
UPC Optional Library Specifications
Version 1.3

A publication of the UPC Consortium

November 16, 2013

UPC Optional Library Specifications Version 1.3

Contents

Contents 2

7 Library 3
7.6 UPC Atomic Memory Operations <upc_atomic.h> 4

7.6.1 Standard headers . 4
7.6.2 Common Requirements 4
7.6.3 Atomic Library Types 5
7.6.4 Atomic Library Functions 7

7.7 Castability Functions <upc_castable.h> 12
7.7.1 Standard headers . 12
7.7.2 Castability Functions 12

7.8 UPC Parallel I/O <upc_io.h> 15
7.8.1 Background . 17
7.8.2 Predefined Types . 22
7.8.3 UPC File Operations 23
7.8.4 Reading Data . 33
7.8.5 Writing Data . 35
7.8.6 List I/O . 37
7.8.7 Asynchronous I/O . 42

7.9 UPC Non-Blocking Transfer Operations <upc_nb.h> 49
7.9.1 Standard header . 49
7.9.2 Common Requirements 49
7.9.3 Explicit Handle Type 52
7.9.4 Explicit-handle transfer initiation functions 53
7.9.5 Implicit-handle transfer initiation functions 56
7.9.6 Explicit-handle synchronization functions 59
7.9.7 Implicit-handle synchronization functions 60

Index 61

2 Contents

UPC Optional Library Specifications Version 1.3

7 Library

1 This section provides UPC parallel extensions of [ISO/IEC00 Sec 7.1.2]. Also
see the UPC Required Library Specifications.

2 The libraries specified in this document are optional – conforming imple-
mentations of the UPC language may provide or omit each library at the
subsection level (e.g. Sec 7.4). Any subsection which is provided must be
implemented in its entirety and predefine the specified feature macro.

§7 Library 3

UPC Optional Library Specifications Version 1.3

7.6 UPC Atomic Memory Operations <upc_atomic.h>

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec
7.19]. All the characteristics of library functions described in [ISO/IEC00
Sec 7.1.4] apply to these as well. Implementations that support this interface
shall predefine the feature macro __UPC_ATOMIC__ to the value 1.

7.6.1 Standard headers

1 The standard header is

<upc_atomic.h>

2 Unless otherwise noted, all of the functions, types and macros specified in
Section 7.6 are declared by the header <upc_atomic.h>.

3 Every inclusion of <upc_atomic.h> has the effect of including <upc_types.h>.

7.6.2 Common Requirements

1 The following requirements apply to all of the functions defined in Section 7.6.

2 The UPC Atomic Memory Operations library introduces an atomicity do-
main, an object that specifies a single operand type and a set of operations
over which access to a memory location in a given synchronization phase is
guaranteed to be atomic if and only if no other mechanisms or atomicity
domains are used to access the same memory location in the same synchro-
nization phase. 1

3 The following table presents the required support for operations and operand
types

Operand Type Accessors Bit-wise Ops Numeric Ops
Integer X X X
Floating Point X X
UPC_PTS X

1In particular, this implies that atomicity is only guaranteed if atomic operations ac-
cessing a given memory location are separated from any other accesses to that location (via
direct read/writes or a different domain) by a upc_barrier or upc_notify/upc_wait.

4 UPC Atomic Memory Operations <upc_atomic.h> §7.6

UPC Optional Library Specifications Version 1.3

where

- Supported integer types are UPC_INT, UPC_UINT, UPC_LONG, UPC_ULONG,
UPC_INT32, UPC_UINT32, UPC_INT64, and UPC_UINT64.

- Supported floating-point types are UPC_FLOAT and UPC_DOUBLE.

- Supported accessors are UPC_GET, UPC_SET, and UPC_CSWAP.

- Supported bit-wise operations are UPC_AND, UPC_OR, and UPC_XOR.

- Supported numeric operations are UPC_ADD, UPC_SUB, UPC_MULT, UPC_INC,
UPC_DEC, UPC_MAX, and UPC_MIN.

4 The value macros listed below are defined in <upc_atomic.h>. All other
UPC_* value macros used in this subsection are defined by <upc_types.h>
(see UPC Language Specification, Section 7.3.1 and UPC Language Specifi-
cation, Section 7.3.2).

Macro name Specified operation
UPC_GET Read
UPC_SET Write or swap
UPC_CSWAP Conditional swap
UPC_SUB Subtraction
UPC_INC Increment by 1
UPC_DEC Decrement by 1

7.6.3 Atomic Library Types

7.6.3.1 The upc_atomicdomain_t type

1 The header <upc_atomic.h> declares the type

upc_atomicdomain_t

2 The type upc_atomicdomain_t is an opaque UPC type. upc_atomicdomain_t
is a shared datatype with incomplete type (as defined in [ISO/IEC00 Sec
6.2.5]). Objects of type upc_atomicdomain_t may therefore only be manip-
ulated through pointers.

3 Two pointers that reference the same atomicity domain object will compare
as equal. The results of applying upc_phaseof(), upc_threadof(), and
upc_addrfield() to such pointers are undefined.

§7.6.3 Atomic Library Types 5

UPC Optional Library Specifications Version 1.3

7.6.3.2 The upc_atomichint_t type

1 The header <upc_atomic.h> declares the integral type

upc_atomichint_t

2 The following macros expand to positive integer constant expressions with
type upc_atomichint_t and distinct values. They allow the specification
of a “hint” to the library implementation to indicate a preferred mode of
optimization for atomic operations performed on a domain.

UPC_ATOMIC_HINT_DEFAULT == 0 An implementation-defined default mode

UPC_ATOMIC_HINT_LATENCY Favor low-latency atomic memory operations

UPC_ATMOIC_HINT_THROUGHPUT Favor high-throughput atomic memory op-
erations

UPC_ATOMIC_HINT_* Implementation-defined additional hint values

6 The upc_atomichint_t type §7.6.3.2

UPC Optional Library Specifications Version 1.3

7.6.4 Atomic Library Functions

7.6.4.1 The upc_all_atomicdomain_alloc function

Synopsis

1 #include <upc_atomic.h>
upc_atomicdomain_t *upc_all_atomicdomain_alloc(upc_type_t type,

upc_op_t ops, upc_atomichint_t hints);

Description

2 The upc_all_atomicdomain_alloc function dynamically allocates an atom-
icity domain and returns a pointer to it.

3 The upc_all_atomicdomain_alloc function is a collective function, with
single-valued arguments. The return value on every thread points to the
same atomicity domain object.

4 The atomicity domain created supports atomic library calls to operate on
objects of a unique type, specified by the type parameter. The upc_type_t
values and the corresponding type they specify are listed in UPC Language
Specification, Section 7.3.2. The type parameter shall specify a type permit-
ted by Section 7.6.2, otherwise behavior is undefined.

5 The ops parameter specifies the atomic operations to be supported by the
atomicity domain. The ops parameter shall only specify operations within
the set permitted for type (as defined in 7.6.2), otherwise behavior is unde-
fined. Multiple atomic operation value macros from 7.6.2 can be combined by
using the bitwise OR operator (|), and each value has a unique bitwise repre-
sentation that can be unambiguously tested using the bitwise AND operator
(&).

6 The implementation is free to ignore the hints parameter.

7 EXAMPLE: Collectively allocate an atomicity domain that supports the ad-
dition, maximum, and minimum operations (i.e., UPC_ADD, UPC_MAX, UPC_MIN)
on signed 64-bit integers (i.e., int64_t).

#include <upc_atomic.h>
upc_atomicdomain_t* domain = upc_all_atomicdomain_alloc(

UPC_INT64, UPC_ADD | UPC_MAX | UPC_MIN, 0);

§7.6.4 Atomic Library Functions 7

UPC Optional Library Specifications Version 1.3

7.6.4.2 The upc_all_atomicdomain_free function

Synopsis

1 #include <upc_atomic.h>
void upc_all_atomicdomain_free(upc_atomicdomain_t *ptr);

Description

2 The upc_all_atomicdomain_free function is a collective function, with the
single-valued argument ptr.

3 The upc_all_atomicdomain_free function frees the resources associated
with the atomicity domain pointed to by ptr. If ptr is a null pointer, no
action occurs. Otherwise, if the argument does not match a pointer earlier
returned by the upc_all_atomicdomain_alloc function, or if the atomicity
domain has been deallocated by a previous call to upc_all_atomicdomain_free
the behavior is undefined.

4 The atomicity domain referenced by ptr is guaranteed to remain valid until
all threads have entered the call to upc_all_atomicdomain_free, but the
function does not otherwise guarantee any synchronization or strict reference.

5 Any subsequent calls to atomic library functions from any thread using ptr
have undefined behavior.

7.6.4.3 The upc_atomic_strict and upc_atomic_relaxed functions

Synopsis

1 #include <upc_atomic.h>
void upc_atomic_strict(upc_atomicdomain_t *domain,

void * restrict fetch_ptr, upc_op_t op,
shared void * restrict target,
const void * restrict operand1,
const void * restrict operand2);

void upc_atomic_relaxed(upc_atomicdomain_t *domain,
void * restrict fetch_ptr, upc_op_t op,
shared void * restrict target,
const void * restrict operand1,
const void * restrict operand2);

Description

8 The upc_all_atomicdomain_free function §7.6.4.2

UPC Optional Library Specifications Version 1.3

2 The op argument shall specify an operation included in the ops argument to
the upc_all_atomicdomain_alloc call used to construct domain, otherwise
behavior is undefined.

3 The target argument shall point to an object having the type specified in the
type argument to the upc_all_atomicdomain_alloc call used to construct
domain, otherwise behavior is undefined. The function treats the arguments
fetch_ptr, target, operand1 and operand2 as pointers to this type.

4 The upc_atomic_strict and upc_atomic_relaxed functions perform an
atomic update of the object pointed to by target such that:

*target = *target ⊕ *operand1, where “⊕” is the operator
specified by the variable op and op ∈ {UPC_AND, UPC_OR,
UPC_XOR, UPC_ADD, UPC_SUB, UPC_MULT, UPC_MIN, UPC_MAX}

*target = *target + 1, where op is UPC_INC
*target = *target - 1, where op is UPC_DEC
*target = (*target == *operand1) ? *operand2 : *target,

where op is UPC_CSWAP2

*target = *operand1, where op is UPC_SET
*target is unchanged, where op is UPC_GET

5 The arguments operand1 and operand2 shall each be a null pointer for those
operations that do not require them.3

6 The value of *target prior to performing the specified update is stored in
*fetch_ptr if and only if fetch_ptr is not a null pointer.4 If op is UPC_GET,
fetch_ptr shall not be a null pointer.

7 The following requirements apply when domain was allocated with type ∈
{UPC_FLOAT, UPC_DOUBLE}: If *target, *operand1 or *operand2 is a sig-
nalling NaN value (as defined in [ISO/IEC00 Sec 5.2.4.2.2]), behavior is un-
defined. If op is UPC_CSWAP and *target or *operand1 is a quiet NaN value
(as defined in [ISO/IEC00 Sec 5.2.4.2.2]), behavior is undefined.

8 If domain was allocated with type == UPC_PTS and op is UPC_CSWAP, the
2UPC_CSWAP does not fail spuriously, for example due to cache events.
3That is, for all permitted operations other than UPC_CSWAP, operand2 shall be a null

pointer, and for UPC_GET, UPC_INC and UPC_DEC both operand1 and operand2 shall be a
null pointer.

4If op is UPC_SET and fetch_ptr is not a null pointer, the effect is an unconditional
atomic swap.

§7.6.4.3 The upc_atomic_strict and upc_atomic_relaxed
functions

9

UPC Optional Library Specifications Version 1.3

comparison shall be performed as specified in [UPC Language Specification
Sec. 6.4.2]; specifically, it ignores the phase component of the pointers-to-
shared.

9 In all other cases, the value computed by op and stored in *target shall be
equal to the value that would have been computed by passing the operands
to the corresponding built-in language operator. In particular, this requires
that overflows, underflows and quiet NaN values are handled as specified in
[ISO/IEC00].

