
A Local-View Array Library for Partitioned
Global Address Space C++ Programs

Amir Kamil
Lawrence Berkeley National Laboratory

akamil@lbl.gov

Yili Zheng
Lawrence Berkeley National Laboratory

yzheng@lbl.gov

Katherine Yelick
University of California, Berkeley and

Lawrence Berkeley National Laboratory
yelick@cs.berkeley.edu

Abstract
Multidimensional arrays are an important data structure in many
scientific applications. Unfortunately, built-in support for such ar-
rays is inadequate in C++, particularly in the distributed setting
where bulk communication operations are required for good per-
formance. In this paper, we present a multidimensional library for
partitioned global address space (PGAS) programs, supporting the
one-sided remote access and bulk operations of the PGAS model.
The library is based on Titanium arrays, which have proven to pro-
vide good productivity and performance. These arrays provide a
local view of data, where each rank constructs its own portion of a
global data structure, matching the local view of execution common
to PGAS programs and providing maximum flexibility in struc-
turing global data. Unlike Titanium, which has its own compiler
with array-specific analyses, optimizations, and code generation,
we implement multidimensional arrays solely through a C++ li-
brary. The main goal of this effort is to provide a library-based im-
plementation that can match the productivity and performance of
a compiler-based approach. We implement the array library as an
extension to UPC++, a C++ library for PGAS programs, and we ex-
tend Titanium arrays with specializations to improve performance.
We evaluate the array library by porting four Titanium benchmarks
to UPC++, demonstrating that it can achieve up to 25% better per-
formance than Titanium without a significant increase in program-
mer effort.

1. Introduction
One of the primary data structures in many scientific applications
is a regular multidimensional array. A multidimensional array is
often used to represent a physical domain, such as a discretization
of space. Regular arrays are also at the core of many numerical
algorithms, including dense linear algebra and Fourier transforms.
Unfortunately, support for multidimensional arrays is very limited
in C++. Such arrays generally must be manually mapped to one-
dimensional arrays, with the user performing all the indexing logic.
The problem is even worse in the parallel setting, since efficiently
communicating subsets of an array that are not physically contigu-
ous requires significant effort from the programmer.

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, contractor or affiliate of the United States government. As such, the Govern-
ment retains a nonexclusive, royalty-free right to publish or reproduce this article, or
to allow others to do so, for Government purposes only.

ARRAY’14, June 11 2014, Edinburgh, United Kingdom
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2937-8/14/06$15.00.
http://dx.doi.org/10.1145/2627373.2627378.

In this paper, we describe the design and implementation of a
C++ multidimensional array library based on that of Titanium [16],
an explicitly parallel dialect of Java, since Titanium’s array library
has proven to provide good productivity and performance in large-
scale parallel programs. Whereas Titanium has a compiler with
support for array-specific analyses, optimizations, and code gener-
ation, we seek to implement an equivalent array abstraction solely
through a C++ library. The main goal of this work is to demonstrate
that a pure library implementation can match the productivity and
performance of a compiler-based approach to multidimensional ar-
rays.

We implement the array library in the context of UPC++ [17],
a library for partitioned global address space (PGAS) programs,
which allow data to be directly accessed by processors that do not
share the physical address space in which the data are located. We
also include the ability for the array library to be used separately
from UPC++ in standard C++ programs. The array library provides
a local view of data, where each rank is responsible for creating its
own pieces of a global data structure, which aligns with the local
view of execution in explicitly parallel PGAS programs. Finally,
the library allows one-sided communication of non-contiguous data
between processors with minimal programmer effort.

In order to match the performance of Titanium arrays, we im-
plement a number of specializations to improve the performance of
array accesses. We evaluate our library by porting four benchmarks
from Titanium to UPC++, demonstrating that the UPC++ versions
match the productivity and exceed the performance of Titanium
code.

2. Background and Related Work
UPC++ is a library for C++ that implements the main features of
UPC [6] in the context of C++, while also providing many features
found in other PGAS languages. It includes the global pointers,
shared variables, shared arrays, and basic single program, multiple
data (SPMD) execution model from UPC, a model of asynchronous
task execution inspired by X10 [14], Chapel [8], Habanero [5],
and Phalanx [10], and a team model similar to Titanium [11]. The
UPC++ library is designed for large-scale scientific applications
written in C++ and is interoperable with other parallel libraries such
as MPI, OpenMP, and CUDA.

