UPC Qutline
1. Background
CS 267 2. UPC Execution Model
Un |f|ed Paral | e| C (U PC) 3. Basic Memory Model: Shared vs. Private Scalars
4. Synchronization
. 5. Collectives
Kathy Yelick 6. Data and Pointers
7. Dynamic Memory Management
http://upc.Ibl.gov 8. Programming Examples
8. Performance Tuning and Early Results
Slides adapted from some by Tarek El-Ghazawi (GWU) 9. Concluding Remarks
5/30/2006 CS267 Lecture: UPC 1 5/30/2006 CS267 Lecture: UPC 2
Context Partitioned Global Address Space Languages

« Explicitly-parallel programming model with SPMD parallelism
 Fixed at program start-up, typically 1 thread per processor
« Global address space model of memory

» Allows programmer to directly represent distributed data
structures

« Address space is logically partitioned
 Local vs. remote memory (two-level hierarchy)
« Programmer control over performance critical decisions
» Data layout and communication
« Performance transparency and tunability are goals
« Initial implementation can use fine-grained shared memory
« Multiple PGAS languages: UPC (C), CAF (Fortran), Titanium

« Most parallel programs are written using either:
* Message passing with a SPMD model
« Usually for scientific applications with C++/Fortran
* Scales easily

« Shared memory with threads in OpenMP,
Threads+C/C++/F or Java

 Usually for non-scientific applications
« Easier to program, but less scalable performance
« Global Address Space (GAS) Languages take the best of both
« global address space like threads (programmability)
* SPMD parallelism like MPI (performance)
« local/global distinction, i.e., layout matters (performance)

(Java)
5/30/2006 CS267 Lecture: UPC 3 5/30/2006 CS267 Lecture: UPC 4
Global Address Space Eases Programming Current Implementations of PGAS Languages
Thread, Thread; Thread,
® « A successful language/library must run everywhere
Q
.| al |, Shared - UPC
§ A i « Commercial compilers available on Cray, SGI, HP machines
o %’ ptr: ptr: oo ptr: « Open source compiler from LBNL/UCB (source-to-source)
K Private « Open source gcc-based compiler from Intrepid
* The languages share the global address space abstraction *+ CAF i)) i
- Shared memory is logically partitioned by processors + Commercial compll_er ava|l.able on Cray.machmes
« Remote memory may stay remote: no automatic caching implied + Open source compiler available from Rice
« One-sided communication: reads/writes of shared variables ¢ Titanium
+ Both individual and bulk memory copies « Open source compiler from UCB runs on most machines

« Languages differ on details
« Some models have a separate private memory area
« Distributed array generality and how they are constructed

« Common tools
« Open64 open source research compiler infrastructure
* ARMCI, GASNet for distributed memory implementations

« Pthreads, System V shared memory
5/30/2006 CS267 Lecture: UPC 5 5/30/2006 CS267 Lecture: UPC 6

CS267 Lecture 2

UPC Overview and Design Philosophy

¢ Unified Parallel C (UPC) is:
« An explicit parallel extension of ANSI C
¢ A partitioned global address space language
* Sometimes called a GAS language
« Similar to the C language philosophy
« Programmers are clever and careful, and may
need to get close to hardware
« to get performance, but
« can get in trouble
¢ Concise and efficient syntax
« Common and familiar syntax and semantics for
parallel C with simple extensions to ANSI C
* Based on ideas in Split-C, AC, and PCP

5/30/2006 CS267 Lecture: UPC 7

UPC Execution
Model

5/30/2006 CS267 Lecture: UPC 8

UPC Execution Model

* A number of threads working independently in a SPMD
fashion
* Number of threads specified at compile-time or run-time;
available as program variable THREADS
= MYTHREAD specifies thread index (0. . THREADS-1)
« upc_barrier is a global synchronization: all wait
* There is a form of parallel loop that we will see later
* There are two compilation modes
« Static Threads mode:
« THREADS is specified at compile time by the user
« The program may use THREADS as a compile-time constant
« Dynamic threads mode:
« Compiled code may be run with varying numbers of threads

5/30/2006 CS267 Lecture: UPC 9

Hello World in UPC

« Any legal C program is also a legal UPC program

« If you compile and run it as UPC with P threads, it will
run P copies of the program.