10 The upc_atomic_relaxed function atomically performs a relaxed shared
read of *target followed by a relaxed shared write of *target. The upc_atomic_strict
function atomically performs a strict shared read of *target followed by
a strict shared write of *target. The write is omitted for UPC_GET or a
UPC_CSWAP that fails, and the read is omitted for UPC_SET when fetch_ptr
is a null pointer. Atomically requires the read and write accesses compris-
ing one atomic operation shall not appear (to any thread) to have been
interleaved (or word-torn) with the read/write pair of a conflicting atomic
operation to the same location using the same atomicity domain.

11 EXAMPLE: Perform a relaxed atomic fetch-and-increment of a value of type
uint64_t after allocating an atomicity domain domain to support UPC_INC
for UPC_UINT64.

#include <upc_atomic.h>
shared uint64_t val = 42;
uint64_t oldval;
upc_atomicdomain_t* domain = upc_all_atomicdomain_alloc(

UPC_UINT64, UPC_INC, 0);
upc_atomic_relaxed(domain, &oldval, UPC_INC, &val, 0, 0);

10 The upc_atomic_strict and upc_atomic_relaxed
functions

§7.6.4.3

UPC Optional Library Specifications Version 1.3

7.6.4.4 The upc_atomic_isfast function

Synopsis

1 #include <upc_atomic.h>
int upc_atomic_isfast(upc_type_t type, upc_op_t ops,

shared void *addr);

Description

2 The upc_atomic_isfast function queries the implementation to determine
the expected performance of a upc_atomic_relaxed call on addr, using a
domain allocated with the arguments type and ops. The call returns non-
zero if the performance is expected to be comparable to the fastest expected
performance of upc_atomic_relaxed for any combination of addr, type, and
ops. Otherwise the function returns zero.5

5This function allows the implementation to report which combinations of type, ops,
and alignment are best supported; e.g., using hardware atomic instructions. Some imple-
mentations may also return zero when upc_threadof(addr) is not equal to the calling
thread, to indicate the additional cost of remote access.

§7.6.4.4 The upc_atomic_isfast function 11

UPC Optional Library Specifications Version 1.3

7.7 Castability Functions <upc_castable.h>

1 A UPC implementation may map some or all of the shared address space of
another thread into the local address space of the current thread. The func-
tions described in this section allow the programmer to determine whether
this is the case, and to make use of this information by providing the ability
to obtain valid local addresses for shared cells with affinity to other threads.
This capability, sometimes called "privatizability", is referred to as "castabil-
ity" in this section.

2 Implementations that support this interface shall predefine the feature macro
__UPC_CASTABLE__ to the value 1.

7.7.1 Standard headers

1 The standard header is

<upc_castable.h>

2 Unless otherwise noted, all of the functions, types and macros specified in
Section 7.7 are declared by the header <upc_castable.h>.

7.7.2 Castability Functions

7.7.2.1 The upc_cast function

Synopsis

1 #include <upc_castable.h>
void *upc_cast(const shared void *ptr);

Description

2 The upc_cast function converts the specified pointer-to-shared to a valid
pointer-to-local. If such a conversion is not possible, a null pointer is re-
turned.

3 The pointer ptr points into one or more shared objects. Consider the portions
of all of these shared objects with affinity to upc_threadof(ptr). Choose the
shared object containing ptr where the portion with this affinity is largest.
The conversion performed by the upc_cast function will be considered possi-

12 Castability Functions <upc_castable.h> §7.7

UPC Optional Library Specifications Version 1.3

ble only if this entire portion may be read and written by the current thread
based on the returned pointer-to-local value.

4 If the conversion is possible, the pointer-to-shared value is referred to as
castable.

5 If upc_threadof(ptr) is equal to MYTHREAD, upc_cast(ptr) is equivalent
to (void *)ptr.

6 If the ptr pointer is null, upc_cast returns a null pointer.

7 The pointer returned by upc_cast is valid only in the calling thread. It
cannot be assumed that the return value may be passed to a different thread
and used by that thread. It also cannot be assumed that two threads calling
upc_cast with the same argument will get the same return value.

8 The pointer returned by upc_cast remains valid for the lifetime of the ref-
erenced shared object. In particular, if the referenced shared object was
dynamically allocated, the pointer is no longer valid after the associated
shared memory has been freed.

9 If a call to upc_cast succeeds, subsequent calls by the same thread with
the same pointer, or with a pointer into the same object and with the same
affinity, are also guaranteed to succeed for the lifetime of the object.

7.7.2.2 The upc_thread_info function

Synopsis

1 #include <upc_castable.h>
upc_thread_info_t upc_thread_info(size_t threadId);

Description

2 The upc_thread_info function returns information about potential uses of
the upc_cast function in the calling thread in reference to objects with affin-
ity to thread threadId. The information is returned in a upc_thread_info_t
structure, with the following fields:

int guaranteedCastable
Indicates which memory regions are guaranteed to be castable.

int probablyCastable
Indicates which memory regions are likely (but not guaranteed) to be
castable.

§7.7.2.2 The upc_thread_info function 13

UPC Optional Library Specifications Version 1.3

3 An implementation may provide additional fields in this structure, allowing
upc_thread_info to return other information about thread threadId with
respect to the calling thread.

4 The guaranteedCastable and probablyCastable fields contain coded inte-
ger values indicating memory regions. If the flag for a particular region is
set in the guaranteedCastable field, it indicates that any pointer into that
region with affinity to threadId is castable. If the flag is set for a particular
region is set in the probablyCastable field, it indicates that it is likely, but
not guaranteed, that a pointer into that region with affinity to threadId is
castable.

5 The <upc_castable.h> header defines the following macros, which expand
to integer constant expressions with type int, which are suitable for use
in #if preprocessing directives. Each macro value designates the specified
memory region. The expressions are defined such that each value can be
unambiguously tested using the bitwise AND operator (&).

UPC_CASTABLE_ALL_ALLOC
Refers to memory allocated via upc_all_alloc.

UPC_CASTABLE_GLOBAL_ALLOC
Refers to memory allocated via upc_global_alloc.

UPC_CASTABLE_ALLOC
Refers to memory allocated via upc_alloc.

UPC_CASTABLE_STATIC
Refers to shared variables defined via static and file scope declarations.

6 Implementations may define additional memory region flags.

7 The macro UPC_CASTABLE_ALL shall be defined to be all the region-specific
values (including any implementation-specific values) combined via bitwise
OR (|) operations. It is defined for convenient testing of whether all shared
memory regions are covered in the returned flag.

8 If no memory regions are indicated by the returned flag, the flag value shall
be zero.

14 The upc_thread_info function §7.7.2.2

UPC Optional Library Specifications Version 1.3

7.8 UPC Parallel I/O <upc_io.h>

1 This subsection provides the UPC parallel extensions of [ISO/IEC00 Sec
7.19]. All the characteristics of library functions described in [ISO/IEC00
Sec 7.1.4] apply to these as well. Implementations that support this interface
shall predefine the feature macro __UPC_IO__ to the value 1.

2 Unless otherwise noted, all of the functions, types and macros specified in
Section 7.8 are declared by the header <upc_io.h>.

3 Every inclusion of <upc_io.h> has the effect of including <upc_types.h>.

Common Constraints

4 All UPC-IO functions are collective and must be called by all threads collec-
tively.6

5 If a program calls exit, upc_global_exit, or returns from main with a UPC
file still open, the file will automatically be closed at program termination,
and the effect will be equivalent to upc_all_fclose being implicitly called
on the file.

6 If a program attempts to read past the end of a file, the read function will
read data up to the end of file and return the number of bytes actually read,
which may be less than the amount requested.

7 Writing past the end of a file increases the file size.

8 If a program seeks to a location past the end of a file and writes starting from
that location, the data in the intermediate (unwritten) portion of the file is
undefined. For example, if a program opens a new file (of size 0 bytes), seeks
to offset 1024 and writes some data beginning from that offset, the data at
offsets 0–1023 is undefined. Seeking past the end of file and performing a
write causes the current file size to immediately be extended up to the end
of the write. However, just seeking past the end of file or attempting to read
past the end of file, without a write, does not extend the file size.

9 All generic pointers-to-shared passed to the I/O functions (as function ar-

6Note that collective does not necessarily imply barrier synchronization. The synchro-
nization behavior of the UPC-IO data movement library functions is explicitly controlled
by using the upc_flag_t flags argument. See UPC Language Specification, Section 7.3.3
for details.

§7.8 UPC Parallel I/O <upc_io.h> 15

UPC Optional Library Specifications Version 1.3

guments or indirectly through the list I/O arguments) are treated as if they
had a phase field of zero (that is, the input phase is ignored).

10 All UPC-IO read/write functions take an argument flags of type upc_flag_t.
The semantics of this argument is defined in UPC Language Specification,
Section 7.3.3. These semantics apply only to memory locations in user-
provided buffers, not to the read/write operations on the storage medium or
any buffer memory internal to the library implementation.

11 The flags flag is included even on the fread/fwrite_local functions (which
take a pointer-to-local as the buffer argument) in order to provide well-defined
semantics for the case where one or more of the pointer-to-local arguments
references a shared object (with local affinity). In the case where all of the
pointer-to-local arguments in a given call reference only private objects, the
flags flag provides no useful additional guarantees and is recommended to
be passed as UPC_IN_NOSYNC|UPC_OUT_NOSYNC to maximize performance.

12 The arguments to all UPC-IO functions are single-valued except where ex-
plicitly noted in the function description.

13 UPC-IO, by default, supports weak consistency and atomicity semantics.
The default (weak) semantics are as follows. The data written to a file by
a thread is only guaranteed to be visible to another thread after all threads
have collectively closed or synchronized the file.

14 Writes to a file from a given thread are always guaranteed to be visible to
subsequent file reads by the same thread, even without an intervening call
to collectively close or synchronize the file.

15 Byte-level data consistency is supported.

16 If concurrent writes from multiple threads overlap in the file, the resulting
data in the overlapping region is undefined with the weak consistency and
atomicity semantics

17 When reading data being concurrently written by another thread, the data
that gets read is undefined with the weak consistency and atomicity seman-
tics.

18 File reads into overlapping locations in a shared buffer in memory using
individual file pointers or list I/O functions leads to undefined data in the
target buffer under the weak consistency and atomicity semantics.

16 UPC Parallel I/O <upc_io.h> §7.8

UPC Optional Library Specifications Version 1.3

19 A given file must not be opened at same time by the POSIX I/O and UPC-IO
libraries.

20 Except where otherwise noted, all UPC-IO functions return NON-single-
valued errors; that is, the occurrence of an error need only be reported to
at least one thread, and the errno value reported to each such thread may
differ. When an error is reported to ANY thread, the position of ALL file
pointers for the relevant file handle becomes undefined.

21 The error values that UPC-IO functions may set in errno are implementation-
defined, however the perror() and strerror() functions are still guaranteed
to work properly with errno values generated by UPC-IO.

22 UPC-IO functions can not be called between upc_notify and corresponding
upc_wait statements.

7.8.1 Background

7.8.1.1 File Accessing and File Pointers

1 Collective UPC-IO accesses can be done in and out of shared and private
buffers, thus local and shared reads and writes are generally supported.
In each of these cases, file pointers could be either common or individual.
Note that in UPC-IO, common file pointers cannot be used in conjunction
with pointer-to-local buffers. File pointer modes are specified by passing
a flag to the collective upc_all_fopen function and can be changed using
upc_all_fcntl. When a file is opened with the common file pointer flag,
all threads share a common file pointer. When a file is opened with the
individual file pointer flag, each thread gets its own file pointer.

2 UPC-IO also provides file-pointer-independent list file accesses by specifying
explicit offsets and sizes of data that is to be accessed. List IO can also be
used with either pointer-to-local buffers or pointer-to-shared buffers.

3 Examples 1-3 and their associated figures, Figures 2-4, give typical instances
of UPC-IO usage. Error checking is omitted for brevity.