Despite the importance of multidimensional arrays to scientific
applications, C++ provides only very limited support for such ar-
rays, and this support is even more inadequate in the PGAS set-
ting. On the other hand, Titanium’s multidimensional array library
is one of its most productive features [9], allowing one-sided re-
mote access to arrays and one-sided bulk copies of non-contiguous
subsets of arrays. These features are especially useful in adaptive
block-structured computations; for example, a port of the Chombo
adaptive mesh refinement (AMR) application requires an order of

http://dx.doi.org/10.1145/2627373.2627378

magnitude fewer lines in Titanium than in C++/Fortran, largely due
to Titanium’s array library [15]. Due to the success of Titanium’s
library, we use it as the basis for an array library for UPC++.

Titanium’s multidimensional array library was inspired by the
dense and strided regions and arrays in ZPL [7], which also in-
spired Chapel’s domain and array library. Unlike in Chapel, the
elements of a Titanium array are located in a single memory space,
though they may be accessed from a remote processor. However,
distributed array structures can be built from local pieces on dif-
ferent processors, allowing the construction of a wide variety of
complex data structures. Since a distributed structure is built from
local pieces, Titanium provides a local view of data.

Many existing libraries provide the ability to define a global-
view data structure distributed across multiple memory spaces.
While a global-view structure is easier to construct than a local-
view one, it often precludes the expression of the irregular struc-
tures required in adaptive computations. We have chosen to pro-
vide a local-view library as a starting point; in the future, we plan
on building a global-view library on top of it that provides the most
common global distributions.

Perhaps the most commonly used PGAS array library is Global
Arrays (GA) [1]. While the GA toolkit is useful for many appli-
cations, it is difficult to express the structures required in AMR.
In addition, it does not provide a higher-level C++ interface us-
ing templates and operator overloading, and it restricts the element
type to basic numerical types. Other library-based approaches in-
clude hierarchically tiled arrays [3] and POOMA [13]. However,
both libraries are designed for data-parallel applications rather than
explicitly parallel PGAS programs.

3. Library Overview
In this section, we provide an overview of the UPC++ multidi-
mensional array library and its features. All classes and functions
in the library are located in the upcxx namespace. For simplic-
ity, we use unqualified names in this paper, as in a program with
a using namespace upcxx; declaration. Aside from syntax,
most features are shared between Titanium and UPC++ arrays.

3.1 Domain Library
As in Titanium, the array library contains a domain library as a
subset in order to represent indices and index sets. This component
consists of points, rectangular domains, and general domains.

Points A point is a set of N integer coordinates, representing a
location in N -dimensional space. In UPC++, it is represented using
the point<N> class template, parameterized by dimensionality.
A point<N> is defined as plain-old data (POD), with an array
of size N as its only member, so it may be constructed using an
initializer list when declaring a variable:
point<3> p = {{ -1, 3, 2 }};

In addition, the PT function is overloaded to construct a point<N>
when passed N arguments:
point<3> p = PT(-1, 3, 2);

Many useful operations are defined on points, including arithmetic
operations between points of the same dimensionality or points and
integers. Comparison operations are also defined between points.
Operator overloading is used to provide simple syntax:
point<3> p2 = PT(-1, 3, 2) + PT(3, -2, 4);

The indexing operator [] is also overloaded on a point<N>,
where an argument of i retrieves the ith component of the point
for 1 ≤ i ≤ N .

Rectangular Domains A rectangular domain is a regular set of
points between a given lower bound and upper bound, with an
optional stride in each dimension. For example, the set of points

{(1, 1), (1, 3), (3, 1), (3, 3)} constitutes a rectangular domain with
a stride of (2, 2).

In UPC++, the rdomain<N> class template represents a rect-
angular domain. An rdomain<N> is created by passing in an
inclusive lower bound point<N>, an exclusive upper bound
point<N>, and an optional stride point<N> to the constructor.
The latter defaults to 1 in each dimension. The following produces
a representation of the rectangular domain above:
rdomain<2> rd(PT(1, 1), PT(4, 4), PT(2, 2));

The RD function is overloaded to produce an rdomain<N> when
passed point<N>s:
rdomain<2> rd2 = RD(PT(-1, 1), PT(3, 2));

General Domains A general domain is an arbitrary set of points.
It is represented by the domain<N> class template. A general
domain can be created from a set of points or as the result of domain
operations, as described below.

