

Berkeley UPC http://upc.lbl.gov

Overview

• A portable and high-performance UPC implementation, compliant with UPC 1.2 spec

Features:

- High performance UPC Collectives
- Extensions for performance and programmability
 - Non-blocking memcpy functions
 - Semaphores and signaling put
 - Value-based collectives
 - Atomic memory operations
 - Hierarchical layout query
- Compiler and runtime optimizations for application scalability
- Open source software (Windows/Mac/UNIX), installation DVD available

UPC-to-C Translator

- Source-to-source translator, based on Open64
- Enhances programmer productivity through static and dynamic optimizations: compiler, runtime, communication libraries

Performance **Portability:** System, Scale, Load

Compile time message vectorization and strip-mining

Runtime Analysis:communication instantiated at runtime based on system specific performance models Performance models designed to take system scale and load into account

Portable Design

Layered design, platform-independent code gen

Supports wide range of SMPs, clusters and MPPs

- x86, Itanium, Opteron, Athlon, Alpha, PowerPC, MIPS, PA-RISC, SPARC, T3E, X1, SX-6, XT3, Blue Gene, ...
- Linux, FreeBSD, NetBSD, Tru64, AIX, IRIX, HPUX, Solaris, MS Windows, Mac OS X, Unicos, SuperUX, ...
- Pthreads, Unix SysV, Myrinet, Quadrics Elan 3/4, InfiniBand, IBM LAPI, Dolphin SCI, MPI, Ethernet, Cray X1 / SGI Altix shmem, Cray XT Portals, IBM BG/P DCMF (new: see poster)

BUPC Runtime + GASNet

- Well-documented runtime interface, multiple **UPC compilers (Berkeley UPC and Intrepid** GCC/UPC)
- Debugging and tracing support
 - Performance Instrumentation Support (GASP)
 - Supports Parallel Performance Wizard (PPW)
 - Detailed communication tracing support
 - Etnus TotalView debugger support
- Interoperability with other programming env:
 - UPC calls to/from C, C++, Fortran, MPI

Berkeley GASNet used for communication:

NAS Application Benchmarks **Infiniband Cluster**

> **Overall improved application** scalability and programmer productivity

Multithreading for Latency Hiding

For distributed memory or heterogeneous architectures one needs:

- Locality and Load Balance
- Remote synchronization for dependencies
- Latency Tolerance

Case Study - Linpack

- 2d block cyclic decomposition as in ScaLAPACK
- Cooperative multi-threading to mask dependences
- Non-blocking (remote get) transfers to mask latency
- Memory-constrained lookahead compared to none in ScaLAPACK, fixed parameter in MPI/HPL

•Application-level scheduling to prioritize critical path

Other results: Itanium 2/Elan 4.1 – 2.25 TFlop/s, 78.5% of peak on 512p 1p Itanium 2 1.5 GHz – 91.8% of peak 1p Opteron 2.2GHz – 81.9% of peak

- - Performance from inline functions, macros, and network-specific implementations
- Optimized Collective ops
- High-performance communication
 - Consistently matches or outperforms MPI
 - One-sided, lightweight semantics

Case Study – Cell BE (Sony PS3)

- Disjoint hardware hierarchies with different degrees of parallelism
- **Bioinformatics applications: PBPI and RAXML**
- **Oversubscription (multi-threading)** masks dependences and increases utilization
- **Cooperative scheduling to minimize SPE idle time**
- **Asynchronous PPE-SPE interaction**
- **Compares performance for 4 algorithms**
 - MBOX: SPE Mailboxes from Cell SDK
 - YNR: "Yield if Not Ready"
 - SLED: "SLack-minimizer Event-Driven"
 - UPC Shared Mem: work stealing in UPC
- Work-stealing in UPC yields 70% decrease in SPE idle time