4 EXAMPLE 1: collective read operation using individual file pointers

#include <upc.h>
#include <upc_io.h>

§7.8.1 Background 17

UPC Optional Library Specifications Version 1.3

double buffer[10]; // and assuming a total of 4 THREADS
upc_file_t *fd;

fd = upc_all_fopen("file", UPC_RDONLY | UPC_INDIVIDUAL_FP, 0, NULL);
upc_all_fseek(fd, 5*MYTHREAD*sizeof(double), UPC_SEEK_SET);
upc_all_fread_local(fd, buffer, sizeof(double), 10,

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);
upc_all_fclose(fd);

Each thread reads a block of data into a private buffer from a particular
thread-specific offset.

5 EXAMPLE 2: a collective read operation using a common file pointer. The
data read is stored into a shared buffer, having a block size of 5 elements.
The user selects the type of file pointer at file-open time. The user can
select either individual file pointers by passing the flag UPC_INDIVIDUAL_FP
to the function upc_all_fopen, or the common file pointer by passing the
flag UPC_COMMON_FP to upc_all_fopen.

#include <upc.h>
#include <upc_io.h>
shared [5] float buffer[20]; // and assuming a total of 4 static THREADS
upc_file_t *fd;

fd = upc_all_fopen("file", UPC_RDONLY | UPC_COMMON_FP, 0, NULL);
upc_all_fread_shared(fd, buffer, upc_blocksizeof(buffer),

upc_elemsizeof(buffer), 20, UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);
/* or equivalently:
* upc_all_fread_shared(fd, buffer, 5, sizeof(float), 20,

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);
*/

7.8.1.2 Synchronous and Asynchronous I/O

1 I/O operations can be synchronous (blocking) or asynchronous (non-blocking).
While synchronous calls are quite simple and easy to use from a programming
point of view, asynchronous operations allow the overlapping of computation
and I/O to achieve improved performance. Synchronous calls block and wait
until the corresponding I/O operation is completed. On the other hand, an
asynchronous call starts an I/O operation and returns immediately. Thus,

18 Synchronous and Asynchronous I/O §7.8.1.2

UPC Optional Library Specifications Version 1.3

the executing process can turn its attention to other processing needs while
the I/O is progressing.

2 UPC-IO supports both synchronous and asynchronous I/O functionality.
The asynchronous I/O functions have the same syntax and basic seman-
tics as their synchronous counterparts, with the addition of the async suffix
in their names. The asynchronous I/O functions have the restriction that
only one (collective) asynchronous operation can be active at a time on a
given file handle. That is, an asynchronous I/O function must be completed
by calling upc_all_ftest_async or upc_all_fwait_async before another
asynchronous I/O function can be called on the same file handle. This re-
striction is similar to the restriction MPI-IO [MPI2] has on split-collective
I/O functions: only one split collective operation can be outstanding on an
MPI-IO file handle at any time.

7.8.1.3 Consistency and Atomicity Semantics

1 The consistency semantics define when the data written to a file by a thread
is visible to other threads. The atomicity semantics define the outcome of op-
erations in which multiple threads write concurrently to a file or shared buffer
and some of the writes overlap each other. For performance reasons, UPC-IO
uses weak consistency and atomicity semantics by default. The user can se-
lect stronger semantics either by opening the file with the flag UPC_STRONG_CA
or by calling upc_all_fcntl with the command UPC_SET_STRONG_CA_SEMANTICS.

2 The default (weak) semantics are as follows. The data written by a thread is
only guaranteed to be visible to another thread after all threads have called
upc_all_fclose or upc_all_fsync. (Note that the data may be visible to
other threads before the call to upc_all_fclose or upc_all_fsync and that
the data may become visible to different threads at different times.) Writes
from a given thread are always guaranteed to be visible to subsequent reads
by the same thread, even without an intervening call to upc_all_fclose or
upc_all_fsync. Byte-level data consistency is supported. So for example,
if thread 0 writes one byte at offset 0 in the file and thread 1 writes one byte
at offset 1 in the file, the data from both threads will get written to the file.
If concurrent writes from multiple threads overlap in the file, the resulting
data in the overlapping region is undefined. Similarly, if one thread tries to
read the data being concurrently written by another thread, the data that
gets read is undefined. Concurrent in this context means any two read/write

§7.8.1.3 Consistency and Atomicity Semantics 19

UPC Optional Library Specifications Version 1.3

operations to the same file handle with no intervening calls to upc_all_fsync
or upc_all_fclose.

3 For the functions that read into or write from a shared buffer using a common
file pointer, the weak consistency semantics are defined as follows. Each call
to upc_all_{fread,fwrite}_shared[_async] with a common file pointer
behaves as if the read/write operations were performed by a single, distinct,
anonymous thread which is different from any compute thread (and different
for each operation). In other words, NO file reads are guaranteed to see the
results of file writes using the common file pointer until after a close or sync
under the default weak consistency semantics.

4 By passing the UPC_STRONG_CA flag to upc_all_fopen or by calling upc_all_fcntl
with the command UPC_SET_STRONG_CA_SEMANTICS, the user selects strong
consistency and atomicity semantics. In this case, the data written by a
thread is visible to other threads as soon as the file write on the calling
thread returns. In the case of writes from multiple threads to overlapping
regions in the file, the result would be as if the individual write function
from each thread occurred atomically in some (unspecified) order. Overlap-
ping writes to a file in a single (list I/O) write function on a single thread
are not permitted (see Section 7.8.6). While strong consistency and atom-
icity semantics are selected on a given file handle, the flags argument to
all fread/fwrite functions on that handle is ignored and always treated as
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC.

5 The consistency semantics also define the outcome in the case of overlapping
reads into a shared buffer in memory when using individual file pointers or
list I/O functions. By default, the data in the overlapping space is undefined.
If the user selects strong consistency and atomicity, the result would be as if
the individual read functions from each thread occurred atomically in some
(unspecified) order. Overlapping reads into memory buffers in a single (list
I/O) read function on a single thread are not permitted (see Section 7.8.6).

6 Note that in strong consistency and atomicity mode, atomicity is guaranteed
at the UPC-IO function level. The entire operation specified by a single
function is performed atomically, regardless of whether it represents a single,
contiguous read/write or multiple noncontiguous reads or writes as in a list
I/O function.

7 EXAMPLE 1: three threads write data to a file concurrently, each with

20 Consistency and Atomicity Semantics §7.8.1.3

UPC Optional Library Specifications Version 1.3

a single list I/O function. The numbers indicate file offsets and brackets
indicate the boundaries of a listed vector. Each thread writes its own thread
id as the data values:

thread 0: {1 2 3} {5 6 7 8}
thread 1: {0 1 2}{3 4 5}
thread 2: {4 5 6} {8 9 10 11}

8 With the default weak semantics, the results in the overlapping locations are
undefined. Therefore, the result in the file would be the following, where x
represents undefined data.

File: 1 x x x x x x 0 x 2 2 2

9 That is, the data from thread 1 is written at location 0, the data from thread
0 is written at location 7, and the data from thread 2 is written at locations
9, 10, and 11, because none of these locations had overlapping writes. All
other locations had overlapping writes, and consequently, the result at those
locations is undefined.

10 If the file were opened with the UPC_STRONG_CA flag, strong consistency and
atomicity semantics would be in effect. The result, then, would depend on
the order in which the writes from the three threads actually occurred. Since
six different orderings are possible, there can be six outcomes. Let us assume,
for example, that the ordering was the write from thread 0, followed by the
write from thread 2, and then the write from thread 1. The (list I/O) write
from each thread happens atomically. Therefore, for this ordering, the result
would be:

File: 1 1 1 1 1 1 2 0 2 2 2 2

11 We note that if instead of using a single list I/O function each thread used
a separate function to write each contiguous portion, there would be six
write functions, two from each thread, and the atomicity would be at the
granularity of the write operation specified by each of those functions.

7.8.1.4 File Interoperability

1 UPC-IO does not specify how an implementation may store the data in a file
on the storage device. Accordingly, it is implementation-defined whether or
not a file created by UPC-IO can be directly accessed by using C/POSIX I/O
functions. However, the UPC-IO implementation must specify how the user

§7.8.1.4 File Interoperability 21

UPC Optional Library Specifications Version 1.3

can retrieve the file from the storage system as a linear sequence of bytes
and vice versa. Similarly, the implementation must specify how familiar
operations, such as the equivalent of POSIX ls, cp, rm, and mv can be
performed on the file.

7.8.2 Predefined Types

1 The following types are defined in <upc_io.h>

2 upc_off_t is a signed integral type that is capable of representing the size
of the largest file supported by the implementation.

3 upc_file_t is an opaque shared data type of incomplete type (as defined in
[ISO/IEC00 Sec 6.2.5]) that represents an open file handle.

4 upc_file_t objects are always manipulated via a pointer (that is, upc_file_t
*).

5 upc_file_t is a shared data type. It is allowed to pass a (upc_file_t
*) across threads, and two pointers to upc_file_t that reference the same
logical file handle will always compare equal.

Advice to implementors

6 The definition of upc_file_t does not restrict the implementation to store
all its metadata with affinity to one thread. Each thread can still have
local access to its metadata. For example, below is a simple approach an
implementation could use:

#include <upc.h>
#include <upc_io.h>
/* for a POSIX-based implementation */
typedef int my_internal_filehandle_t;

#ifdef _UPC_INTERNAL
typedef struct _local_upc_file_t {

my_internal_filehandle_t fd;
... other metadata ...

} local_upc_file_t;
#else

struct _local_upc_file_t;

22 Predefined Types §7.8.2

UPC Optional Library Specifications Version 1.3

#endif

typedef shared struct _local_upc_file_t upc_file_t;

upc_file_t *upc_all_fopen(...) {

upc_file_t *handles =
upc_all_alloc(THREADS, sizeof(upc_file_t));

/* get my handle */
upc_file_t *myhandle = &(handles[MYTHREAD]);

/* cast to a pointer-to-local */
local_upc_file_t* mylocalhandle = (local_upc_file_t*)myhandle;

/* setup my metadata using pointer-to-local */
mylocalhandle->fd = open(...);

...

return handles;
}

7 The basic idea is that the “handle” exposed to the user actually points to a
cyclic, distributed array. As a result, each thread has easy, local access to its
own internal handle metadata with no communication, while maintaining the
property that the handle that UPC-IO exposes to the client is a single-valued
pointer-to-shared. An additional advantage is that a thread can directly
access the metadata for other threads, which may occasionally be desirable
in the implementation.

7.8.3 UPC File Operations

Common Constraints

1 When a file is opened with an individual file pointer, each thread will get its
own file pointer and advance through the file at its own pace.

2 When a common file pointer is used, all threads positioned in the file will be

§7.8.3 UPC File Operations 23

UPC Optional Library Specifications Version 1.3

aligned with that common file pointer.

3 Common file pointers cannot be used in conjunction with pointers-to-local
(and hence cannot operate on private objects).

4 No function in this section may be called while an asynchronous operation
is pending on the file handle, except where otherwise noted.

7.8.3.1 The upc_all_fopen function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_file_t *upc_all_fopen(const char *fname, int flags,

size_t numhints, struct upc_hint const *hints);

Description

2 upc_all_fopen opens the file identified by the filename fname for input/output
operations.

3 The flags parameter specifies the access mode. The valid flags and their
meanings are listed below. Of these flags, exactly one of UPC_RDONLY, UPC_WRONLY,
or UPC_RDWR, and one of UPC_COMMON_FP or UPC_INDIVIDUAL_FP, must be
used. Other flags are optional. Multiple flags can be combined by using the
bitwise OR operator (|), and each flag has a unique bitwise representation
that can be unambiguously tested using the bitwise AND operator(&).

UPC_RDONLY Open the file in read-only mode

UPC_WRONLY Open the file in write-only mode

UPC_RDWR Open the file in read/write mode

UPC_INDIVIDUAL_FP Use an individual file pointer for all file accesses (other
than list I/O)

UPC_COMMON_FP Use the common file pointer for all file accesses (other than
list I/O)

UPC_APPEND Set the initial position of the file pointer to end of file. (The
file pointer is not moved to the end of file after each read/write)

UPC_CREATE Create the file if it does not already exist. If the named file
does not exist and this flag is not passed, the function fails with an

24 The upc_all_fopen function §7.8.3.1

UPC Optional Library Specifications Version 1.3

error.