« Using this fact, plus the identifiers from the previous
slides, we can parallel hello world:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main() {
printf("Thread %d of %d: hello UPC world\n*",

MYTHREAD, THREADS);

5/30/2006 CS267 Lecture: UPC 10

Example: Monte Carlo Pi Calculation

« Estimate Pi by throwing darts at a unit square
« Calculate percentage that fall in the unit circle

» Area of square =r2=1

« Area of circle quadrant = ¥4 * w12 = /4
* Randomly throw darts at X,y positions
* If x2 + y2 < 1, then point is inside circle
« Compute ratio:

* # points inside / # points total

e 1= 4*ratio

r=1

5/30/2006 CS267 Lecture: UPC 11

Piin UPC

« Independent estimates of pi:

main(int argc, char **argv) {
int i, hits, trials = 0; Each thread gets its own
double pi; copy of these variables

if (argc !'= 2)trials = 1000000; |Each thread can use
else trials = atoi(argv[1]); input arguments

Initialize random in
math library

‘ srand(MYTHREAD*17) ;

for (i=0; i < trials; i++) hits += hit(Q);
pi = 4.0*hits/trials;
printf('Pl estimated to %f.", pi);

b

Each thread calls “hit” separately

5/30/2006 CS267 Lecture: UPC 12

CS267 Lecture 2

Helper Code for Pi in UPC

* Required includes:
#include <stdio.h>
#include <math.h>

#include <upc.h> Shared vs. Private

« Function to throw dart and calculate where it hits: Variables

int hitQ{
int const rand_max = OXFFFFFF;
double x = ((double) rand()) 7/ RAND_MAX;
double y = ((double) rand()) / RAND_MAX;
if ((xX*x + y*y) <= 1.0) {
return(l);
3} else {
return(0);
3

5/30/2006 CS267 Lecture: UPC 13 5/30/2006 CS267 Lecture: UPC 14

Pi in UPC: Shared Memory Style

Private vs. Shared Variables in UPC

« Parallel computing of pi, but with a bug
\shared int hits; \ shared variable to
main(int argc, char **argv) { record hits
int i, my_trials = 0;
int trials = atoi(argv[1]); divide work up evenly

« Normal C variables and objects are allocated in the
private memory space for each thread.

« Shared variables are allocated only once, with thread 0
shared int ours; // use sparingly: performance

int mine;
« Shared variables may not have dynamic lifetime: may not SRR S (EHELS & URSS = DY/ IGIRSE
X . X L . srand(MYTHREAD*17) ;
occur in a in a function definition, except as static. Why? S = = -
for (i=0; i < my_trials; i++)
Thread, Thread, Thread, ‘ hits += hitQ): ‘ accumulate hits
» upc_barrier;
4 if (MYTHREAD == 0) {
% § Shared ‘ printf("Pl estimated to %f.", 4.0*hits/trials#;
—a : ¥
[: mine:
28 e oo Pri } What is the problem with this program?
g rivate
5/30/2006 CS267 Lecture: UPC 15 5/30/2006 CS267 Lecture: UPC 16
Shared Arrays Are Cyclic By Default Pi in UPC: Shared Array Version

« Alternative fix to the race condition
« Have each thread update a separate counter:
« But do it in a shared array

« Shared scalars always live in thread 0
» Shared arrays are spread over the threads
« Shared array elements are spread across the threads

shared int x[THREADS] /* 1 element per thread */ » Have one thread compute sum o
shared int y[3][THREADS] /* 3 elements per thread */ Em :L:;?gj l;S all
shared int z[3][3] /* 2 or 3 elements per thread */ main(int argc, char **argv) { pmcessoyrs

