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Abstract

The Cray X1 was recently introduced as the first in a new line of
parallel systems to combine high-bandwidth vector processing with
an MPP system architecture. Alongside capabilities such as automatic
fine-grained data parallelism through the use of vector instructions,
the X1 offers hardware support for a transparent global-address space
(GAS), which makes it an interesting target for GAS languages. In this
paper, we describe our experience with developing a portable, open-
source and high performance compiler for Unified Parallel C (UPC),
a SPMD global-address space language extension of ISO C. As part of
our implementation effort, we evaluate the X1’s hardware support for
GAS languages and provide empirical performance characterizations
in the context of leveraging features such as vectorization and global
pointers for the Berkeley UPC compiler. We discuss several difficul-
ties encountered in the Cray C compiler which are likely to present
challenges for many users, especially implementors of libraries and
source-to-source translators. Finally, we analyze the performance of
our compiler on some benchmark programs and show that, while there
are some limitations of the current compilation approach, the Berke-
ley UPC compiler uses the X1 network more effectively than MPI or
SHMEM, and generates serial code whose vectorizability is compara-
ble to the original C code.
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1. Introduction

Global Address Space (GAS) languages have recently emerged as a
promising alternative to the traditional message passing model for par-
allel applications. Designed as parallel extensions for popular sequen-
tial programming languages, GAS languages such as UPC [15], Tita-
nium [29, 16], and Co-Array Fortran [22] provide better programma-
bility through the support of a user-level global address space, lead-
ing to more flexible remote accesses through language-level one-sided
communication. GAS languages thus offer a more convenient and pro-
ductive programming style than explicit message passing (e.g., MPI [21]),
and good performance can still be achieved because programmers re-
tain explicit control of data placement and load balancing. Another
virtue of GAS languages is their versatility; while it has not yet reached
the level of MPI’s ubiquity, UPC implementations are now available on
a significant number of platforms, ranging from multiprocessors to the
many flavors of networks of workstations.

Meanwhile in the architectural world of supercomputing, paral-
lel vector systems (led by the Earth Simulator [13] and the Cray X1
System [10]) are mounting a comeback to challenge the dominance
that superscalar microprocessors have established in the last decade.
By effectively exploiting fine-grained data parallelism through vector
arithmetic instructions, these vector architectures offer the potential to
narrow the growing gap between sustained and peak performance for
scientific applications [23]. With its unique distinction of delivering
powerful vector processing over non-uniform shared memory hard-
ware, the Cray X1 in particular presents an interesting target platform
for GAS languages. In addition to simplifying communication op-
erations as direct reads and writes to remote memory locations, the
system’s raw performance is impressive both in terms of communica-
tion (peak memory bandwidth and low communication latency) as well
as computation (powerful vector pipelines). Furthermore, its efficient
hardware support for strided accesses and scatter/gather memory op-
erations has the potential to substantially reduce overheads associated
with fine-grained remote accesses. Such an array of features would ap-
pear to be quite suitable for languages such as UPC that adopt a global
address space memory model.

This paper describes our experiences in implementing and tun-
ing the portable Berkeley UPC compiler [2] for the Cray X1 system.
Berkeley UPC is the first open source, portable, and high-performance
GAS language implementation on the X1, and the lessons we learned
from this language implementation study should be useful not only for



UPC but also the Global Address Space language community in gen-
eral. Our experiences demonstrate the potential of the X1 architecture,
but also expose areas where more effort is required before it can be
viewed as an ideal architecture for UPC and GAS languages in general.
While many of the language primitives can be implemented directly
using the hardware global pointer support, the absence of a rich set of
user-level communication primitives, in particular the X1’s lack of per-
operation completion guarantees, limits the opportunities for compiler
optimizations and the system’s extensiblity via third-party libraries.
Similarly, the heavy reliance on vectorization to achieve reasonable
performance also increases the difficulties of performance tuning for
compiler implementors. In particular, each layer in portable compilers
such as Berkeley UPC must be tuned to pay careful attention to vector-
ization constraints, which places a relatively heavy burden across the
entire software stack. As the hardware and system software matures,
we expect to see performance improvements as well as more flexible
support for portable implementations of GAS languages.