UPC_EXCL Must be used in conjunction with UPC_CREATE. The open will fail
if the file already exists.

UPC_STRONG_CA Set strong consistency and atomicity semantics

UPC_TRUNC Open the file and truncate it to zero length. The file must be
opened before writing.

UPC_DELETE_ON_CLOSE Delete the file automatically on close

4 The UPC_COMMON_FP flag specifies that all accesses (except for the list I/O
operations) will use the common file pointer. The UPC_INDIVIDUAL_FP flag
specifies that all accesses will use individual file pointers (except for the list
I/O operations). Either UPC_COMMON_FP or UPC_INDIVIDUAL_FP must be
specified or upc_all_fopen will return an error.

5 The UPC_STRONG_CA flag specifies strong consistency and atomicity seman-
tics. The data written by a thread is visible to other threads as soon as
the write on the calling thread returns. In the case of writes from multiple
threads to overlapping regions in the file, the result would be as if the individ-
ual write function from each thread occurred atomically in some (unspecified)
order. In the case of overlapping reads into a shared buffer in memory when
using individual file pointers or list I/O functions, the result would be as if
the individual read functions from each thread occurred atomically in some
(unspecified) order.

6 If the flag UPC_STRONG_CA is not specified, weak semantics are provided. The
data written by a thread is only guaranteed to be visible to another thread
after all threads have called upc_all_fclose or upc_all_fsync. (Note that
the data may be visible to other threads before the call to upc_all_fclose
or upc_all_fsync and that the data may become visible to different threads
at different times.) Writes from a given thread are always guaranteed to be
visible to subsequent reads by the same thread, even without an intervening
call to upc_all_fclose or upc_all_fsync. Byte-level data consistency is
supported. For the purposes of atomicity and consistency semantics, each call
to upc_all_{fread,fwrite}_shared[_async] with a common file pointer
behaves as if the read/write operations were performed by a single, distinct,
anonymous thread which is different from any compute thread (and different

§7.8.3.1 The upc_all_fopen function 25

UPC Optional Library Specifications Version 1.3

for each operation).”7

7 Hints can be passed to the UPC-IO library as an array of key-value pairs8

of strings. numhints specifies the number of hints in the hints array; if
numhints is zero, the hints pointer is ignored. The user can free the hints
array and associated character strings as soon as the open call returns. The
following type is defined in <upc_io.h>:

struct upc_hint

holds each element of the hints array and contain at least the following
initial members, in this order.

const char *key;
const char *value;

8 upc_all_fopen defines a number hints. An implementation is free to support
additional hints. An implementation is free to ignore any hint provided by the
user. Implementations should silently ignore any hints they do not support
or recognize. The predefined hints and their meanings are defined below.
An implementation is not required to interpret these hint keys, but if it
does interpret the hint key, it must provide the functionality described. All
hints are single-valued character strings (the content is single-valued, not the
location).

access_style (comma-separated list of strings): indicates the manner in
which the file is expected to be accessed. The hint value is a comma-
separated list of any the following: “read_once", “write_once", “read_mostly",
“write_mostly", “sequential", and “random". Passing such a hint does
not place any constraints on how the file may actually be accessed by
the program, although accessing the file in a way that is different from
the specified hint may result in lower performance.

collective_buffering (boolean): specifies whether the application may
benefit from collective buffering optimizations. Allowed values for this
key are “true” and “false”. Collective buffering parameters can be fur-
ther directed via additional hints: cb_buffer_size, and cb_nodes.

cb_buffer_size (decimal integer): specifies the total buffer space that the
7In other words, NO reads are guaranteed to see the results of writes using the common

file pointer until after a close or sync when UPC_STRONG_CA is not specified.
8The contents of the key/value pairs passed by all the threads must be single-valued.

26 The upc_all_fopen function §7.8.3.1

UPC Optional Library Specifications Version 1.3

implementation can use on each thread for collective buffering.

cb_nodes (decimal integer): specifies the number of target threads or I/O
nodes to be used for collective buffering.

file_perm (string): specifies the file permissions to use for file creation. The
set of allowed values for this key is implementation defined.

io_node_list (comma separated list of strings): specifies the list of I/O
devices that should be used to store the file and is only relevant when
the file is created.

nb_proc (decimal integer): specifies the number of threads that will typically
be used to run programs that access this file and is only relevant when
the file is created.

striping_factor (decimal integer): specifies the number of I/O devices
that the file should be striped across and is relevant only when the file
is created.

start_io_device (decimal integer): specifies the number of the first I/O
device from which to start striping the file and is relevant only when
the file is created.

striping_unit (decimal integer): specifies the striping unit to be used for
the file. The striping unit is the amount of consecutive data assigned
to one I/O device before progressing to the next device, when striping
across a number of devices. It is expressed in bytes. This hint is
relevant only when the file is created.

9 A file on the storage device is in the open state from the beginning of a
successful open call to the end of the matching successful close call on the
file handle. It is erroneous to have the same file open simultaneously with
two upc_all_fopen calls, or with a upc_all_fopen call and a POSIX/C
open or fopen call.

10 The user is responsible for ensuring that the file referenced by the fname
argument refers to a single UPC-IO file. The actual argument passed on
each thread may be different because the file name spaces may be different
on different threads, but they must all refer to the same logical UPC-IO file.

11 On success, the function returns a pointer to a file handle that can be used
to perform other operations on the file.

§7.8.3.1 The upc_all_fopen function 27

UPC Optional Library Specifications Version 1.3

12 upc_all_fopen provides single-valued errors - if an error occurs, the function
returns NULL on ALL threads, and sets errno appropriately to the same value
on all threads.

7.8.3.2 The upc_all_fclose function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
int upc_all_fclose (upc_file_t *fd);

Description

2 upc_all_fclose executes an implicit upc_all_fsync on fd and then closes
the file associated with fd.

3 The function returns 0 on success. If fd is not valid or if an outstanding
asynchronous operation on fd has not been completed, the function will
return an error.

4 upc_all_fclose provides single-valued errors - if an error occurs, the func-
tion returns –1 on ALL threads, and sets errno appropriately to the same
value on all threads.

5 After a file has been closed with upc_all_fclose, the file is allowed to be
opened and the data in it can be accessed by using regular C/POSIX I/O
calls.

7.8.3.3 The upc_all_fsync function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
int upc_all_fsync(upc_file_t *fd);

Description

2 upc_all_fsync ensures that any data that has been written to the file asso-
ciated with fd but not yet transferred to the storage device is transferred to
the storage device. It also ensures that subsequent file reads from any thread
will see any previously written values (that have not yet been overwritten).

3 There is an implied barrier immediately before upc_all_fsync returns.

28 The upc_all_fclose function §7.8.3.2

UPC Optional Library Specifications Version 1.3

4 The function returns 0 on success. On error, it returns –1 and sets errno
appropriately.

7.8.3.4 The upc_all_fseek function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fseek(upc_file_t *fd, upc_off_t offset,

int origin);

Description

2 upc_all_fseek sets the current position of the file pointer associated with
fd.

3 This offset can be relative to the current position of the file pointer, to the
beginning of the file, or to the end of the file. The offset can be negative,
which allows seeking backwards.

4 The origin parameter can be specified as UPC_SEEK_SET, UPC_SEEK_CUR, or
UPC_SEEK_END, respectively, to indicate that the offset must be computed
from the beginning of the file, the current location of the file pointer, or the
end of the file.

5 In the case of a common file pointer, all threads must specify the same offset
and origin. In the case of an individual file pointer, each thread may specify
a different offset and origin.

6 It is allowed to seek past the end of file. It is erroneous to seek to a negative
position in the file. See the Common Constraints number 5 at the beginning
of Section 7.8.3 for more details.

7 The current position of the file pointer can be determined by calling upc_all_fseek(fd,
0, UPC_SEEK_CUR).

8 On success, the function returns the current location of the file pointer in
bytes. If there is an error, it returns –1 and sets errno appropriately.

7.8.3.5 The upc_all_fset_size function

Synopsis

1

§7.8.3.4 The upc_all_fseek function 29

UPC Optional Library Specifications Version 1.3

#include <upc.h>
#include <upc_io.h>
int upc_all_fset_size(upc_file_t *fd, upc_off_t size);

Description

2 upc_all_fset_size executes an implicit upc_all_fsync on fd and resizes
the file associated with fd. The file handle must be open for writing.

3 size is measured in bytes from the beginning of the file.

4 If size is less than the current file size, the file is truncated at the position
defined by size. The implementation is free to deallocate file blocks located
beyond this position.

5 If size is greater than the current file size, the file size increases to size.
Regions of the file that have been previously written are unaffected. The
values of data in the new regions in the file (between the old size and size)
are undefined.

6 If this function truncates a file, it is possible that the individual and common
file pointers may point beyond the end of file. This is allowed and is equivalent
to seeking past the end of file (see the Common Constraints in Section 7.8.3
for the semantics of seeking past the end of file).

7 It is unspecified whether and under what conditions this function actually
allocates file space on the storage device. Use upc_all_fpreallocate to
force file space to be reserved on the storage device.

8 Calling this function does not affect the individual or common file pointers.

9 The function returns 0 on success. On error, it returns –1 and sets errno
appropriately.

7.8.3.6 The upc_all_fget_size function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fget_size(upc_file_t *fd);

Description

2 upc_all_fget_size returns the current size in bytes of the file associated

30 The upc_all_fget_size function §7.8.3.6

UPC Optional Library Specifications Version 1.3

with fd on success. On error, it returns –1 and sets errno appropriately.

7.8.3.7 The upc_all_fpreallocate function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
int upc_all_fpreallocate(upc_file_t *fd, upc_off_t size);

Description

2 upc_all_fpreallocate ensures that storage space is allocated for the first
size bytes of the file associated with fd. The file handle must be open for
writing.

3 Regions of the file that have previously been written are unaffected. For
newly allocated regions of the file, upc_all_fpreallocate has the same
effect as writing undefined data.

4 If size is greater than the current file size, the file size increases to size. If
size is less than or equal to the current file size, the file size is unchanged.

5 Calling this function does not affect the individual or common file pointers.

6 The function returns 0 on success. On error, it returns –1 and sets errno
appropriately.

7.8.3.8 The upc_all_fcntl function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
int upc_all_fcntl(upc_file_t *fd, int cmd, void *arg);

Description

2 upc_all_fcntl performs one of various miscellaneous operations related to
the file specified by fd, as determined by cmd. The valid commands cmd and
their associated argument arg are explained below.

UPC_GET_CA_SEMANTICS Get the current consistency and atomicity seman-
tics for fd. The argument arg is ignored. The return value is UPC_STRONG_CA
for strong consistency and atomicity semantics and 0 for the default
weak consistency and atomicity semantics.

§7.8.3.7 The upc_all_fpreallocate function 31

UPC Optional Library Specifications Version 1.3

UPC_SET_WEAK_CA_SEMANTICS Executes an implicit upc_all_fsync on fd
and sets fd to use the weak consistency and atomicity semantics (or
leaves the mode unchanged if that mode is already selected). The
argument arg is ignored. The return value is 0 on success. On error,
this function returns -1 and sets errno appropriately.

UPC_SET_STRONG_CA_SEMANTICS Executes an implicit upc_all_fsync on
fd and sets fd to use the strong consistency and atomicity semantics
(or leaves the mode unchanged if that mode is already selected). The
argument arg is ignored. The return value is 0 on success. On error,
this function returns -1 and sets errno appropriately.

UPC_GET_FP Get the type of the current file pointer for fd. The argument
arg is ignored. The return value is either UPC_COMMON_FP in case of a
common file pointer, or UPC_INDIVIDUAL_FP for individual file pointers.

UPC_SET_COMMON_FP Executes an implicit upc_all_fsync on fd, sets the
current file access pointer mechanism for fd to a common file pointer
(or leaves it unchanged if that mode is already selected), and seeks to
the beginning of the file. The argument arg is ignored. The return
value is 0 on success. On error, this function returns -1 and sets errno
appropriately.

