Open Research Questions

- How well does the PGAS programming model scale to thousands and hundreds of thousands of nodes?
- What new techniques must be employed to create scalable runtime systems for PGAS languages?
- What is the effectiveness of non-blocking communication and overlap at large scale?

BlueGene/P Overview

- Each compute node has 4 cores running at 850 MHz and 2 GB memory.
- Peak performance per node: 13.6 GFlop/s
- Peak Memory bandwidth: 13.6 GB/s
- Compute Nodes interconnected by many networks
 - Fast Collective Network
 - Fast Barrier Network
 - 3D Torus for general communication
 - 6 full-duplex links @ 425 MB/s per link

GASNet on BlueGene/P

GASNet is the portable high performance runtime layer for PGAS languages

- Currently used in Berkeley UPC, GCCUPC Titanium, Co-Array FORTRAN, and Chapel
- Provides high performance point-to-point communication primitives such as put/get
- Provides common collective operations that are designed for one-sided communication
- Often a better semantic match to modern network hardware and thus can realize better performance than MPI

NAS FT Benchmark Results

- Benchmark computes a large 3D FFT
- Requires a large All-to-all transpose communication operation.
 - Communication intensive benchmark limited by the bisection bandwidth of the network
 - Our previous work demonstrated nonblocking communication can lead to significant performance improvements
 - We explore how these techniques scale to thousands of processors on the BlueGene/P
- We consider two algorithms
 - Packed Slabs:
 - Separates computation and communication into two distinct phases
 - Pack the data to allow larger messages and thus better bandwidth
 - Keeps either computation or communication system idle
 - Slabs:
 - Initiate communication earlier and overlap transposes with the computation
 - Reduced message size could adversely affect communication performance

Strong Scaling Performance Results

- Keep the problem size fixed and vary the number of processors
- Overhead associated with overlapping communication and computation outweighs benefits with MPI
 - As core count grows message sizes become too small to effectively overlap communication
 - UPC Slabs outperforms MPI Slabs due to GASNet's lower overheads and higher efficiency at mid-range message sizes
 - UPC Slabs also outperforms MPI Packed Slabs by 13% @ 16k cores

Weak Scaling Performance Results

- Scale problem size with core count
- Message sizes vary less with core count allowing consistently better performance
- UPC can better overlap communication compared to MPI as shown by MPI Slabs vs. UPC Slabs.
- UPC Slabs outperforms MPI Packed Slabs to yield a 40% improvement in overall application performance

Performance Breakdown @ 16k cores (weak scaling)

- Performance is dominated by communication
 - Packed Slabs algorithm incurs higher costs associated with in memory data movement for packing
 - Performance difference between MPI Slabs and UPC Slabs illustrates performance advantages of UPC

Future Work

- Test at larger scale and other applications
- Leverage BlueGene hardware collectives in GASNet/UPC
- Explore techniques to better schedule communication for the 3D torus