Domain Operations Arithmetic operations are defined between
both types of domains and points. For example, adding a point to a
domain results in a translation of that domain, so that the expression
RD(PT(1, 1), PT(3, 3)) + PT(1, 2) is equivalent to
RD(PT(2, 3), PT(4, 5)).

Set operations are defined between both types of domains, with
the + operator for union, * for intersection, and - for difference.
The type of the resulting object is domain<N> unless the result is
necessarily rectangular, such as an intersection between two rect-
angular domains, in which case the result is of type rdomain<N>.

Many other transformation operations are defined on an
rdomain<N>, such as slicing to get a rdomain<N-1> and
shrinking, accretion, and border operations that are useful in ap-
plications that use ghost zones.

Foreach Loops As in Titanium, the UPC++ domain library de-
fines a special type of loop to sequentially iterate over the points in
a domain. Given a variable name and a domain, a foreach loop
declares a point variable with the given name and iterates over the
points in the domain, binding a point to that name in each iteration.
For example, the following prints out all the points in a domain:
foreach (pt, some_domain)

cout << pt << endl;

A foreach loop does not require the dimensionality of the given
domain or the type of the point variable to be explicitly specified.
This allows a user to write generic code that works for any dimen-
sionality.

3.2 Arrays
A multidimensional array is a mapping of points in a rectangular
domain to elements. In UPC++, the ndarray<T, N, F1, F2>
class template represents an array. The first template parameter is
the element type, the second is the dimensionality, and the remain-
ing two parameters are optional locality and layout specifiers. The
locality specifier may be local or global; the former specifies
that the array’s elements are stored in memory that is physically ad-
dressable by the current thread, while the latter allows the elements
to be located in a remote memory space. The default is local
if no locality specifier is provided. The layout specifiers will be
discussed in §4.2.

An array may be created over a rectangular domain:
ndarray<int, 2> A(RD(PT(1, 1), PT(4, 3)));

This allocates memory for the array elements in local memory, even
if the array is declared as global. The given domain is the index
space of the newly created array.

The ndarray class template also defines a number of op-
erations that produce new views over the elements of an ex-

isting array, without copying any data. For example, the call
A.constrict(rd) produces a view of the array A that is re-
stricted to the intersection of its index space and the rectangular
domain rd. Many other view operations are defined, including
translation, injection, slicing, shrinking, and so on.

The call A.domain() returns the index space of the array
view A and is always a rectangular domain. A.size() is the
number of elements in A.

An array is indexed using points, so that A[p] produces a
reference to the element mapped to index p. Indexing a global array
produces a global reference (type global_ref<T> in UPC++).

While it is possible to iterate over a non-rectangular subset of an
array, either manually or with a foreach loop, it is not currently
possible to create an array or an array view over a general domain.
We may add a mechanism for doing so in the future.

In order to facilitate construction of distributed array structures,
the exchange method is an all-to-all communication operation
over all ranks in the current team, sending an element from each
rank to every other rank. This operation can be used to construct a
directory of the arrays on each rank:

ndarray<double, 3> myArray(myDomain);
ndarray<ndarray<double, 3, global>,

1> dir(RD(PT(0), PT(ranks())));
dir.exchange(myArray);

The elements of dir must be declared global, since their under-
lying elements may be located on a remote rank. The array library
allows implicit promotion of local arrays to global, so the ac-
tual arrays to be exchanged need not be declared global.

Array Copies The most significant feature of Titanium and
UPC++ arrays is the ability to copy elements from one array to
another with a single call, even if one or both arrays are located
remotely. The call A.copy(B) copies all elements in the inter-
section of the index spaces of A and B from B to A. Semantically,
this is a one-sided operation, even if packing or unpacking must
be done at the (possibly remote) source and destination. Compare
this to the equivalent operation in MPI, which requires the source
to explicitly pack its elements and post a send and the destination
to post a receive and explicitly unpack the elements.