UPC_SET_INDIVIDUAL_FP Executes an implicit upc_all_fsync on fd, sets
the current file access pointer mechanism for fd to an individual file
pointer (or leaves the mode unchanged if that mode is already selected),
and seeks to the beginning of the file. The argument arg is ignored.
The return value is 0 on success. On error, this function returns -1 and
sets errno appropriately.

UPC_GET_FL Get all the flags specified during the upc_all_fopen call for fd,
as modified by any subsequent mode changes using the upc_all_fcntl(UPC_SET_*)
commands. The argument arg is ignored. The return value has same
format as the flags parameter in upc_all_fopen.

UPC_GET_FN Get the file name provided by each thread in the upc_all_fopen
call that created fd. The argument arg is a valid (const char**)
pointing to a (const char*) location in which a pointer to file name
will be written. Writes a (const char*) into *arg pointing to the file-
name in implementation-maintained read-only memory, which will re-

32 The upc_all_fcntl function §7.8.3.8

UPC Optional Library Specifications Version 1.3

main valid until the file handle is closed or until the next upc_all_fcntl
call on that file handle.

UPC_GET_HINTS Retrieve the hints applicable to fd. The argument arg
is a valid (const upc_hint_t**) pointing to a (const upc_hint_t*)
location in which a pointer to the hints array will be written. Writes a
(const upc_hint_t*) into *arg pointing to an array of upc_hint_t’s
in implementation-maintained read-only memory, which will remain
valid until the file handle is closed or until the next upc_all_fnctl
call on that file handle. The number of hints in the array is returned
by the call. The hints in the array may be a subset of those specified
at file open time, if the implementation ignored some unrecognized or
unsupported hints.

UPC_SET_HINT Executes an implicit upc_all_fsync on fd and sets a new
hint to fd. The argument arg points to one single-valued upc_hint_t
hint to be applied. If the given hint key has already been applied to
fd, the current value for that hint is replaced with the provided value.
The return value is 0 on success. On error, this function returns -1 and
sets errno appropriately.

UPC_ASYNC_OUTSTANDING Returns 1 if there is an asynchronous operation
outstanding on fd, or 0 otherwise.

3 In case of a non valid fd, upc_all_fcntl returns -1 and sets errno appro-
priately.

4 It is allowed to call upc_all_fcntl(UPC_ASYNC_OUTSTANDING) when an asyn-
chronous operation is outstanding (but it is still disallowed to call upc_all_fcntl
with any other argument when an asynchronous operation is outstanding).

7.8.4 Reading Data

Common Constraints

1 No function in this section 7.8.4 may be called while an asynchronous oper-
ation is pending on the file handle.

7.8.4.1 The upc_all_fread_local function

Synopsis

§7.8.4 Reading Data 33

UPC Optional Library Specifications Version 1.3

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fread_local(upc_file_t *fd, void *buffer,

size_t size, size_t nmemb, upc_flag_t flags);

Description

2 upc_all_fread_local reads data from a file into a local buffer on each
thread.

3 This function can be called only if the current file pointer type is an individual
file pointer, and the file handle is open for reading.

4 buffer is a pointer to an array into which data will be read, and each thread
may pass a different value for buffer.

5 Each thread reads (size*nmemb) bytes of data from the file at the position
indicated by its individual file pointer into the buffer. Each thread may pass
a different value for size and nmemb. If size or nmemb is zero, the buffer
argument is ignored and that thread performs no I/O.

6 On success, the function returns the number of bytes read into the local
buffer of the calling thread, and the individual file pointer of the thread
is incremented by that amount. On error, it returns –1 and sets errno
appropriately.

7.8.4.2 The upc_all_fread_shared function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fread_shared(upc_file_t *fd,

shared void *buffer, size_t blocksize, size_t size,
size_t nmemb, upc_flag_t flags);

Description

2 upc_all_fread_shared reads data from a file into a shared buffer in mem-
ory.

3 The function can be called when the current file pointer type is either a
common file pointer or an individual file pointer. The file handle must be
open for reading.

34 The upc_all_fread_shared function §7.8.4.2

UPC Optional Library Specifications Version 1.3

4 buffer is a pointer to an array into which data will be read. It must be
a pointer to shared data and may have affinity to any thread. blocksize
is the block size of the shared buffer in elements (of size bytes each). A
blocksize of 0 indicates an indefinite blocking factor.

5 In the case of individual file pointers, the following rules apply: Each thread
may pass a different address for the buffer parameter. Each thread reads
(size*nmemb) bytes of data from the file at the position indicated by its
individual file pointer into its buffer. Each thread may pass a different value
for blocksize, size and nmemb. If size or nmemb is zero, the buffer argu-
ment is ignored and that thread performs no I/O. On success, the function
returns the number of bytes read by the calling thread, and the individual
file pointer of the thread is incremented by that amount.

6 In the case of a common file pointer, the following rules apply: All threads
must pass the same address for the buffer parameter, and the same value
for blocksize, size and nmemb. The effect is that (size*nmemb) bytes of
data are read from the file at the position indicated by the common file
pointer into the buffer. If size or nmemb is zero, the buffer argument is
ignored and the operation has no effect. On success, the function returns
the total number of bytes read by all threads, and the common file pointer
is incremented by that amount.

7 If reading with individual file pointers results in overlapping reads into the
shared buffer, the result is determined by whether the file was opened with
the UPC_STRONG_CA flag or not (see Section 7.8.3.1).

8 The function returns –1 on error and sets errno appropriately.

7.8.5 Writing Data

Common Constraints

1 No function in this section 7.8.5 may be called while an asynchronous oper-
ation is pending on the file handle.

7.8.5.1 The upc_all_fwrite_local function

Synopsis

1

§7.8.5 Writing Data 35

UPC Optional Library Specifications Version 1.3

#include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fwrite_local(upc_file_t *fd, void *buffer,

size_t size, size_t nmemb, upc_flag_t flags);

Description

2 upc_all_fwrite_local writes data from a local buffer on each thread into
a file.

3 This function can be called only if the current file pointer type is an individual
file pointer, and the file handle is open for writing.

4 buffer is a pointer to an array from which data will be written, and each
thread may pass a different value for buffer.

5 Each thread writes (size*nmemb) bytes of data from the buffer to the file at
the position indicated by its individual file pointer. Each thread may pass
a different value for size and nmemb. If size or nmemb is zero, the buffer
argument is ignored and that thread performs no I/O.

6 If any of the writes result in overlapping accesses in the file, the result is
determined by the current consistency and atomicity semantics mode in effect
for fd (see 7.8.3.1).

7 On success, the function returns the number of bytes written by the calling
thread, and the individual file pointer of the thread is incremented by that
amount. On error, it returns –1 and sets errno appropriately.

7.8.5.2 The upc_all_fwrite_shared function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fwrite_shared(upc_file_t *fd,

shared void *buffer, size_t blocksize, size_t size,
size_t nmemb, upc_flag_t flags);

Description

2 upc_all_fwrite_shared writes data from a shared buffer in memory to a
file.

3 The function can be called if the current file pointer type is either a common

36 The upc_all_fwrite_shared function §7.8.5.2

UPC Optional Library Specifications Version 1.3

file pointer or an individual file pointer. The file handle must be open for
writing.

4 buffer is a pointer to an array from which data will be written. It must be
a pointer to shared data and may have affinity to any thread. blocksize
is the block size of the shared buffer in elements (of size bytes each). A
blocksize of 0 indicates an indefinite blocking factor.

5 In the case of individual file pointers, the following rules apply: Each thread
may pass a different address for the buffer parameter. Each thread writes
(size*nmemb) bytes of data from its buffer to the file at the position indicated
by its individual file pointer. Each thread may pass a different value for
blocksize, size and nmemb. If size or nmemb is zero, the buffer argument
is ignored and that thread performs no I/O. On success, the function returns
the number of bytes written by the calling thread, and the individual file
pointer of the thread is incremented by that amount.

6 In the case of a common file pointer, the following rules apply: All threads
must pass the same address for the buffer parameter, and the same value
for blocksize, size and nmemb. The effect is that (size*nmemb) bytes
of data are written from the buffer to the file at the position indicated by
the common file pointer. If size or nmemb is zero, the buffer argument is
ignored and the operation has no effect. On success, the function returns the
total number of bytes written by all threads, and the common file pointer is
incremented by that amount.

7 If writing with individual file pointers results in overlapping accesses in the
file, the result is determined by the current consistency and atomicity seman-
tics mode in effect for fd (see Section 7.8.3.1).

8 The function returns –1 on error and sets errno appropriately.

7.8.6 List I/O

Common Constraints

1 List I/O functions take a list of addresses/offsets and corresponding lengths
in memory and file to read from or write to.

2 List I/O functions can be called regardless of whether the current file pointer
type is individual or common.

§7.8.6 List I/O 37

UPC Optional Library Specifications Version 1.3

3 File pointers are not updated as a result of a list I/O read/write operation.

4 Types declared in <upc_io.h> are

struct upc_local_memvec

which contains at least the initial members, in this order:

void *baseaddr;
size_t len;

and is a memory vector element pointing to a contiguous region of local
memory.

5 struct upc_shared_memvec

which contains at least the initial members, in this order:

shared void *baseaddr;
size_t blocksize;
size_t len;

and is a memory vector element pointing to a blocked region of shared mem-
ory.

6 struct upc_filevec

which contains at least the initial members, in this order:

upc_off_t offset;
size_t len;

and is a file vector element pointing to a contiguous region of a file.

For all cases these vector element types specify regions which are len bytes
long. If len is zero, the entry is ignored. blocksize is the block size of the
shared buffer in bytes. A blocksize of 0 indicates an indefinite blocking
factor.

7 The memvec argument passed to any list I/O read function by a single thread
must not specify overlapping regions in memory.

8 The base addresses passed to memvec can be in any order.

9 The filevec argument passed to any list I/O write function by a single
thread must not specify overlapping regions in the file.

10 The offsets passed in filevec must be in monotonically non-decreasing order.

38 List I/O §7.8.6

UPC Optional Library Specifications Version 1.3

11 No function in this section (7.8.6) may be called while an asynchronous op-
eration is pending on the file handle.

12 No function in this section (7.8.6) implies the presence of barriers at entry
or exit. However, the programmer is advised to use a barrier after call-
ing upc_all_fread_list_shared to ensure that the entire shared buffer has
been filled up, and similarly, use a barrier before calling upc_all_fwrite_list_shared
to ensure that the entire shared buffer is up-to-date before being written to
the file.

13 For all the list I/O functions, each thread passes an independent set of mem-
ory and file vectors. Passing the same vectors on two or more threads spec-
ifies redundant work. The file pointer is a single-valued argument, all other
arguments to the list I/O functions are NOT single-valued.

14 EXAMPLE 1: a collective list I/O read operation. The list I/O functions
allow the user to specify noncontiguous accesses both in memory and file in
the form of lists of explicit offsets and lengths in the file and explicit address
and lengths in memory. None of the file pointers are used or updated in this
case.

#include <upc.h>
#include <upc_io.h>
char buffer[12];
struct upc_local_memvec memvec[2] = {(&buffer[0],4},{&buffer[7],3}};
struct upc_filevec filevec[2];
upc_file_t *fd;

fd = upc_all_fopen("file", UPC_RDONLY | UPC_INDIVIDUAL_FP, 0, NULL);
filevec[0].offset = MYTHREAD*5;
filevec[0].len = 2;
filevec[1].offset = 10+MYTHREAD*5;
filevec[1].len = 5;

upc_all_fread_list_local(fd, 2, &memvec, 2, &filevec,
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

7.8.6.1 The upc_all_fread_list_local function

Synopsis

§7.8.6.1 The upc_all_fread_list_local function 39

UPC Optional Library Specifications Version 1.3

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fread_list_local(upc_file_t *fd,

size_t memvec_entries, struct upc_local_memvec const *memvec,
size_t filevec_entries, struct upc_filevec const *filevec,
upc_flag_t flags);

Description

2 upc_all_fread_list_local reads data from a file into local buffers in mem-
ory. The file handle must be open for reading.