... declarations an initialization code omitted just as hits was

« In the pictures below, assume THREADS = 4
for (i=0; i1 < my_trials; i++)

* Red elts have affinity to thread 0 - O !
Eh;v::;;f[lgr;eﬂayr%;epd allihlfs[MYTHREAD] += hitQ; ‘ update element
x 1 1] i Foundrobin l_JPC_barl’le"- with local affinity
it _(MYTHREAD == 0) {

y M | | || < I’j}zz;ﬁ’yag[jzkgd's \for (i=0; i < THREADS; i++) hits += all_hits[i];
printf(*'Pl estimated to %f.", 4_.0*hits/trials);

2 .-. ... by columns
[zisnot] ¥
zis not
} CS267 Lecture: UPC 18

5/30/2006 CS267 Lecture: UPC 17 5/30/2006

CS267 Lecture 2

UPC
Synchronization

5/30/2006 CS267 Lecture: UPC

19

UPC Global Synchronization

* UPC has two basic forms of barriers:
« Barrier: block until all other threads arrive
upc_barrier
« Split-phase barriers
upc_notify; this thread is ready for barrier
do computation unrelated to barrier
upc_wait; wait for others to be ready
* Optional labels allow for debugging
#define MERGE_BARRIER 12
if (MYTHREAD%2 == 0) {

upc_barrier MERGE_BARRIER;

} else {
upc_barrier MERGE_BARRIER;
¥
5/30/2006 CS267 Lecture: UPC 20

Synchronization - Locks

* Locks in UPC are represented by an opaque type:
upc_lock_t
* Locks must be allocated before use:
upc_lock_t *upc_all_lock_alloc(void);
allocates 1 lock, pointer to all threads
upc_lock_t *upc_global_lock_alloc(void);
allocates 1 lock, pointer to one thread
e To use a lock:
void upc_lock(upc_lock_t *I)
void upc_unlock(upc_lock_t *I)
use at start and end of critical region

» Locks can be freed when not in use
void upc_lock_free(upc_lock_t *ptr);

5/30/2006 CS267 Lecture: UPC

21

Pi in UPC: Shared Memory Style

« Parallel computing of pi, without the bug
shared int hits;
main(int argc, char **argv) {
int i, my_hits, my_trials = 0; create a lock
upc_lock_t *hit_lock = upc_all_lock_alloc();

= g B
my_trials = (trials + THREADS - 1)/THREADS;

srand(MYTHREAD*17) ;
for (i=0; i < my trials; i++) accumulate hits
my_hits += hitQ; | locally

upc_Tock(hit_lock);

hits += my_hits;

upc_unlock(hit_lock);

“upc_barrier;

if (MYTHREAD == 0)
printf("PI: %f'*, 4.0*hits/trials);

accumulate
across threads

5/30/2006 CS267 Lecture: UPC 22

UPC Collectives

5/30/2006 CS267 Lecture: UPC

23

CS267 Lecture 2

UPC Collectives in General

» The UPC collectives interface is available from:
« http://www.gwu.edu/~upc/docs/
« It contains typical functions:
« Data movement: broadcast, scatter, gather, ...
« Computational: reduce, prefix, ...
« Interface has synchronization modes:
 Avoid over-synchronizing (barrier before/after is
simplest semantics, but may be unnecessary)
« Data being collected may be read/written by any
thread simultaneously

5/30/2006 CS267 Lecture: UPC 24

Pi in UPC: Data Parallel Style Recap: Private vs. Shared Variables in UPC

* The previous version of Pi works, but is not scalable: * We saw several kinds of variables in the pi example
» On alarge # of threads, the locked region will be a bottleneck « Private scalars (my_hits)

* Use areduction for better scalability « Shared scalars (hits)