As an example, consider a grid computation with ghost zones,
in which each rank has 6 neighbors with which it must exchange
data. In the setup phase, a directory is created using an exchange
operation:

allGrids.exchange(myGrid);

Then the following is the code to perform the copies, assuming
the array nb holds the IDs of a rank’s neighbors and SIZE is the
thickness of the ghost regions:

for (int i = 0; i < 6; i++)
allGrids[nb[i]].copy(myGrid.shrink(SIZE));

The shrink operation restricts myGrid to its interior, so that only
interior elements are copied from the source to the destination. A
single statement is required for each copy, even though most of
these copies require packing at the source and unpacking at the
destination. This is much simpler than the equivalent code in MPI
with standard C++ arrays.

UPC++ arrays also support asynchronous copies, which inte-
grate with the asynchronous tasking model defined by UPC++.
Sparse scatter and gather operations are also defined on arrays.

Bounds Checking One of the most common types of errors in
array-based code is accessing an array with an invalid index. Such
errors are difficult to debug in C++; C++ provides no bounds check-
ing, and its weak degree of memory safety often results in silent
errors. On the other hand, checking every array access for legal-

C++#Compiler#and#Standard#Library#

GASNet#

UPC++# Ac9ve#
Messages#

UPC++#Backend#
Core#UPC++#Array#Library#

Array#Wrapper#and#Specializa9ons#

SharedC
Memory#
Backend#

Figure 1. The UPC++ array implementation stack.

ity can result in overhead that is unacceptable to many scientific
programmers.

The UPC++ array library takes an intermediate approach
where bounds checking is disabled by default but can be ex-
plicitly enabled by the user. In our implementation, defining the
UPCXXA_BOUNDS_CHECKING macro to 1 before including the
array headers turns on bounds checking for the given compilation
unit.

3.3 Additional Features
In addition to the features above, which are all available in the
Titanium language, we have added several new features that are not
in Titanium. Since arrays are provided as a library, new features can
be implemented without modifying a compiler.

User-Defined Coordinate Type By default, the coordinate type
(i.e. the components of a point<N>) used in the domain and
array library is int. However, a program may require an index
space that exceeds the bounds of the int type (generally 32 bits
on most modern platforms). The UPC++ library allows an alternate
coordinate type, such as int64_t, to be specified by defining the
UPCXXA_COORDINATE_TYPE macro to the desired type before
including the array library headers.

Padding Some algorithms benefit from padding arrays with extra
elements after each dimension to optimize for caching effects (e.g.
pad the last dimension to take up a whole cache line). In many
cases, it is insufficient to create an array over a larger physical
domain; the size of dimension i of an unpadded, row-major N -
dimensional array is always a multiple of the sizes of dimensions
i + 1 through N , which may not divide the size of a cache line.
Thus, padding must be allowed through some other means in order
to avoid this constraint.

In order to specify padding in UPC++, a point<N> may be
passed in as the last argument when constructing an N -dimensional
array. The ith coordinate of the point is the number of elements
of padding to use after the ith dimension of the array. It is an error
if any coordinate is negative.

Column-Major Arrays By default, UPC++ arrays are laid out
in row-major format, with the last dimension contiguous (except
in the case of the simple_column specialization described in
§4.2, which requires column-major format). The user may manu-
ally specify whether to use row-major or column-major layout by
passing in an optional bool after the array domain, with true
signifying column-major format and false row-major format.

4. Implementation
In this section, we describe the implementation of UPC++ arrays,
as well as the implementation-driven specializations provided by
the array library.

4.1 Software Architecture
The overall software architecture of the UPC++ array library is
shown in Figure 1. The implementation takes a multilayered ap-

proach, allowing reuse of existing code and enabling the array li-
brary to be used with different backends. The top layer is a true
C++ interface using templates and template metaprogramming to
implement the user-level interface described in §3. Below that is
the core implementation ported from Titanium, which itself uses a
thin translation layer to support multiple runtime backends. The ex-
isting backends are a shared-memory backend over standard C++
and a distributed-memory backend built on the core UPC++ library
and active messages, which are in turn based on the GASNet com-
munication layer [4].

The core of the UPC++ domain and array library is a direct
port of the Titanium libraries. The Titanium implementation uses
a combination of Titanium code, native C code, and compiler-
generated code. The UPC++ implementation is entirely in C++.

Domain Library Titanium’s domain library is implemented in
the Titanium language itself, with the exception of points, which
are implemented directly in the Titanium compiler. We imple-
mented points from scratch in C++ and ported rectangular and gen-
eral domains from Titanium to C++.