3 memvec_entries indicates the number of entries in the array memvec and
filevec_entries indicates the number of entries in the array filevec. The
values may be 0, in which case the memvec or filevec argument is ignored
and no locations are specified for I/O.

4 The result is as if data were read in order from the list of locations specified by
filevec and placed in memory in the order specified by the list of locations
in memvec. The total amount of data specified by memvec must equal the
total amount of data specified by filevec.

5 On success, the function returns the number of bytes read by the calling
thread. On error, it returns –1 and sets errno appropriately.

7.8.6.2 The upc_all_fread_list_shared function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fread_list_shared(upc_file_t *fd,

size_t memvec_entries, struct upc_shared_memvec const *memvec,
size_t filevec_entries, struct upc_filevec const *filevec,
upc_flag_t flags);

Description

2 upc_all_fread_list_shared reads data from a file into various locations of
a shared buffer in memory. The file handle must be open for reading.

3 memvec_entries indicates the number of entries in the array memvec and
filevec_entries indicates the number of entries in the array filevec. The
values may be 0, in which case the memvec or filevec argument is ignored

40 The upc_all_fread_list_shared function §7.8.6.2

UPC Optional Library Specifications Version 1.3

and no locations are specified for I/O.

4 The result is as if data were read in order from the list of locations specified by
filevec and placed in memory in the order specified by the list of locations
in memvec. The total amount of data specified by memvec must equal the
total amount of data specified by filevec.

5 If any of the reads from different threads result in overlapping regions in
memory, the result is determined by the current consistency and atomicity
semantics mode in effect for fd (see Section 7.8.3.1).

6 On success, the function returns the number of bytes read by the calling
thread. On error, it returns –1 and sets errno appropriately.

7.8.6.3 The upc_all_fwrite_list_local function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fwrite_list_local(upc_file_t *fd,

size_t memvec_entries, struct upc_local_memvec const *memvec,
size_t filevec_entries, struct upc_filevec const *filevec,
upc_flag_t flags);

Description

2 upc_all_fwrite_list_local writes data from local buffers in memory to a
file. The file handle must be open for writing.

3 memvec_entries indicates the number of entries in the array memvec and
filevec_entries indicates the number of entries in the array filevec. The
values may be 0, in which case the memvec or filevec argument is ignored
and no locations are specified for I/O.

4 The result is as if data were written from memory locations in the order
specified by the list of locations in memvec to locations in the file in the
order specified by the list in filevec. The total amount of data specified by
memvec must equal the total amount of data specified by filevec.

5 If any of the writes from different threads result in overlapping accesses in
the file, the result is determined by the current consistency and atomicity
semantics mode in effect for fd (see Section 7.8.3.1).

§7.8.6.3 The upc_all_fwrite_list_local function 41

UPC Optional Library Specifications Version 1.3

6 On success, the function returns the number of bytes written by the calling
thread. On error, it returns –1 and sets errno appropriately.

7.8.6.4 The upc_all_fwrite_list_shared function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fwrite_list_shared(upc_file_t *fd,

size_t memvec_entries, struct upc_shared_memvec const *memvec,
size_t filevec_entries, struct upc_filevec const *filevec,
upc_flag_t flags);

Description

2 upc_all_fwrite_list_shared writes data from various locations of a shared
buffer in memory to a file. The file handle must be open for writing.

3 memvec_entries indicates the number of entries in the array memvec and
filevec_entries indicates the number of entries in the array filevec. The
values may be 0, in which case the memvec or filevec argument is ignored
and no locations are specified for I/O.

4 The result is as if data were written from memory locations in the order
specified by the list of locations in memvec to locations in the file in the
order specified by the list in filevec. The total amount of data specified by
memvec must equal the total amount of data specified by filevec.

5 If any of the writes from different threads result in overlapping accesses in
the file, the result is determined by the current consistency and atomicity
semantics mode in effect for fd (see Section 7.8.3.1).

6 On success, the function returns the number of bytes written by the calling
thread. On error, it returns –1 and sets errno appropriately.

7.8.7 Asynchronous I/O

Common Constraints

1 Only one asynchronous I/O operation can be outstanding on a UPC-IO file
handle at any time. If an application attempts to initiate a second asyn-

42 The upc_all_fwrite_list_shared function §7.8.6.4

UPC Optional Library Specifications Version 1.3

chronous I/O operation while one is still outstanding on the same file handle
the behavior is undefined – however, high-quality implementations will issue
a fatal error.

2 For asynchronous read operations, the contents of the destination memory are
undefined until after a successful upc_all_fwait_async or
upc_all_ftest_async on the file handle. For asynchronous write opera-
tions, the source memory may not be safely modified until after a successful
upc_all_fwait_async or upc_all_ftest_async on the file handle.

3 An implementation is free to block for completion of an operation in the
asynchronous initiation call or in the upc_all_ftest_async call (or both).
High-quality implementations are recommended to minimize the amount of
time spent within the asynchronous initiation or upc_all_ftest_async call.

4 In the case of list I/O functions, the user may modify or free the lists after
the asynchronous I/O operation has been initiated.

5 The semantics of the flags of type upc_flag_t when applied to the async vari-
ants of the fread/fwrite functions should be interpreted as follows: constraints
that reference entry to a function call correspond to entering the fread_async-
/fwrite_async call that initiates the asynchronous operation, and constraints
that reference returning from a function call correspond to returning from the
upc_all_fwait_async() or successful upc_all_ftest_async() call that
completes the asynchronous operation. Also, note that the flags which govern
an asynchronous operation are passed to the library during the asynchronous
initiation call.

7.8.7.1 The upc_all_fread_local_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
void upc_all_fread_local_async(upc_file_t *fd, void *buffer,

size_t size, size_t nmemb, upc_flag_t flags);

Description

2 upc_all_fread_local_async initiates an asynchronous read from a file into
a local buffer on each thread.

3 The meaning of the parameters and restrictions are the same as for the

§7.8.7.1 The upc_all_fread_local_async function 43

UPC Optional Library Specifications Version 1.3

blocking function, upc_all_fread_local.

4 The status of the initiated asynchronous I/O operation can be retrieved by
calling upc_all_ftest_async or upc_all_fwait_async.

7.8.7.2 The upc_all_fread_shared_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
void upc_all_fread_shared_async(upc_file_t *fd,

shared void *buffer, size_t blocksize, size_t size,
size_t nmemb, upc_flag_t flags);

Description

2 upc_all_fread_shared_async initiates an asynchronous read from a file
into a shared buffer.

3 The meaning of the parameters and restrictions are the same as for the
blocking function, upc_all_fread_shared.

4 The status of the initiated asynchronous I/O operation can be retrieved by
calling upc_all_ftest_async or upc_all_fwait_async.

7.8.7.3 The upc_all_fwrite_local_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
void upc_all_fwrite_local_async(upc_file_t *fd, void *buffer,

size_t size, size_t nmemb, upc_flag_t flags);

Description

2 upc_all_fwrite_local_async initiates an asynchronous write from a local
buffer on each thread to a file.

3 The meaning of the parameters and restrictions are the same as for the
blocking function, upc_all_fwrite_local.

4 The status of the initiated asynchronous I/O operation can be retrieved by
calling upc_all_ftest_async or upc_all_fwait_async.

44 The upc_all_fread_shared_async function §7.8.7.2

UPC Optional Library Specifications Version 1.3

7.8.7.4 The upc_all_fwrite_shared_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
void upc_all_fwrite_shared_async(upc_file_t *fd,

shared void *buffer, size_t blocksize,size_t size,
size_t nmemb, upc_flag_t flags);

Description

2 upc_all_fwrite_shared_async initiates an asynchronous write from a shared
buffer to a file.

3 The meaning of the parameters and restrictions are the same as for the
blocking function, upc_all_fwrite_shared.

4 The status of the initiated asynchronous I/O operation can be retrieved by
calling upc_all_ftest_async or upc_all_fwait_async.

7.8.7.5 The upc_all_fread_list_local_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
void upc_all_fread_list_local_async(upc_file_t *fd,

size_t memvec_entries, struct upc_local_memvec const *memvec,
size_t filevec_entries, struct upc_filevec const *filevec,
upc_flag_t flags);

Description

2 upc_all_fread_list_local_async initiates an asynchronous read of data
from a file into local buffers in memory.

3 The meaning of the parameters and restrictions are the same as for the
blocking function, upc_all_fread_list_local.

4 The status of the initiated asynchronous I/O operation can be retrieved by
calling upc_all_ftest_async or upc_all_fwait_async.

§7.8.7.4 The upc_all_fwrite_shared_async function 45

UPC Optional Library Specifications Version 1.3

7.8.7.6 The upc_all_fread_list_shared_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
void upc_all_fread_list_shared_async(upc_file_t *fd,

size_t memvec_entries, struct upc_shared_memvec const *memvec,
size_t filevec_entries, struct upc_filevec const *filevec,
upc_flag_t flags);

Description

2 upc_all_fread_list_shared_async initiates an asynchronous read of data
from a file into various locations of a shared buffer in memory.

3 The meaning of the parameters and restrictions are the same as for the
blocking function, upc_all_fread_list_shared.

4 The status of the initiated asynchronous I/O operation can be retrieved by
calling upc_all_ftest_async or upc_all_fwait_async.

7.8.7.7 The upc_all_fwrite_list_local_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
void upc_all_fwrite_list_local_async(upc_file_t *fd,

size_t memvec_entries, struct upc_local_memvec const *memvec,
size_t filevec_entries, struct upc_filevec const *filevec,
upc_flag_t flags);

Description

2 upc_all_fwrite_list_local_async initiates an asynchronous write of data
from local buffers in memory to a file.

3 The meaning of the parameters and restrictions are the same as for the
blocking function, upc_all_fwrite_list_local.

4 The status of the initiated asynchronous I/O operation can be retrieved by
calling upc_all_ftest_async or upc_all_fwait_async.

46 The upc_all_fread_list_shared_async function §7.8.7.6

UPC Optional Library Specifications Version 1.3

7.8.7.8 The upc_all_fwrite_list_shared_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
void upc_all_fwrite_list_shared_async(upc_file_t *fd,

size_t memvec_entries, struct upc_shared_memvec const *memvec,
size_t filevec_entries, struct upc_filevec const *filevec,
upc_flag_t flags);

Description

2 upc_all_fwrite_list_shared_async initiates an asynchronous write of data
from various locations of a shared buffer in memory to a file.

3 The meaning of the parameters and restrictions are the same as for the
blocking function, upc_all_fwrite_list_shared.

4 The status of the initiated asynchronous I/O operation can be retrieved by
calling upc_all_ftest_async or upc_all_fwait_async.

7.8.7.9 The upc_all_fwait_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_fwait_async(upc_file_t *fd)

Description

2 upc_all_fwait_async completes the previously issued asynchronous I/O
operation on the file handle fd, blocking if necessary.

3 It is erroneous to call this function if there is no outstanding asynchronous
I/O operation associated with fd.

4 On success, the function returns the number of bytes read or written by
the asynchronous I/O operation as specified by the blocking variant of the
function used to initiate the asynchronous operation. On error, it returns –1
and sets errno appropriately, and the outstanding asynchronous operation
(if any) becomes no longer outstanding.

§7.8.7.8 The upc_all_fwrite_list_shared_async function 47

UPC Optional Library Specifications Version 1.3

7.8.7.10 The upc_all_ftest_async function

Synopsis

1 #include <upc.h>
#include <upc_io.h>
upc_off_t upc_all_ftest_async(upc_file_t *fd, int *flag)

Description

2 upc_all_ftest_async tests whether the outstanding asynchronous I/O op-
eration associated with fd has completed.

3 If the operation has completed, the function sets flag=1 and the asyn-
chronous operation becomes no longer outstanding;9 otherwise it sets flag=0.
The same value of flag is set on all threads.

