be possible to construct a back-path
without using internal conflict edges for loops of pure SPMD programs.

Input: P and C of a SPMD program
Output: delay set for P
Construct CG following the descriptions in Definition 5;
foreach (u,v) ∈ P do

Let C(u) and C(v) be the set of conflict edges for u and v;
foreach c1 ∈C(u) and c2 ∈C(v) do

Construct the linear system associated with the two conflict edges as mentioned
above;
If the system has an integer solution, add (u,v) to the delay set;

end
end

Algorithm 5: Handling Array Accesses Using Integer Programming

Algorithm 5 describes how to compute the delay set by solving the set of linear
constraints. For each P edge we need to verify if there exists a back-path whose cor-
responding linear system has a solution; the solution of the system gives the iterations
that are involved in the conflict. As an example, for the edge (S1,S2) in Figure 3 we
can identify its only pair of conflict edges (S2,S3) and (S4,S1), which generates the
following constraints:

i = j−2 i′ +1 = j′ i′ = i+3k1 (5)

j = j′ +2k2 k1 ≥ 0 k2 ≥ 0 (6)

Simple arithmetic reveals that the system has no integer solution, and we therefore
conclude that the edge is not part of the delay set. In the worst case this algorithm will
take a running time of O(n4), as the Cartesian product of C edges may have a O(n2)
cardinality. Like the previous methods, this algorithm can also be adopted to support
multidimensional arrays; each dimension of the access is handled independently, and
an edge is added to the delay set only if all of its dimensions have identified a linear
system that is consistent.



14 Wei-Yu Chen et al.

5.3 Algorithm Evaluation

We have presented three polynomial-time algorithms in this section that extend SPMD
cycle detection analysis to support array accesses. Here we compare the three tech-
niques using the following criteria: applicability, accuracy, as well as running time and
implementation difficulty. In terms of applicability, the data-flow analysis method is the
clear winner as it can be applied even to subscripts with non-affine terms, provided that
the sign of the edge weights are still computable. Integer programming technique is also
general enough to handle any affine array accesses, while zero cycle detection can only
apply to simple subscript expressions. What the zero cycle algorithm lacks in generality,
however, it compensates with greater accuracy by computing the correct and smallest
delay set. Integer programming also offers good accuracy, especially when the loop
bounds can be calculated statically so that the linear system can incorporate inequality
constraints between loop index variables and the loop bounds. The data-flow analysis
method is, as expected, the least accurate of the three and not compatible for loops
with non-monotonic access patterns; its accuracy, however, can easily be improved by
introducing more constant values into the lattice, at the cost of increased analysis time.

With regards of the running time, the data-flow analysis technique is clearly the
most efficient, and is also likely to be more easily incorporated into a compiler’s opti-
mization framework. The integer programming method, on the other hand, is the most
difficult to implement due to the construction and solving of linear systems. This sug-
gests the following implementation strategy. In normal cases data-flow analysis will
be the method of choice, while the more accurate zero cycle algorithm is applied to
hot-spots in the program where aggressive optimization is desired; the integer program-
ming technique is used for complex affine terms where neither zero cycle detection nor
data-flow analysis is applicable.

6 Conclusion

In a multiprocessor environment, most standard sequential compiler optimizations could
result in unexpected changes to program behavior because they may reorder shared
memory operations. In this paper, we presented an efficient algorithm that computes
the minimal delay set required to enforce sequential consistency for parallel SPMD
programs. This analysis can be used to implement a sequentially consistent program-
ming model on a machine that has a weaker model. In particular, implementing a global
address space language on a machine with remote memory accesses can be done by is-
suing nonblocking memory operations by default, except when the compiler has deter-
mined that a delay between memory operations is needed. For machines with a remote
latency of thousands of machine cycles, the ability to overlap in this fashion is critical.

Our algorithm is based on the concept of cycle detection, and has an asymptotic run-
ning time of O(n2), improving on a previous O(n3) algorithm. We have also described
techniques for combining array analysis with the SPMD cycle detection algorithm; this
further minimizes the delay set that guarantees sequential consistency without greatly
slowing down the analysis. The analyses are based on classical graph algorithms, data-
flow analyses, and integer programming method. In practice, we expect the data-flow
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analysis method to be most applicable. The proposed algorithms have made cycle de-
tection more practical for SPMD programs, thus opening the door for optimizations of
parallel programs that do not violate sequential consistency.
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