The rest of the paper is organized as the follows. Sections2 and3
describe the Cray X1 system, UPC, and the Berkeley UPC compiler.
Section4details our implementation of the communication operations,
which satisfy the basic requirements for a functioning UPC compiler
on the X1. Sections5 and 6 detail our efforts at tuning the perfor-
mance of the Berkeley UPC compiler for the X1’s unique architec-
ture: the former summarizes our optimizations for shared memory
accesses, while the latter discusses our strategy for achieving good
serial performance. Section7 analyzes the impact of the X1’s tightly-
coupled design on our portable architecture and on the effectiveness of
compiler communication optimizations. Section8 evaluates our com-
piler’s parallel performance, and finally sections9 and 10 conclude
the paper with an evaluation of the X1’s architectural support for GAS
languages.

2. The Cray X1

The X1 [10] is a supercomputer system developed by Cray which
combines powerful vector processors with high memory and network
interconnect bandwidth. In order to sustain high bandwidth vector
processing, the X1 is based on previous MPP Cray designs that em-
phasized memory bandwidth, and features some more recent vector
concepts such as multi-streaming and vector caching. The system uses
a network interconnect reminiscent of the Cray T3E to connect Cray
nodes in order to unite long, latency-tolerant vector computations with
the scalability to be expected from MPPs.

Figure1 illustrates the architecture of a single Cray X1 node, the
basic building block of the system. Each node consists of four multi-
streaming processors (MSPs) and a flat, shared 16GB physical mem-
ory. Each MSP in turn is composed of four single-streaming proces-
sors (SSPs), each with two vector pipelines and one scalar processor.
The four SSPs also share a 2MB data “E-Cache”, which helps sup-
ply enough memory bandwidth to saturate the vector units. As is the
case with many vector platforms, applications whose critical paths do
not vectorize tend to exhibit poor performance; in addition to oper-
ating at twice the clock speed, the ability of the vector units to over-
lap memory operations with computation makes the Cray X1’s vec-
tor units significantly more powerful than the scalar pipeline. The
X1 offers two configurations for program execution. Explicit paral-
lelism is achieved in the SSP mode by treating each SSP as a separate
processor, such that each node essentially behaves as a 16-way SMP.
The alternative MSP mode maps each execution thread to an MSP,
and utilizes compiler-directedmulti-streamingtransformations to ac-
complish automatic parallelization of computational loops across the
constituent SSP hardware. The multi-streaming process divides either
vectorized inner loops or unvectorized outer loops into four indepen-
dent segments, and assigns them to different SSPs to be executed in
parallel. An early performance evaluation of the Cray X1 [12] suggests
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Figure 1. Cray X1 single node: Each MSP contains 4 SSPs
each with 2 vector and 1 scalar unit

that many parallel applications can achieve significant performance on
the machine, given sufficient porting and optimization efforts. The
benchmark results reported in this paper are collected on a four node
X1 system at Cray (a total of 48 SSPs∗), running Unicos/MP version
2.4 and Cray C version 5.1.0.5.

3. Unified Parallel C

UPC (Unified Parallel C) is a parallel extension of the C program-
ming language aimed at supporting high performance scientific ap-
plications. The language adopts the SPMD programming model, such
that every thread runs the same program but keeps its own private local
data. In addition to each thread’s private address space, UPC provides
a shared memory area to facilitate implicit communication amongst
threads, and programmers can create shared objects through the use of
theshared type qualifier or the dynamic shared memory allocation
library functions. While a private object may only be accessed by its
owner thread, all threads can read or write objects in the shared address
space. Because the shared memory space is logically divided among
all threads, from a thread’s perspective the shared space can be fur-
ther divided into a local shared memory and remote one. Data located
in a thread’s local portion of the shared space are said to have “affin-
ity” with the thread, and compilers can utilize affinity information to
exploit data locality in applications and help reduce communication
overhead.