4 If the operation was completed, the function returns the number of bytes
that were read or written as specified by the blocking variant of the function
used to initiate the asynchronous operation. On error, it returns –1 and sets
errno appropriately, and sets the flag=1, and the outstanding asynchronous
operation (if any) becomes no longer outstanding.

5 It is erroneous to call this function if there is no outstanding asynchronous
I/O operation associated with fd.

9This implies it is disallowed to call upc_all_fwait_async or upc_all_ftest_async
immediately after a successful upc_all_ftest_async on that file handle.

48 The upc_all_ftest_async function §7.8.7.10

UPC Optional Library Specifications Version 1.3

7.9 UPC Non-Blocking Transfer Operations <upc_nb.h>

1 Implementations that support this interface shall predefine the feature macro
__UPC_NB__ to the value 1.

7.9.1 Standard header

1 The standard header is

<upc_nb.h>

2 Unless otherwise noted, all of the functions, types and macros specified in
Section 7.9 are declared by the header <upc_nb.h>.

7.9.2 Common Requirements

1 The following requirements apply to all of the functions defined in Section 7.9.

2 This section defines extensions to the upc_mem* functions defined in [UPC
Language Specifications, Section 7.2.5]. Data transfer effects are as specified
in that document.

3 <upc_nb.h> defines two non-blocking variants for each upc_mem* function.
The _nb function name suffix denotes the explicit-handle variant, whereas
the _nbi function name suffix denotes the implicit-handle variant. These
functions are jointly referred to as transfer initiation functions. A thread
which invokes one of these functions is referred to as the initiating thread for
the transfer.

4 A transfer initiation function returns as soon as possible after initiating the
transfer and may return prior to the effects of the transfer being completed. 10

10 Each call to a transfer initiation function shall either initiate an asynchronous
transfer or perform the transfer synchronously within the initiation call (and return
UPC_COMPLETE_HANDLE in the case of an explicit-handle initiation). The conditions gov-
erning this decision are unspecified. For example, an implementation might choose to
perform a synchronous transfer when all affected memory has affinity to the initiating
thread. Implementations are encouraged to perform asynchronous transfers and return
quickly whenever possible to allow the caller to overlap unrelated computation and com-

§7.9 UPC Non-Blocking Transfer Operations <upc_nb.h> 49

UPC Optional Library Specifications Version 1.3

Generally the initiating thread must later take explicit action to synchronize
the completion of the transfer.

5 The explicit-handle variant returns a handle that gives the initiating thread
explicit control and responsibility to manage completion of the transfer. The
initiating thread shall eventually invoke a successful upc_sync[_attempt]
function call upon each such handle, to synchronize completion of the asso-
ciated transfer and allow the implementation to reclaim resources that may
be associated with the handle.

6 The implicit-handle variant allows the program to synchronize completion of
an implicit group of transfers together, at the next call to upc_synci[_attempt]
by the initiating thread.

7 Each call entry to a transfer initiation function defines the beginning of an
abstract interval referred to as the transfer interval for the transfer opera-
tion being performed. The transfer interval extends until the return of the
successful upc_sync[_attempt] or upc_synci[_attempt] call which syn-
chronizes the completion of the transfer.

8 Each non-blocking transfer proceeds independently of all other operations
and actions by any thread until the end of the transfer interval. In particular,
the transfer interval may extend beyond strict operations and other forms of
inter-thread synchronization.

9 The order in which non-blocking transfers complete is unspecified - the im-
plementation may coalesce and/or reorder non-blocking operations with re-
spect to other blocking or non-blocking operations, or operations initiated
from a separate thread. The only ordering guarantees are those explicitly
enforced using the synchronization functions, i.e. all the accesses comprising
the transfer are guaranteed to occur during the transfer interval.

10 Throughout the transfer interval, the contents of all destination memory
specified by the transfer are undefined. Specifically, concurrent reads to
these locations from any thread will observe an indeterminate value.

11 If any of the source or destination memory specified by a transfer is modified
by any thread during the transfer interval, then the results of the transfer
are undefined. Specifically, concurrent writes to these locations will result in
indeterminate values in the destination memory which persist after synchro-

munication.

50 Common Requirements §7.9.2

UPC Optional Library Specifications Version 1.3

nization.

12 The source memory specified in a transfer is not modified by the transfer.
Concurrent reads of source memory areas by any thread are permitted and
behave as usual. Multiple concurrent transfers initiated by any thread are
permitted to specify overlapping source memory areas. If a transfer specifies
destination memory which overlaps its own source, or the source or destina-
tion of a concurrent transfer initiated by any thread, the resulting values in
all destination memory specified by the affected transfers are indeterminate.

13 The memory consistency semantics of all transfers performed by the library
are as described in [UPC Language Specifications, Section B.3.2.1]. Specifi-
cally, the effect on conflicting accesses issued outside the transfer interval is
as if the transfer were performed by a set of relaxed shared reads and re-
laxed shared writes of unspecified size and order, issued at unspecified times
anywhere within the transfer interval by the initiating thread. Conflicting
accesses inside the transfer interval have undefined results, as specified in
the preceding paragraphs. 11 Here inside and outside are defined by the
Precedes() program order for accesses issued by the initiating thread; ac-
cesses issued by other threads are considered inside unless every possible and
valid <𝑠𝑡𝑟𝑖𝑐𝑡 relationship orders them outside the transfer interval. 12

11The restrictions described in the three preceding paragraphs are a direct consequence
of [UPC Language Specifications, Section B.3.2.1], and also apply to the blocking upc_mem*
functions. They are explicitly stated here for clarity.

12 Stated differently, a successful upc_sync[_attempt] or upc_synci[_attempt] call
completes transfers with respect to the initiating thread, and subsequent relaxed accesses
issued by the initiating thread are guaranteed to observe the effects of the synchronized
transfer(s).

Similarly, a successful upc_sync[_attempt] or upc_synci[_attempt] call followed by
a strict operation ensures the effects of the synchronized transfer(s) will be observed by
all threads prior to observing the strict operation.

§7.9.2 Common Requirements 51

UPC Optional Library Specifications Version 1.3

7.9.3 Explicit Handle Type

1 An implementation shall define the following type and value:

type upc_handle_t
value UPC_COMPLETE_HANDLE

2 UPC_COMPLETE_HANDLE shall have type upc_handle_t. All of its bits shall
be 0.

3 Any handle value other than UPC_COMPLETE_HANDLE is valid only for the
initiating thread which obtained it from an explicit-handle transfer initiation
function. Different threads shall not use it for any purpose.

4 Every handle value returned from an explicit-handle transfer initiation func-
tion call shall eventually be passed to a successful upc_sync[_attempt] call.
It is an error to discard a handle value and never synchronize it unless the
value is UPC_COMPLETE_HANDLE.

5 Once a handle value is successfully synchronized, it becomes invalid and shall
not be used for any purpose.

52 Explicit Handle Type §7.9.3

UPC Optional Library Specifications Version 1.3

7.9.4 Explicit-handle transfer initiation functions

7.9.4.1 The upc_memcpy_nb function

Synopsis

1 #include <upc_nb.h>
upc_handle_t upc_memcpy_nb(shared void * restrict dst,

shared const void * restrict src,
size_t n);

Description

2 The transfer initiated by upc_memcpy_nb(dst, src, n) shall have the same
effects as upc_memcpy(dst, src, n). If the returned value is UPC_COMPLETE_HANDLE,
then these effects were performed synchronously and the transfer is com-
plete. Otherwise, the transfer interval extends until the return of a successful
upc_sync[_attempt] call upon the returned handle.

3 All of the common requirements listed in Section 7.9.2 apply to this function.

4 The following two code sequences demonstrate the relationship between upc_memcpy
and upc_memcpy_nb. Both transfers ultimately result in the same data move-
ment.

upc_memcpy(dst, src, n); // perform an explicitly synchronous transfer
... // code that may access dst and src regions
... // accesses by THIS thread guaranteed to observe the effects
upc_fence; // any strict operation
... // subsequent accesses by ANY thread guaranteed to observe the effects

upc_handle_t handle = upc_memcpy_nb(dst, src, n); // initiate a transfer
... // code that must not read dst region or modify either region
upc_sync(handle); // sync the handle, ending the transfer interval
... // accesses by THIS thread guaranteed to observe the effects
upc_fence; // any strict operation
... // subsequent accesses by ANY thread guaranteed to observe the effects

§7.9.4 Explicit-handle transfer initiation functions 53

UPC Optional Library Specifications Version 1.3

7.9.4.2 The upc_memget_nb function

Synopsis

1 #include <upc_nb.h>
upc_handle_t upc_memget_nb(void * restrict dst,

shared const void * restrict src,
size_t n);

Description

2 The transfer initiated by upc_memget_nb(dst, src, n) shall have the same
effects as upc_memget(dst, src, n). If the returned value is UPC_COMPLETE_HANDLE,
then these effects were performed synchronously and the transfer is com-
plete. Otherwise, the transfer interval extends until the return of a successful
upc_sync[_attempt] call upon the returned handle.

3 All of the common requirements listed in Section 7.9.2 apply to this function.

7.9.4.3 The upc_memput_nb function

Synopsis

1 #include <upc_nb.h>
upc_handle_t upc_memput_nb(shared void * restrict dst,

const void * restrict src,
size_t n);

Description

2 The transfer initiated by upc_memput_nb(dst, src, n) shall have the same
effects as upc_memput(dst, src, n). If the returned value is UPC_COMPLETE_HANDLE,
then these effects were performed synchronously and the transfer is com-
plete. Otherwise, the transfer interval extends until the return of a successful
upc_sync[_attempt] call upon the returned handle.

3 All of the common requirements listed in Section 7.9.2 apply to this function.

54 The upc_memget_nb function §7.9.4.2

UPC Optional Library Specifications Version 1.3

7.9.4.4 The upc_memset_nb function

Synopsis

1 #include <upc_nb.h>
upc_handle_t upc_memset_nb(shared void *dst, int c, size_t n);

Description

2 The transfer initiated by upc_memset_nb(dst, c, n) shall have the same ef-
fects as upc_memset(dst, c, n). If the returned value is UPC_COMPLETE_HANDLE,
then these effects were performed synchronously and the transfer is com-
plete. Otherwise, the transfer interval extends until the return of a successful
upc_sync[_attempt] call upon the returned handle.

3 All of the common requirements listed in Section 7.9.2 apply to this function.

§7.9.4.4 The upc_memset_nb function 55

UPC Optional Library Specifications Version 1.3

7.9.5 Implicit-handle transfer initiation functions

7.9.5.1 The upc_memcpy_nbi function

Synopsis

1 #include <upc_nb.h>
void upc_memcpy_nbi(shared void * restrict dst,

shared const void * restrict src,
size_t n);

Description

2 The transfer initiated by upc_memcpy_nbi(dst, src, n) shall have the same
effects as upc_memcpy(dst, src, n). The transfer interval extends until
the return of the next successful upc_synci[_attempt] call performed by
the initiating thread.

3 All of the common requirements listed in Section 7.9.2 apply to this function.

4 The following two code sequences demonstrate the relationship between upc_memcpy
and upc_memcpy_nbi. Both transfers ultimately result in the same data
movement.

upc_memcpy(dst, src, n); // perform an explicitly synchronous transfer
... // code that may access dst and src regions
... // accesses by THIS thread guaranteed to observe the effects
upc_fence; // any strict operation
... // subsequent accesses by ANY thread guaranteed to observe the effects

upc_memcpy_nbi(dst, src, n); // initiate a transfer
... // code that must not read dst region or modify either region
upc_synci(); // sync all implicit-handle ops, ending the transfer interval(s)
... // accesses by THIS thread guaranteed to observe the effects
upc_fence; // any strict operation
... // subsequent accesses by ANY thread guaranteed to observe the effects

56 Implicit-handle transfer initiation functions §7.9.5

UPC Optional Library Specifications Version 1.3

7.9.5.2 The upc_memget_nbi function

Synopsis

1 #include <upc_nb.h>
void upc_memget_nbi(void * restrict dst,

shared const void * restrict src,
size_t n);

Description

2 The transfer initiated by upc_memget_nbi(dst, src, n) shall have the same
effects as upc_memget(dst, src, n). The transfer interval extends until
the return of the next successful upc_synci[_attempt] call performed by
the initiating thread.