_ _ » Shared arrays (al I_hits)
[#include <bupc_collectivev.h> | gerkeley collectives « Shared locks (hit_lock)
N [no shared variables —
main(int argc, char **argv) {

Thread, Thread, Thread,
Tt B B ~ where:
for (i=0; i < my_trials; i++) n=Threads-1
my_hits += hit(Q); » hit_lock:
my_hits = // type, input, thread, op g
bupc_allv_reduce(int, my_hits, 0, UPC_ADD); S g [annitsmon: |[art_nitsp: [an_hits[n]: || Shared
// | barrier implied by collective cg
if (MYTHREAD == 0) % o ooe .
printfC'PI: %f", 4.0*my_hits/trials); o) Private
5/30/2006 CS267 Lecture: UPC 25 5/30/2006 CS267 Lecture: UPC 26
Example: Vector Addition
« Questions about parallel vector additions:
« How to layout data (here it is cyclic)
. . . * Which processor does what (here it is “owner computes”)
Work Distribution

i /* vadd.c */
USIng UpC_fO ral I #include <upc_relaxed.h>
#define N 100*THREADS -
shared int v1[N], v2[N]4 sum[N];
void main(Q) {

for(i=0; i<N; i++)

if (MYTHREAD == i%THREADS)
sum[i]=vi[i]+v2[i];

H
5/30/2006 CS267 Lecture: UPC 27 5/30/2006 CS267 Lecture: UPC 28
Work Sharing with upc_forall() Vector Addition with upc_forall

« The idiom in the previous slide is very common

« The vadd example can be rewritten as follows
« Loop over all; work on those owned by this proc

; « Equivalent code could use “&sum[i]” for affinity
+ UPC adds a special type of loop K .
upc_forall(init; test; loop; affinity) » The code would be correct but slow if the affinity
statement; expression were i+1 rather than i.
« Programmer indicates the iterations are independent #define N 100*THREADS
» Undefined if there are dependencies across threads) The cyclic data
- Affinity expression indicates which iterations to run on each thread. shared int v1[N], v2[N]. sum[NI: distribution may
It may have one of two types: B B perform poc_)rly on
« Integer: affinity%THREADS is MYTHREAD VO'd_;“ta'[W() { some machines
K I . i i;
S. Pomte_r. upc_thr(;‘:ado:’(afflnlty) |s_MYTHRIi/:\3 upc_foral1(i=0; i<N; i++; 1)
yntactic sggar or loop on prgvnous slide sum[i1=vi[i]+v2[il;
* Some compilers may do better than this, e.g., 3}
for(i=MYTHREAD; i<N; i+=THREADS)
» Rather than having all threads iterate N times:
for(i=0; i<N; i++) if (MYTHREAD == i%THREADS)
5/30/2006 CS267 Lecture: UPC 29 5/30/2006 CS267 Lecture: UPC 30

CS267 Lecture 2

Distributed Arrays
in UPC

5/30/2006 CS267 Lecture: UPC 31

Blocked Layouts in UPC

* The cyclic layout is typically stored in one of two ways
« Distributed memory: each processor has a chunk of memory
« Thread 0 would have: 0,THREADS, THREADS*2,... in a chunk
» Shared memory machine: each thread has a logical chunk
« Shared memory would have: 0,1,2,... THREADS, THREADS+1,...
» What performance problem is there with the latter?
* What is this code was instead doing nearest neighbor averaging?
« Vector addition example can be rewritten as follows

#define N 100*THREADS
shared intvl[N], v2[N], sum[NI: pjocked layout

void main(Q) {
int i;

upc_forall (i=0; i<N; i++;|&a[i])|
sum[i]:vl[i]+v2
b3

5/30/2006 CS267 Lecture: UPC 32

Layouts in General

« All non-array objects have affinity with thread zero.
« Array layouts are controlled by layout specifiers:
« Empty (cyclic layout)
* [*] (blocked layout)
« [0] or [] (indefinite layout, all on 1 thread)
« [b] or [b1][b2]...[bn] = [b1*b2*...bn] (fixed block size)
« The affinity of an array element is defined in terms of:
* block size, a compile-time constant
« and THREADS.
 Element i has affinity with thread
(i / block_size) % THREADS