UPC gives users direct control over shared data placement through
distributed arrays. When creating a shared array, programmers spec-
ify a block size in addition to the dimension and element type, and
the system uses this value to distribute the array elements block by
block in a round-robin fashion over all threads. For example, a decla-
ration ofshared [2] int ar[10] tells the compiler to allocate
the first two elements ofar on thread 0, the next two on thread 1, and
so on. If the block size is omitted the value defaults to one (cyclic
layout), while a layout of[] or [0] indicates indefinite block size,
i.e., that the entire array should be allocated on a single thread. A
pointer-to-shared thus needs three logical fields to fully represent the
address of a shared object:address, thread id, andphase .
∗one node is reserved for system tasks



The thread id indicates the thread that the target has affinity to,
theaddress field stores some representation of the object’s “local”
address on the thread, while thephase field gives the offset of the
target within the current block. Other notable UPC features include a
upc forall parallel loop, block transfer library functions, synchro-
nization constructs, and flexible language-level control of the memory
consistency model; consult the UPC language specification for more
details [15].

3.1 The Berkeley UPC Compiler

Prior to our work, the only UPC implementation for the X1 was the
Cray C compiler’s UPC extensions, which currently only provide sup-
port for a subset of the UPC language specification. Important miss-
ing features include block cyclic pointers,upc forall loops, non-
collective shared memory allocation, and restrictions on the block size
of shared arrays. While some of the deferred features merely offer
syntactic convenience, many provide essential functionality for UPC
applications and have no easy workarounds without impacting pro-
gram design. Their exclusion thus severely limits the usefulness of the
Cray UPC compiler, which in our experiments fails to compile several
of the NAS UPC benchmarks. Our goal is thus to implement an open-
source and portable compiler that performs comparably to Cray UPC
and is fully compliant with the latest UPC 1.1.1 specification.

Figure 2 shows the overall structure of the Berkeley UPC com-
piler [2], which is divided into three components: the UPC-to-C trans-
lator, the UPC runtime system, and the GASNet communication sys-
tem [4]. During the first phase of compilation, the Berkeley UPC com-
piler preprocesses and translates UPC programs into ISO-compliant C
code in a platform-independent manner, with many UPC-related par-
allel features converted into calls to the runtime library. The trans-
lated C code is then compiled using the target system’s C compiler and
linked to the runtime system, which performs initialization tasks such
as thread generation and shared data allocation. The Berkeley UPC
runtime delegates communication operations to the GASNet commu-
nication layer, which provides a uniform interface for low-level com-
munication primitives on all networks.
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Figure 2. Architecture of the Berkeley UPC compiler

We believe this three-layer design has several advantages. First, be-
cause of the choice of C as our intermediate representation, our com-
piler can be made available on any UNIX platform that has an ISO-
compliant C compiler; most other currently available UPC compilers
generate assembly language and therefore only support systems with
specific CPU architectures. Second, both the UPC runtime system and
GASNet implement a well-defined public interface: the runtime offers
a flexible pointer-to-shared abstraction with the option of running mul-
tiple threads per node and GASNet implements network-independent
global-address space communication primitives. This two-tier approach
can be tailored to move more or less functionality into the runtime or
GASNet based on how close either layer can target native commu-
nication primitives. In a previous work [7], we have validated our

design by showing that, in spite of the modularity used to support
portability, the Berkeley UPC compiler performs well on today’s high-
performance clusters. However, our compilation strategy finds an in-
teresting challenge in the X1, whose compiler and application software
is very tightly integrated with the hardware. The next sections under-
line how the major components of our architecture were adapted in
order to maintain our goals of both portability and high performance
on the X1.