3 All of the common requirements listed in Section 7.9.2 apply to this function.

7.9.5.3 The upc_memput_nbi function

Synopsis

1 #include <upc_nb.h>
void upc_memput_nbi(shared void * restrict dst,

const void * restrict src,
size_t n);

Description

2 The transfer initiated by upc_memput_nbi(dst, src, n) shall have the same
effects as upc_memput(dst, src, n). The transfer interval extends until
the return of the next successful upc_synci[_attempt] call performed by
the initiating thread.

3 All of the common requirements listed in Section 7.9.2 apply to this function.

§7.9.5.2 The upc_memget_nbi function 57

UPC Optional Library Specifications Version 1.3

7.9.5.4 The upc_memset_nbi function

Synopsis

1 #include <upc_nb.h>
void upc_memset_nbi(shared void *dst, int c, size_t n);

Description

2 The transfer initiated by upc_memset_nbi(dst, c, n) shall have the same
effects as upc_memset(dst, c, n). The transfer interval extends until the
return of the next successful upc_synci[_attempt] call performed by the
initiating thread.

3 All of the common requirements listed in Section 7.9.2 apply to this function.

58 The upc_memset_nbi function §7.9.5.4

UPC Optional Library Specifications Version 1.3

7.9.6 Explicit-handle synchronization functions

7.9.6.1 The upc_sync_attempt function

Synopsis

1 #include <upc_nb.h>
int upc_sync_attempt(upc_handle_t handle);

Description

2 handle shall be a valid handle value returned by an explicit-handle transfer
initiation function to the current thread, or the value UPC_COMPLETE_HANDLE.

3 The upc_sync_attempt function always returns immediately, without block-
ing. It returns non-zero if the transfer associated with handle is complete,
thereby ending the transfer interval. Otherwise, it returns 0.

4 If handle == UPC_COMPLETE_HANDLE then the upc_sync_attempt function
returns non-zero. Otherwise, if the function returns non-zero then the handle
value is consumed and shall not be subsequently used for any purpose.

7.9.6.2 The upc_sync function

Synopsis

1 #include <upc_nb.h>
void upc_sync(upc_handle_t handle);

Description

2 handle shall be a valid handle value returned by an explicit-handle transfer
initiation function to the current thread, or the value UPC_COMPLETE_HANDLE.

3 The upc_sync function does not return until the transfer associated with the
handle is complete, ending the transfer interval.

4 If handle == UPC_COMPLETE_HANDLE then the upc_sync function returns im-
mediately. Otherwise, the handle value is consumed by this function and shall
not be subsequently used for any purpose.

§7.9.6 Explicit-handle synchronization functions 59

UPC Optional Library Specifications Version 1.3

7.9.7 Implicit-handle synchronization functions

7.9.7.1 The upc_synci_attempt function

Synopsis

1 #include <upc_nb.h>
int upc_synci_attempt(void);

Description

2 The upc_synci_attempt function always returns immediately, without block-
ing. It returns non-zero if all implicit-handle transfers previously initiated by
the calling thread (but not yet synchronized) are complete, thereby ending
those transfer intervals. Otherwise, it returns 0.

3 If there are no such pending implicit-handle transfers, the function returns
non-zero.

4 The upc_synci_attempt function does not complete explicit-handle trans-
fers.

7.9.7.2 The upc_synci function

Synopsis

1 #include <upc_nb.h>
void upc_synci(void);

Description

2 The upc_synci function does not return until all implicit-handle transfers
previously initiated by the calling thread (but not yet synchronized) are
complete, thereby ending those transfer intervals.

3 If there are no such pending implicit-handle transfers, the function returns
immediately.

4 The upc_synci function does not complete explicit-handle transfers.

60 Implicit-handle synchronization functions §7.9.7

UPC Optional Library Specifications Version 1.3

Index

__UPC_ATOMIC__, 4
__UPC_CASTABLE__, 12
__UPC_IO__, 15
__UPC_NB__, 49

asynchronous I/O, 18, 33, 42

cast, 12
castability, 12
castable, 13
common file pointer, 17, 23, 32

end of file, 15, 29

file atomicity, 16, 19, 33
file close, 28
file consistency, 16, 19, 33
file flush, 28
file hints, 26, 33
file interoperability, 21
file open, 24
file pointer, 17, 23, 32
file reading, 33, 39, 40, 42
file seek, 29
file size, 29–31
file writing, 35, 41, 42

individual file pointer, 17, 23, 32

list I/O, 37

privatizability, 12

upc_all_atomicdomain_alloc, 7
upc_all_atomicdomain_free, 8
upc_all_fclose, 28
upc_all_fcntl, 31

upc_all_fget_size, 30
upc_all_fopen, 24
upc_all_fpreallocate, 31
upc_all_fread_list_local, 39
upc_all_fread_list_local_async, 45
upc_all_fread_list_shared, 40
upc_all_fread_list_shared_async, 46
upc_all_fread_local, 33
upc_all_fread_local_async, 43
upc_all_fread_shared, 34
upc_all_fread_shared_async, 44
upc_all_fseek, 29
upc_all_fset_size, 29
upc_all_fsync, 19, 28
upc_all_ftest_async, 19, 43, 48
upc_all_fwait_async, 19, 43, 47
upc_all_fwrite_list_local, 41
upc_all_fwrite_list_local_async, 46
upc_all_fwrite_list_shared, 42
upc_all_fwrite_list_shared_async, 47
upc_all_fwrite_local, 35
upc_all_fwrite_local_async, 44
upc_all_fwrite_shared, 36
upc_all_fwrite_shared_async, 45
UPC_APPEND, 24
UPC_ASYNC_OUTSTANDING, 33
upc_atomic.h, 4
upc_atomic_isfast, 11
upc_atomic_relaxed, 8
upc_atomic_strict, 8
upc_atomicdomain_t, 5
upc_atomichint_t, 6
upc_cast, 12
upc_castable.h, 12

Index 61

UPC Optional Library Specifications Version 1.3

UPC_CASTABLE_ALL_ALLOC, 14
UPC_CASTABLE_ALLOC, 14
UPC_CASTABLE_GLOBAL_ALLOC,

14
UPC_CASTABLE_STATIC, 14
UPC_COMMON_FP, 24
UPC_COMPLETE_HANDLE, 52
UPC_CREATE, 24
UPC_CSWAP, 5
UPC_DEC, 5
UPC_DELETE_ON_CLOSE, 24
UPC_EXCL, 24
upc_file_t, 22
upc_filevec, 38
upc_flag_t, 15
UPC_GET, 5
UPC_GET_CA_SEMANTICS, 31
UPC_GET_FL, 32
UPC_GET_FN, 32
UPC_GET_FP, 32
UPC_GET_HINTS, 33
upc_handle_t, 52
upc_hint, 26, 33
UPC_INC, 5
UPC_INDIVIDUAL_FP, 24
upc_io.h, 15
upc_local_memvec, 38
upc_memcpy_nb, 53
upc_memcpy_nbi, 56
upc_memget_nb, 54
upc_memget_nbi, 57
upc_memput_nb, 54
upc_memput_nbi, 57
upc_memset_nb, 55
upc_memset_nbi, 58
upc_nb.h, 49
upc_off_t, 22
UPC_RDONLY, 24

UPC_RDWR, 24
UPC_SEEK_CUR, 29
UPC_SEEK_END, 29
UPC_SEEK_SET, 29
UPC_SET, 5
UPC_SET_COMMON_FP, 32
UPC_SET_HINT, 33
UPC_SET_INDIVIDUAL_FP, 32
UPC_SET_STRONG_CA_SEMANTICS,

20, 32
UPC_SET_WEAK_CA_SEMANTICS,

31
upc_shared_memvec, 38
UPC_STRONG_CA, 20, 24
UPC_SUB, 5
upc_sync, 59
upc_sync_attempt, 59
upc_synci, 60
upc_synci_attempt, 60
upc_thread_info, 13
upc_thread_info_t, 13
UPC_TRUNC, 24
UPC_WRONLY, 24

62 Index

	Contents
	7 Library
	7.6 UPC Atomic Memory Operations <upc_atomic.h>
	7.6.1 Standard headers
	7.6.2 Common Requirements
	7.6.3 Atomic Library Types
	7.6.3.1 The upc_atomicdomain_t type
	7.6.3.2 The upc_atomichint_t type

	7.6.4 Atomic Library Functions
	7.6.4.1 The upc_all_atomicdomain_alloc function
	7.6.4.2 The upc_all_atomicdomain_free function
	7.6.4.3 The upc_atomic_strict and upc_atomic_relaxed functions
	7.6.4.4 The upc_atomic_isfast function

	7.7 Castability Functions <upc_castable.h>
	7.7.1 Standard headers
	7.7.2 Castability Functions
	7.7.2.1 The upc_cast function
	7.7.2.2 The upc_thread_info function

	7.8 UPC Parallel I/O <upc_io.h>
	7.8.1 Background
	7.8.1.1 File Accessing and File Pointers
	7.8.1.2 Synchronous and Asynchronous I/O
	7.8.1.3 Consistency and Atomicity Semantics
	7.8.1.4 File Interoperability

	7.8.2 Predefined Types
	7.8.3 UPC File Operations
	7.8.3.1 The upc_all_fopen function
	7.8.3.2 The upc_all_fclose function
	7.8.3.3 The upc_all_fsync function
	7.8.3.4 The upc_all_fseek function
	7.8.3.5 The upc_all_fset_size function
	7.8.3.6 The upc_all_fget_size function
	7.8.3.7 The upc_all_fpreallocate function
	7.8.3.8 The upc_all_fcntl function

	7.8.4 Reading Data
	7.8.4.1 The upc_all_fread_local function
	7.8.4.2 The upc_all_fread_shared function

	7.8.5 Writing Data
	7.8.5.1 The upc_all_fwrite_local function
	7.8.5.2 The upc_all_fwrite_shared function

	7.8.6 List I/O
	7.8.6.1 The upc_all_fread_list_local function
	7.8.6.2 The upc_all_fread_list_shared function
	7.8.6.3 The upc_all_fwrite_list_local function
	7.8.6.4 The upc_all_fwrite_list_shared function

	7.8.7 Asynchronous I/O
	7.8.7.1 The upc_all_fread_local_async function
	7.8.7.2 The upc_all_fread_shared_async function
	7.8.7.3 The upc_all_fwrite_local_async function
	7.8.7.4 The upc_all_fwrite_shared_async function
	7.8.7.5 The upc_all_fread_list_local_async function
	7.8.7.6 The upc_all_fread_list_shared_async function
	7.8.7.7 The upc_all_fwrite_list_local_async function
	7.8.7.8 The upc_all_fwrite_list_shared_async function
	7.8.7.9 The upc_all_fwait_async function
	7.8.7.10 The upc_all_ftest_async function

	7.9 UPC Non-Blocking Transfer Operations <upc_nb.h>
	7.9.1 Standard header
	7.9.2 Common Requirements
	7.9.3 Explicit Handle Type
	7.9.4 Explicit-handle transfer initiation functions
	7.9.4.1 The upc_memcpy_nb function
	7.9.4.2 The upc_memget_nb function
	7.9.4.3 The upc_memput_nb function
	7.9.4.4 The upc_memset_nb function

	7.9.5 Implicit-handle transfer initiation functions
	7.9.5.1 The upc_memcpy_nbi function
	7.9.5.2 The upc_memget_nbi function
	7.9.5.3 The upc_memput_nbi function
	7.9.5.4 The upc_memset_nbi function

	7.9.6 Explicit-handle synchronization functions
	7.9.6.1 The upc_sync_attempt function
	7.9.6.2 The upc_sync function

	7.9.7 Implicit-handle synchronization functions
	7.9.7.1 The upc_synci_attempt function
	7.9.7.2 The upc_synci function

	Index

		2013-11-16T19:00:47-0500
	UPC Specification Working Group