« In 2D and higher, linearize the elements as in a C
representation, and then use above mapping
5/30/2006 CS267 Lecture: UPC 33

2D Array Layouts in UPC

« Array al has a row layout and array a2 has a block row
layout.
shared [m] int al [n][m];
shared [k*m] int a2 [n]1[m];

« If (k + m) % THREADS = = 0 them a3 has a row layout
shared int a3 [n][m+k];
* To get more general HPF and ScaLAPACK style 2D
blocked layouts, one needs to add dimensions.
« Assume r*c = THREADS;
shared [b1][b2] int a5 [m][n][r][c][b1][b2];
« or equivalently
shared [b1*b2] int a5 [m][n][r][c][b1][b2];

5/30/2006 CS267 Lecture: UPC 34

UPC Matrix Vector Multiplication Code

» Matrix-vector multiplication with matrix stored by rows
* (Contrived example: problems size is PxP)

shared [THREADS] int a[THREADS][THREADS];
shared int b[THREADS], c[THREADS];

void main (void) {
inti, j,I;
upc_forall(i =
c[i] = 0;
for (1= 0 ; I< THREADS ; I++)
c[i] += a[i1[1]1*b[1];

0 ; i < THREADS ; i++; i) {

5/30/2006 CS267 Lecture: UPC 35

UPC Matrix Multiplication Code

/* mat_mult_1.c */
#include <upc_relaxed.h>

#defineN 4
#define P 4
#define M 4

shared [N*P /THREADS] int a[N][P], c[N][M];
/l'aand c are row-wise blocked shared matrices

shared[M/THREADS] int b[P][M]; //column-wise blocking

void main (void) {
inti, j,I; // private variables

upc_forall(i =0 ; i<N ; i++; &c[i][0]) {
for (=0 ; j<M ;j++) {
c[illi] = 0;
for (120 ; I<P ; 1++) c[i][i] += a[i][1]*b[10];
}

3/30/2006 CS267 Lecture: UPC 36

CS267 Lecture 2

Notes on the Matrix Multiplication Example

* The UPC code for the matrix multiplication is almost
the same size as the sequential code

« Shared variable declarations include the keyword
shared

* Making a private copy of matrix B in each thread
might result in better performance since many remote
memory operations can be avoided

« Can be done with the help of upc_memget

5/30/2006 CS267 Lecture: UPC 37

Domain Decomposition for UPC

« Exploits locality in matrix multiplication

A (N x P) is decomposed row-wise ~ « B(P x M) is decomposed column wise
into blocks of size (N x P) / THREADS into M/ THREADS blocks as shown

as shown below: below:
Thread THREADS-1
P Thread 0
. - M
0.. (N*P/ THREADS) -1 Thread 0
(N*P | THREADS). (2*N*P | THREADS)-1 Thread 1
.
.
P . . .

(THREADS-1)<N*P) | THREADS
(THREADSN*P / THREADS)-1

< = >

Thread THREADS-1 l

“Note: N and M are assumed to be multiples
of THREADS Columns 0: *
(MITHREADS)-1 (1 mns ((THREAD-1)
M)/THREADS:(M-1)
513012006 €5267 Lecture: UPC 38

Pointers to Shared vs. Arrays

« In the C tradition, array can be access through pointers
 Here is the vector addition example using pointers

#define N 100*THREADS
shared int vi[N], v2[N], sum[N];
void main(Q) {

int i; | HEE NEE BEN

shared int *p1, *p2; Y1 t

pl=vl; p2=v2; pl
for (i=0; i<N; i++, pl++, p2++)
if (i %THREADS= = MYTHREAD)
sum[i]= *pl + *p2;

5/30/2006 CS267 Lecture: UPC 39

UPC Pointers

Where does the pointer point?