4. Porting the Berkeley UPC Compiler to the Cray
X1

This section describes our initial efforts in porting the Berkeley
UPC compiler to the X1. The modular design of our compiler greatly
simplifies the porting process for supporting new architectures; gen-
erally no changes are required for the translator, whose code gener-
ation is entirely platform-independent, with the exception of a few
general architectural parameters such as register size and the integral
type width. The implementation of the communication operations is
the system component which is generally most sensitive to platform
characteristics, and therefore this functionality has been encapsulated
entirely within the GASNet implementation for each platform. Con-
sequently, despite the fact the X1’s architecture differs substantially
from other systems we have targeted, we were able to build a working
implementation of the Berkeley UPC compiler on the system in about
one week.

4.1 The GASNet Communication Layer

The main purpose of GASNet is to provide a portable, language-
independent and high-performance communication interface. Designed
primarily as a compilation target, GASNet incorporates a set of net-
work communication primitives crafted to provide high levels of per-
formance and expressiveness tailored for code generation, in contrast
to end-user library interfaces such as MPI that prioritize other design
goals such as interface generality/minimality, code readability and uni-
versal interoperability. As a result, GASNet delivers communication
performance very close to the native hardware peak across many sys-
tems, while leveraging platform and network-specific features (such as
RDMA support and/or block transfer engines).

Network Hardware

Compiler−specific runtime system

Compiler−generated code

GASNet Core API
GASNet Extended API

Figure 3. GASNet communication system: the narrow, AM-
based Core API is sufficiently general to implement the en-
tire system, but can also be bypassed to implement func-
tionality from the Extended API directly on the underlying
network to exploit available hardware support

Figure3 illustrates the basic abstraction stack of the Berkeley UPC
and Titanium compilers over GASNet. The existing GASNet infras-
tructure greatly simplifies the porting effort for new platforms. Build-
ing upon a provided “fill-in-the-blanks” template framework, imple-
mentors are encouraged to proceed in a two-stage porting process. A



complete working GASNet implementation can be obtained entirely
in the first phase by implementing the intentionally narrow but gen-
eral GASNet Core API, whose design is based heavily on Active Mes-
sages [19]. The wider and more expressive interface of GASNet, the
Extended API, is already available as a reference implementation writ-
ten solely in terms of the Core and can be used to provide full GASNet
functionality over the ported Core. Second, primitives available in
the reference implementation of the Extended API can be selectively
replaced with more efficient network primitives offered by the under-
lying networking software or hardware. Based on prior experience in
porting GASNet to five other networks, we have found this approach to
be very effective in quickly obtaining a working conduit and gradually
refining it with more efficient primitives.

4.2 Porting GASNet to the X1

As a portable communications interface with well-defined seman-
tics, GASNet’s ability to provide an optimal implementation for a par-
ticular platform depends mostly on what the target system exposes in
terms of network features and how these features can be leveraged
using existing target software interfaces. Since loosely coupled plat-
forms are typically based on a some form of messaging, higher-level
software layers often have much more control over initiation and com-
pletion of remote memory operations than on platforms where global
memory reads and writes are transparent to the user. The Cray X1,
with its transparent global memory support falls into the latter cat-
egory, which constitutes a departure from previous messaging-based
Cray hardware. In the previous family of Cray MPP designs, the Cray
T3D and T3E systems provided programmers with user-level commu-
nication primitives. Communication on the T3D could be performed
using three mechanisms: a prefetch queue for individual loads and
stores, amemory centrifugefacility for global memory access, and a
block transfer engine for large asynchronous transfers. The T3E pro-
vided these communication mechanisms as well as extended support
for synchronization and collective operations, encompassed in a set of
general-purpose user-level network registers (E-registers) [25]. These
systems were successful in part because of their high performance and
their support for programming models characterized by low cost asyn-
chronous communication enabled by E-registers or lower-level pro-
gramming interfaces such asshmem[26]. Although these systems
predate the Berkeley UPC compiler, their user-level messaging inter-
face would allow GASNet to exploit much of their functionality for
efficient fine-grained control over communication. In contrast, the X1
adopts an approach akin to shared memory platforms whereby com-
munication, whether scalar or vector, is enabled exclusively through
assembly-generated load/store instructions. This hardware interface
offers arguably better programmability to end users, but it unfortu-
nately prevents code generators and communication software layers
from maximizing hardware utiliization by explicitly controlling the
specific parts of communication scheduling that involve initiation and
synchronization. Many of the standard high-level communication op-
timizations for hiding network latencies through communication over-
lap are difficult to achieve without more explicit control over the com-
munication hardware.