Array Library In Titanium, the bulk of the array library is written
in C, with macros as placeholders for element type, dimensionality,
and operations on local and global pointers. The Titanium compiler
generates the appropriate macro definitions when instantiating a
particular array type.

We ported the C implementation of Titanium’s array library
to C++, using template parameters to specify element type and
dimensionality. Some care had to be taken to avoid errors in
dimensionality-specific code. Titanium avoids any issues by using
macros to disable code for the wrong dimensionality. The UPC++
library, on the other hand, has to use template metaprogramming
techniques to do so, since the preprocessor does not understand
template parameters.

For simplicity of implementation, we found it convenient to
retain the use of macros for specifying operations on local and
global pointers. As such, we actually generate two internal class
templates for arrays from the same source code, one for local arrays
and one for global arrays, with macros used to distinguish their
implementation.

On top of the two internal array templates, we implemented
the ndarray class template as a unified wrapper that uses the
appropriate internal array template class depending on whether the
ndarray is local or global. Thus, from the user perspective, local
and global arrays appear to be different instantiations of the same
class template. This makes it easier to write code that works for
both local and global arrays.

Template metaprogramming is used to select the correct internal
array template, as well as the appropriate local or global pointer and
reference type. Template metaprogramming is also used to allow
local arrays to be implicitly promoted to global arrays, and for
global arrays to be explicitly cast to local arrays.

Foreach Loops A foreach loop is implemented as a macro, trans-
lating to a pair of nested for loops. This allows a foreach header
to be used syntactically in the same manner as a for header, while
also allowing break and continue statements to function as ex-
pected. The following is the C++11 implementation of the foreach
macro:

#define foreach(p, D) \
FOREACH_(p, (D), UNIQUIFYN(fptr_, p))

#define FOREACH_(p, D, F) \
for (auto F=D.iter(); F.val; F.val=0) \
for (auto p=F.start(); F.next(p);)

Two for loops are needed since the types of the variables declared
in each header differ. The outer loop is used solely to declare an

iterator over a domain; the UNIQUIFYN macro, whose implemen-
tation is not shown, is used to obtain a unique temporary name. The
inner loop iterates over the actual points in the domain.

The C++11 foreach loop uses type inference to determine the
dimensionality of the given domain and its points. We also provide
a non-C++11 implementation that infers the dimensionality using
the sizeof operator.

Backend Implementation A major goal of the UPC++ array li-
brary was to enable it to be used as a standalone library, without
requiring the rest of UPC++, while also allowing it to be well-
integrated with UPC++. We accomplish this by defining a thin
backend interface using macros, which specify what backend types
to use for global pointers and references, how to operate on global
pointers, how to perform remote reads and writes, and so on. Cur-
rently, the array library comes with a backend implementation over
shared memory, while the separate UPC++ library defines its own
distributed-memory backend implementation.

The distributed-memory backend implementation uses UPC++
types global_ptr and global_ref for global pointers and
references, respectively, and uses UPC++ remote copying opera-
tions to perform bulk reads and writes. In addition, active mes-
sages are used for more complicated remote copying operations,
such as those that require the receiver to unpack elements into non-
contiguous memory. Both UPC++ and the array active messages
are built on top of the GASNet communication library.

4.2 Specializations

Since UPC++ is implemented as a library, it does not have static
analyses and transformations that would be available to a compiler.
Titanium, for example, can perform dimensionality-specific trans-
formations on foreach loops, and a lot of analysis and optimization
work was done on array accesses within such loops [12].

Rather than relying on compiler analysis and transformations,
the UPC++ array library provides specializations that can be ex-
plicitly applied by the user. Currently, these include specializations
for the layout of an array as well as dimensionality-specific foreach
loops.

Layout Specifiers Since an array can be created over any rectan-
gular domain, the logical, or index, domain of an array may differ
from its physical domain. For example, an array that is constructed
with a domain that has a stride of 2 in each dimension is laid out
contiguously in physical memory, resulting in a physical stride of 1
in each dimension. When indexing into such an array, divisions are
required to translate from the logical to the physical domain. These
are expensive operations that are useful to avoid if possible.

It is possible for an array with a non-unit logical stride to have
a matching physical stride. For example, if an array is created with
unit stride, but then that array is restricted to a domain with stride
2, then the physical stride of the restricted array will also be 2. In
this case, a division is not required to translate from the logical to
the physical domain.