Local Shared
Where i PP (p1) | PS (p3
does the FIIEE (p1) (P3)
pointer
reside? Shared | SP (p2) | SS (p4)
int *pl; /* private pointer to local memory */

shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to

shared space */
Shared to private is not recommended.

5/30/2006 CS267 Lecture: UPC 40

UPC Pointers

Thread, Thread, Thread,
3
—
p4: p4: SL Shared
J._—b‘

p2: a’ Private

==
g

Global
address space

int *pl; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to
shared space */

Pointers to shared often require more storage and are more costly to
dereference; they may refer to local or remote memory.

5/30/2006 CS267 Lecture: UPC 41

Common Uses for UPC Pointer Types

int *pl;

« These pointers are fast (just like C pointers)

« Use to access local data in part of code performing local work

« Often cast a pointer-to-shared to one of these to get faster
access to shared data that is local

shared int *p2;

« Use to refer to remote data

« Larger and slower due to test-for-local + possible
communication

int *shared p3;

* Not recommended

shared int *shared p4;

« Use to build shared linked structures, e.g., alinked list

5/30/2006 CS267 Lecture: UPC 42

CS267 Lecture 2

UPC Pointers

* In UPC pointers to shared objects have three fields:
 thread number
« local address of block
« phase (specifies position in the block)

| Virtual Address ‘ Thread ‘ Phase |

« Example: Cray T3E implementation

| Phase ‘ Thread ‘ Virtual Address |
63 49 48 38 37 0
5/30/2006 CS267 Lecture: UPC 43

UPC Pointers

« Painter arithmetic supports blocked and non-blocked
array distributions

« Casting of shared to private pointers is allowed but
not vice versa !

* When casting a pointer-to-shared to a pointer-to-local,
the thread number of the pointer to shared may be
lost

* Casting of shared to local is well defined only if the
object pointed to by the pointer to shared has affinity
with the thread performing the cast

5/30/2006 CS267 Lecture: UPC 44

Special Functions

* size_t upc_threadof(shared void *ptr);
returns the thread number that has affinity to the pointer
to shared

* size_t upc_phaseof(shared void *ptr);
returns the index (position within the block)field of the
pointer to shared

« shared void *upc_resetphase(shared void *ptr); resets
the phase to zero

5/30/2006 CS267 Lecture: UPC 45

Dynamic Memory Allocation in UPC

« Dynamic memory allocation of shared memory is
available in UPC

« Functions can be collective or not

« A collective function has to be called by every thread
and will return the same value to all of them

5/30/2006 CS267 Lecture: UPC 46

Global Memory Allocation

shared void *upc_global_alloc(size_t nblocks,
size_t nbytes);

nblocks : number of blocks
nbytes : block size

* Non-collective: called by one thread

* The calling thread allocates a contiguous memory
space in the shared space

« If called by more than one thread, multiple regions are
allocated and each thread which makes the call gets
a different pointer

« Space allocated per calling thread is equivalent to :
shared [nbytes] char[nblocks * nbytes]

5/30/2006 CS267 Lecture: UPC 47

Collective Global Memory Allocation

shared void *upc_all_alloc(size_t nblocks, size_t nbytes);

nblocks: number of blocks
nbytes: block size

« This function has the same result as upc_global_alloc. But this
is a collective function, which is expected to be called by all
threads

« All the threads will get the same pointer

« Equivalent to :
shared [nbytes] char[nblocks * nbytes]

5/30/2006 CS267 Lecture: UPC 48

CS267 Lecture 2

Memory Freeing

void upc_free(shared void *ptr);

* The upc_free function frees the dynamically allocated
shared memory pointed to by ptr