4.2.1 shmemas a GASNet target
As the first stage of the GASNet porting strategy, we have targeted

the shmemcommunication interface as a general mechanism for im-
plementing the GASNet Core. After sufficiently experimenting with
the system, we were able to complete the Core and use GASNet’s
Extended reference implementation to obtain a complete GASNet X1
implementation in a matter of days. While tuning the X1 port of the
GASNet Extended API, we again considered theshmeminterface as a
potential target, because Cray has been promoting the interface as be-
ing the best communication interface for low latency and high band-
width communication [24]. While we have foundshmemuseful for

quickly prototyping a functional GASNet Core, we encountered sev-
eral deficiencies inshmemwhile considering it for implementing the
Extended API primitives – specifically,shmemoffers only blocking
versions of theget operation, lacks some expressiveness in its syn-
chronization mechanisms and presents an additional source of library
call overhead for small messages. More importantly, whenshmemli-
brary calls appear in any loop structure, the Cray C compiler turns
off automatic vectorization optimizations. This weakens the utility of
shmemas a programming interface for any interesting programming
style other than bulk synchronous MPI-style, where communication is
reduced to moving large amounts of data between processing elements
and carrying out computation exclusively over local data. Obviously,
we would like to leverage the expressive power of GAS languages and
the support for fast remote accesses and global non-unit stride accesses
on the X1, without requiring programmers to adopt a clumsy bulk syn-
chronous programming style in order to achieve vectorization.

4.2.2 Hardware Global Pointers as a GASNet target
In considering another possible target for GASNet, we modified the

Extended API to take advantage of the properties of the X1 global vir-
tual addresses and memory centrifuge (illustrated in figure6). When
global memory is allocated on the X1 symmetric heap using a col-
lective memory allocation call, the memory segment returned to each
caller contains the caller’s processing element (PE) number in the high-
order bits of the pointer representation and is mapped at corresponding
virtual memory locations in each PE’s address space. Since GASNet
allocates a segment on each node at initialization, the segment can
be allocated from the symmetric heap and the resulting segment ad-
dresses can be globally published to GASNet clients and used with-
out indirection or translation. Most importantly, by allowing GAS-
Net put/get operations to be fully inlined, this newer version of the
Extended API side-steps the limitation the vectorizer imposes on the
presence of function or library calls. We believe that this refined ap-
proach is reasonable for our portable system, as it tailors the GAS-
Net implementation to the platform without changing the interface and
gains the most from our mismatch with the Cray compilation strategy.
Although we were able to overcome some of the constraints imposed
by the vectorizer, we could not sufficiently integrate GASNet and X1
communication to our satisfaction due to the lack of support for in-
line assembly in the Cray C compiler. GASNet’s current major clients
are source-to-source GAS language translators that do not participate
in any platform-specific code generation, and are thus dependent on
the amount of functionality that existing compilation and system soft-
ware infrastructures are willing to expose. We expect other third-party
software packages that integrate a fair amount of complexity in their
runtime and communication components to suffer from this limitation
as well.