UPC++ defines a set of specializations that restrict the layout
of an array, allowing unnecessary operations to be avoided when
indexing into an array. A strided array may have any logical or
physical stride. An unstrided array has matching logical and
physical strides in each dimension. A simple array has matching
strides and is in row-major format, with the last dimension contigu-
ous. Finally, a simple_column array has matching strides and
is in column-major format, with the first dimension contiguous. An
array’s layout may be specialized as one of these options by passing
in the appropriate specifier as the third or fourth template argument
to the ndarray type. The default layout is strided.

Implicit conversions are provided from more-constrained to
less-constrained layouts (e.g. simple_column to unstrided,

0"
0.2"
0.4"
0.6"
0.8"
1"

1.2"
1.4"
1.6"
1.8"

GNU"4.8.2" Intel"14.0.0" Cray"8.2.2" PGI"13.670" Clang"3.4"

Sp
ee
du

p&
Re

la
*v

e&
to
&M

an
ua

l&

Compiler&

standard" simple" foreach3" chained"
funcCon" macro" spec7macro" Titanium"

Be
5
er
&

Figure 2. Sequential performance of stencil variants, compared to
manual indexing using the same compiler.

but not simple_column to simple), and explicit conversions
otherwise. Thus, in most cases it is sufficient to cast an array to the
most constrained layout possible in the computationally intensive
parts of a program. Methods such as is_simple are provided for
querying the layout of an array at runtime, allowing a cast to be
done only when legal.

Specialized Foreach Loops As discussed in §4.1, the standard
foreach loop is implemented using an iterator over the points of a
domain. When iterating over a multidimensional array, this can be
much worse than using nested loops, since the compiler cannot lift
loop-invariant expressions out of the inner loops.

To address this, UPC++ provides foreach loops that are special-
ized for a particular dimensionality. For example, the following is
a reduction over a 3D array using a specialized foreach3 loop:
foreach3 (i, j, k, A.domain())

sum += A[PT(i, j, k)];

Rather than declaring a point<3>, the foreach3 loop declares
an integer index variable for each dimension. The user may explic-
itly construct a point<3> or use one of the alternate indexing
variants described below. As with foreach, a continue state-
ment works as expected in a specialized foreach loop; however, a
goto must be used to exit the loop rather than a break, since a
specialized N -dimensional foreach loop translates into N nested
for loops.

By default, the array library provides specialized foreach loops
up to 9 dimensions.

Indexing Variants Since the UPC++ array library relies on the
underlying C++ compiler to optimize array indexing, it provides
multiple alternative means to index an array; the fastest mechanism
is dependent on the C++ compiler. For example, the body of the
foreach3 loop above may be written as follows:

• using points: sum += A[PT(i, j, k)];

• using chained indexing: sum += A[i][j][k];

• using function-call syntax: sum += A(i, j, k);

• using macros; a preamble must be added before the loop:
AINDEX3_SETUP(A);
foreach3 (i, j, k, A.domain())

sum += AINDEX3(A, i, j, k);

• using specialized macros; for example, for a simple array,
AINDEX3_simple may be used instead of AINDEX3 above.

All of these indexing varieties are semantically equivalent and
optionally support bounds checking. The most efficient indexing
variant depends on the compiler. Figure 2 shows the performance

of these variants on a 7-point 3D stencil code, along with layout
and loop specializations, on five different compilers. All experi-
ments were run with bounds checking disabled. The baseline is di-
rectly indexing the array memory within a foreach3 loop, com-
puting the offsets manually, using the same compiler. The stan-
dard variant uses a standard foreach loop on strided arrays,
while simple uses a standard foreach with simple arrays. The
foreach3, chained, function, macro, and spec-macro variants use
foreach3 loops over simple arrays, but with point indexing,
chained indexing, function-call syntax, macro indexing, and spe-
cialized macro indexing, respectively. In the case of the GNU com-
piler, the Titanium implementation, using the GNU compiler as its
backend, is provided as a reference.

The results show that for all five compilers, using both the
simple layout specialization and the specialized foreach3
loop improve performance. For three of the compilers, at least
one indexing variant meets or exceeds the performance of manu-
ally computing indices; for the other two compilers, the best vari-
ant achieves 75% and 89% of manual performance. In cases where
manual indexing is necessary, UPC++ arrays provide a base_ptr
method that returns a pointer to the underlying array memory, al-
lowing an array to be indexed manually. Directly accessing the
array memory precludes any bounds checking, but it does allow
external libraries to be used with UPC++ arrays.