« upc_free is not collective

5/30/2006 CS267 Lecture: UPC 49

Distributed Arrays Directory Style

* Some high performance UPC programmers avoid the
UPC style arrays
« Instead, build directories of distributed objects
» Also more general

typedef shared [] double *sdblptr;

shared sdblptr directory[THREADS];
directory[i]=upc_alloc(local_size*sizeof(double));
upc_barrier;

5/30/2006 CS267 Lecture: UPC 50

Memory Consistency in UPC

« The consistency model defines the order in which one thread may
see another threads accesses to memory
« If you write a program with unsychronized accesses, what

happens?
* Does this work?
data = .. while (!flag) { };
flag = 1; .. = data; // use the data

+ UPC has two types of accesses:
« Strict: will always appear in order
» Relaxed: May appear out of order to other threads
« There are several ways of designating the type, commonly:
* Use the include file:
#include <upc_relaxed.h>
* Which makes all accesses in the file relaxed by default
« Use strict on variables that are used as synchronization (flag)

5/30/2006 CS267 Lecture: UPC 51

Synchronization- Fence

» Upc provides a fence construct
« Equivalent to a null strict reference, and has the
syntax
« upc_fence;
* UPC ensures that all shared references issued
before the upc_fence are complete

5/30/2006 CS267 Lecture: UPC 52

PGAS Languages have Performance Advantages

Strategy for acceptance of a new language
« Make it run faster than anything else

Keys to high performance
« Parallelism:
« Scaling the number of processors
« Maximize single node performance
* Generate friendly code or use tuned libraries
(BLAS, FFTW, etc.)
« Avoid (unnecessary) communication cost
« Latency, bandwidth, overhead
« Berkeley UPC and Titanium use GASNet
communication layer
 Avoid unnecessary delays due to dependencies
« Load balance; Pipeline algorithmic dependencies
5/30/2006 CS267 Lecture: UPC 53

One-Sided vs Two-Sided

one-sided put message
host
‘ address] data payload }—>
CPU
network
. interface
two-sided message
[message id | data payload — memory

« A one-sided put/get message can be handled directly by a network
interface with RDMA support
« Avoid interrupting the CPU or storing data from CPU (preposts)
« A two-sided messages needs to be matched with a receive to
identify memory address to put data
« Offloaded to Network Interface in networks like Quadrics
* Need to download match tables to interface (from host)
« Ordering requirements on messages can also hinder bandwidth

5/30/2006 CS267 Lecture: UPC 54

CS267 Lecture 2

Performance Advantage of One-Sided Communication

—e—GASNet put (nonblock)
—=—MP| Flood

/ ./'-/ Relative BW (GASNet/MPI)

N

<
8
S

2 3 g
238
8 8 8

s a
& &
s 8

@
8
8

(up is good)
Bandwidth (MB/s)

»
8
8

.
5
8

o

10 100 1,000 10,000 100,000 1,000,000 10,000,000
Size (bytes)
« Opteron/InfiniBand (Jacquard at NERSC):
+ GASNet's vapi-conduit and OSU MPI 0.9.5 MVAPICH
« This is a very good MPI implementation — it's limited by
semantics of message matching, ordering, etc.

« Half power point (N %) differs by one order of magnitude
Joint work with Paul Hargrove and Dan Bonachea

5/30/2006 CS267 Lecture: UPC 55

GASNet: Portability and High-Performance

8-byte Roundtrip Latency
242

W MPI ping-pong
B GASNet put+sync

20

(down is good)
&

Roundtrip Latency (usec)

Elan3/Alpha Eland/IA64 Myrinet/x86 1B/GS. 1B/Opteron SPIFed

GASNet better for latency across machines
5/30/2006 CS267 Lecture: UPC 56

GASNet: Portability and High-Performance

Flood Bandwidth for 2MB messages
100%
35" 858
225 228 795 799 1504 1490
L %0% 255
o 244
S 8%
c 630
g 70% 610
=)
S |2 e
o
2| o 5%
a2
2|2 am
I
e 30%
@
£ 20w
o
a
10%
0%
Ban3/Alpha Ban4/IA64 Myrinetx86 1B/G5S B/Opteron SPIFed