The GNU results also show that despite being implemented as
a library, UPC++ can perform better than Titanium with a minimal
effort by using the appropriate specializations.

5. Evaluation
Since the main goal of the UPC++ array library is to provide the
productivity and performance of Titanium’s array library, we eval-
uated UPC++ arrays by porting four benchmarks from Titanium
to UPC++: three of the NAS Parallel Benchmarks [2], conjugate
gradient (CG), Fourier transform (FT), and multigrid (MG), and a
7-point stencil over a 3D grid that uses a Jacobi (out-of-place) it-
eration strategy. Aside from syntax, Titanium and UPC++ arrays
are nearly interchangeable. As a result, each benchmark required
only a few hours to port, with the bulk of the time spent translat-
ing Titanium/Java features to C++ (e.g. determining when to use
C++ references or pointers, converting Java arrays to C++ arrays,
etc.). The only significant change we made was to use the special-
ized layouts and loops described in §4.2, with point-indexing as in
Titanium. Excluding declarations, the UPC++ and Titanium code
are nearly identical in size, providing some indication that UPC++
arrays are as productive as Titanium1.

In measuring performance, we focused on single-node runs,
since any difference in local computation time or memory usage
would be apparent there. UPC++ and Titanium both use the GAS-
Net communication layer for remote accesses, so communication
performance should be the same for both UPC++ and Titanium
code. Our experiments were run on the Edison system at NERSC,
which is a Cray XC30 with two 12-core 2.4 GHz Ivy Bridge pro-
cessors per node and the Cray Aries interconnect. We used a sep-
arate process on each core, and when using more than one core
on a node, we divided processes evenly among the two processors
in order to maximize available memory bandwidth. Both UPC++
and Titanium code were compiled using version 4.8.2 of the GNU
compiler as the backend.

Figure 3 shows the performance of the three NAS benchmarks
on up to 16 cores of a single node. The class B problem size was

1 C++ requires many declarations to be placed in headers in order to be
accessible to other compilation units, which causes declarations to require
more code in C++ than in Titanium. However, we do not believe that this
has a significant impact on productivity.

2"

4"

8"

16"

32"

64"

128"

1" 2" 4" 8" 16"

Ru
nn

in
g&
Ti
m
e&
(s
)&

Number&of&Cores&

Titanium"CG" UPC++"CG"
Titanium"FT" UPC++"FT"
Titanium"MG" UPC++"MG"

Be
4
er
&

Figure 3. Performance of NAS CG, FT, and MG on one node.

4"
8"

16"
32"
64"

128"
256"
512"
1024"
2048"
4096"
8192"

1" 2" 4" 8" 16
"

24
"

48
"

96
"

19
2"

38
4"

76
8"

15
36
"

30
72
"

61
44
"

Pe
rf
or
m
an

ce
*(G

B/
s)
*

Number*of*Cores*

Titanium"
UPC++"

Be
5
er
*

Figure 4. Weak scaling results for stencil, 2563 grid per core.

used for CG and FT, while class C was used for MG. In all cases,
UPC++ performs better than Titanium, up to a maximum of about
20% in FT on 8 and 16 cores.

For the stencil code, we ran a weak-scaling experiment up to
6144 cores (256 nodes), with a grid size of 2563 per core. The
7-point stencil computation is memory bound, with no memory-
hierarchy optimizations (e.g. cache blocking), and Figure 4 shows
the effective memory bandwidth achieved in each configuration. At
small numbers of cores on a single node, the UPC++ code is around
15-25% faster than Titanium until the memory bandwidth limit
is reached at 16 cores, at which point both UPC++ and Titanium
provide the same performance. On multiple nodes, UPC++ and
Titanium again match, achieving nearly linear speedup.

The results show that UPC++ arrays match or exceed the perfor-
mance of Titanium, despite being implemented as a library rather
than in a compiler. And since the UPC++ and Titanium benchmark
code are nearly identical modulo differences in the C++ and Java
base languages, we believe that UPC++ arrays also provide the
same level of productivity as Titanium arrays.

6. Conclusion
In this paper, we presented a multidimensional array library for
C++ programs, particularly partitioned global address space (PGAS)
programs written using the UPC++ library. Since the arrays in the
Titanium language have proven to provide good productivity and
performance, we chose to base our array library on Titanium’s, with
the goal of matching it in productivity and performance. By pro-
viding specializations to optimize array accesses, we have achieved
this goal despite the lack of array-specific static analysis and op-
timization. Our experience with porting Titanium benchmarks to
UPC++ demonstrates that our array library provides similar pro-

ductivity as Titanium, while our experimental results show that the
library’s performance matches or exceeds Titanium’s by up to 25%.

Our current library provides a local-view abstraction of data,
where each rank builds its own piece of the global data structure.
This provides maximum flexibility in the varieties of global struc-
tures that can be represented. However, we do recognize the pro-
ductivity benefits of global-view data structures. In the future, we
plan to use the current local-view library as a building block for
creating global-view array libraries in UPC++.

Acknowledgment
This work was supported in part by the Department of Energy’s
Office of Science, Advanced Scientific Computing Research X-
Stack Program under Lawrence Berkeley National Laboratory
(LBNL) Contract DE-AC02-05CH11231. This research used re-
sources of the National Energy Research Scientific Computing
Center (NERSC), which is supported by the same LBNL contract.

References
[1] Global Arrays webpage. http://www.emsl.pnl.gov/docs/

global/.
[2] D. Bailey et al. The NAS parallel benchmarks. The International

Journal of Supercomputer Applications, 5(3):63–73, Fall 1991.
[3] G. Bikshandi et al. Programming for parallelism and locality with

hierarchically tiled arrays. In Proceedings of the Eleventh ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’06, 2006.

[4] D. Bonachea. GASNet specification, v1.1. Technical Report
UCB/CSD-02-1207, University of California, Berkeley, 2002.

[5] Z. Budimlic et al. Parallel object-oriented scientific computing
with Habanero-Java. In 9th Workshop on Parallel/High-Performance
Object-Oriented Scientific Computing (POOSC’10), October 2010.

[6] W. Carlson et al. Introduction to UPC and language specification.
Technical Report CCS-TR-99-157, IDA Center for Computing Sci-
ences, 1999.

[7] B. L. Chamberlain et al. ZPL: A machine independent programming
language for parallel computers. Software Engineering, 26(3):197–
211, 2000.

[8] Cray Inc. Chapel Specification 0.4, Feb. 2005.
[9] K. Datta, D. Bonachea, and K. Yelick. Titanium performance and

potential: an NPB experimental study. In Proceedings of the 18th
International Workshop on Languages and Compilers for Parallel
Computing (LCPC), 2005.

[10] M. Garland, M. Kudlur, and Y. Zheng. Designing a unified program-
ming model for heterogeneous machines. In Supercomputing 2012,
November 2012.

[11] A. Kamil and K. Yelick. Hierarchical computation in the SPMD pro-
gramming model. In The 26th International Workshop on Languages
and Compilers for Parallel Computing, September 2013.

[12] G. R. Pike. Reordering and Storage Optimizations for Scientific
Programs. PhD thesis, University of California, Berkeley, 2002.

[13] J. V. W. Reynders et al. POOMA: A framework for scientic simula-
tions of paralllel architectures. In Parallel Programming in C++. MIT
Press, 1996.

[14] V. Saraswat. Report on the Experimental Language X10, Version 0.41.
IBM Research, Feb. 2006.

[15] T. Wen and P. Colella. Adaptive mesh refinement in Titanium. In The
19th IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS05), April 2005.

[16] K. Yelick et al. Titanium: A high-performance Java dialect. In Work-
shop on Java for High-Performance Network Computing, Stanford,
California, February 1998.

[17] Y. Zheng, A. Kamil, M. Driscoll, H. Shan, and K. Yelick. UPC++:
A PGAS extension for C++. In The 28th IEEE International Parallel
and Distributed Processing Symposium (IPDPS14), May 2014.

http://www.emsl.pnl.gov/docs/global/
http://www.emsl.pnl.gov/docs/global/

	1 Introduction
	2 Background and Related Work
	3 Library Overview
	3.1 Domain Library
	3.2 Arrays
	3.3 Additional Features

	4 Implementation
	4.1 Software Architecture
	4.2 Specializations

	5 Evaluation
	6 Conclusion