GASNet at least as high (comparable) for large messages

5/30/2006 CS267 Lecture: UPC 57
Joint work with UPC Group; GASNet design by Dan Bonachea

Joint work with UPC Group; GASNet design by Dan Bonachea

GASNet: Portability and High-Performance

Flood Bandwidth for 4KB messages

Percent HW peak

(up is good)

Band/Alpha Band/lA64 Myrinet/x86 1BIGS 1B/Opteron SPIFed

GASNEet excels at mid-range sizes: important for overlap

5/30/2006 CS267 Lecture: UPC 58

Case Study 2: NAS FT

« Performance of Exchange (Alltoall) is critical
« 1D FFTs in each dimension, 3 phases
« Transpose after first 2 for locality
« Bisection bandwidth-limited
« Problem as #procs grows

L]
L
« Three approaches:
* Exchange:
« wait for 2nd dim FFTs to finish, send 1
message per processor pair 4
« Slab: — Thiead 1'% planes
« wait for chunk of rows destined for 1
proc, send when ready Plane
 Pencil:
. Treead O's planes
« send each row as it completes
5/30/2006 CS267 Lecture: UPC 59

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

Joint work with UPC Group: GASNet design by Dan Bonachea

Overlapping Communication

» Goal: make use of “all the wires all the time”
» Schedule communication to avoid network backup
 Trade-off: overhead vs. overlap
» Exchange has fewest messages, less message overhead
« Slabs and pencils have more overlap; pencils the most
« Example: Class D problem on 256 Processors

Exchange (all data at once) 512 Kbytes
Slabs (contiguous rows that go to 1 processor) 64 Kbytes
Pencils (single row) 16 Kbytes

5/30/2006 €S267 Lecture: UPC 60

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

CS267 Lecture 2

10

NAS FT Variants Performance Summary

1000 est NAS Fortran/MPI .5 Tj Io p S
Best MPI (aways Slabs)
o00|- |] Best UPC (always Pencils)]
X

o e
MFlops per Thread

\Ba“d 250 gan® 250 glan?® 2 gant 20 glant 52

Yy
Wy el

5/30/2006 CS267 Lecture: UPC 61

Case Study 2: LU Factorization

« Direct methods have complicated dependencies
« Especially with pivoting (unpredictable communication)
« Especially for sparse matrices (dependence graph with holes)
« LU Factorization in UPC
« Use overlap ideas and multithreading to mask latency
» Multithreaded: UPC threads + user threads + threaded BLAS
« Panel factorization: Including pivoting

« Update to a block of U
« Trailing submatrix updates

« Status:
« Dense LU done: HPL-compliant
« Sparse version underway

5/30/200 CS267 Lecture: UPC 62

SEIR13098 with parry Husbands

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea.

UPC HPL Performance

X1 Linpack Performance Opteron Cluster Altix Linpack
Linpack Performance 'MP' HPL numbers
from HPCC
database

«Large scaling:
+2.2 TFlops on 512p,

*4.4 TFlops on 1024p
(Thunder)

GFlopls
GFlopls

@ et iz ope
« Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid

* ScaLAPACK (block size 64) 25.25 GFlop/s (tried several block sizes)

* UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s
* n =32000 on a 4x4 process grid
* ScaLAPACK - 43.34 GFlop/s (block size = 64)
* UPC - 70.26 Gflop/s (block size = 200)

Joint work with Parry Husbands

Summary

« UPC designed to be consistent with C

* Some low level details, such as memory layout are

exposed

« Ability to use pointers and arrays interchangeably
« Designed for high performance

« Memory consistency explicit

* Small implementation
« Berkeley compiler (used for next homework)

http://upc.lbl.gov
« Language specification and other documents

http://upc.gwu.edu

5/30/2006 CS267 Lecture: UPC 64

CS267 Lecture 2

11