The performance results of our tuning efforts are compared to other
X1-specific communication libraries in figures4 and 5 for individ-
ual one-sided put and get operations. Since puts are translated into
store instructions, the put message gap corresponds to the amount
of time during which the processor is tied up injecting each global
store into the network. Furthermore, the get operations correspond to
blocking library calls undershmem, but are compiled to simple assem-
bly load instructions under GASNet, which gives the processor more
opportunities to overlap outstanding loads in its load queue. Aside
from 1-byte sized messages that necessitate read-modify-write opera-
tions, the GASNet performance significantly exceeds that of MPI and
trims roughly two microseconds offshmemperformance for latency-
sensitive small message operations. The performance improvement
over shmem is primarily due to the removal of address translation and
library call overheads from the critical path. For larger messages (start-
ing at 80 bytes), thebcopy() library call provided by Cray gives the
best performance, and is used by both layers.
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5. Tuning the UPC Runtime System for the X1

Having described our implementation of an efficient communica-
tion layer for GAS languages on the X1, we now discuss our strategy
for implementing UPC’s shared memory accesses. Compared to regu-
lar C pointers, a generic UPC pointer-to-shared logically contains two
additionalthread id andphase fields. Both fields are generally
updated while manipulating a pointer-to-shared, making such opera-
tions inevitably slower than local pointer arithmetic. To overcome this
overhead, the Berkeley UPC compiler implements an optimization for
the important special case of “phaseless” pointers, namely those with
a cyclic distribution where the block size is 1 element (and the phase
field is always zero) or an indefinitely blocked distribution where the
pointer always has affinity to a single thread (and the phase is defined
to be zero). Cyclic and indefinite pointers are thus “phaseless”, an
important static property that allows our compiler to generate signifi-
cantly more efficient pointer manipulation arithmetic for these types.
Experimental results [7] show this approach to be effective in improv-
ing the performance of pointer-to-shared arithmetic, removing 50%
of the overhead from cyclic pointer arithmetic and making indefinite
pointers almost as fast as regular C pointers for pointer-integer addi-
tion.

Cray X1 Global Pointers
Phase Thread Address

Berkeley UPC pointer−to−shared (optional phase)

AddressPE (Thread)
000000

Figure 7. Cray global pointer and Berkeley UPC pointer-to-
shared representations

5.1 Pointer-to-shared representation for the Cray X1

Given the success of our phaseless pointer optimization, we nat-
urally want to exploit some of the properties common to our pointer
representation and X1 global pointers. The first step in tuning UPC’s
shared memory accesses is to ensure that the pointer-to-shared repre-
sentation deviates from the Cray X1’s global pointers as little as possi-
ble. For multi-node applications, Cray’s notion of processing elements
exactly matches that of UPC threads, whereby each thread is given a
distinct address space and the Cray symmetric heap can be used to pro-
vide per-thread UPC global shared and local heaps. As previously ex-
plained, the UPC thread id or virtual PE number can easily be extracted
from each Cray global virtual address, which allows this representa-
tion of UPC phaseless pointers to exactly match the hardware’s global
pointers. This approach eliminates the overhead of a pointer trans-
lation step, and additionally allows the Cray C compiler to optimize
our generated shared accesses to cyclically and indefinitely distributed
data as if they were regular C pointer dereferences. Generic pointers-
to-shared present more obstacles, as UPC semantics require that phase
information can be extracted from arbitrary pointers-to-shared to per-
mit easy indexing into the beginning of a block. The phase field is
thus an intrinsic component of pointers to block-cyclically distributed
shared data, and must be explicitly stored in the pointer construct. The
representations for phased and phaseless pointers-to-shared as well as
Cray global pointers are shown in figure7.

5.2 Vectorizing Shared Memory Accesses

Once the appropriate representations for pointer-to-shared were cho-



sen, we carefully tuned the shared memory access primitives to ex-
clude constructs that could interfere with vectorization. All function
calls to the runtime and GASNet which occur in critical paths are ei-
ther fully inlined or replaced with macros, and GASNet translates the
common case of 4/8 byte transfers into simple pointer assignments and
dereferences. Since the runtime supports running UPC threads over
hierarchical node configurations, such as clusters of SMPs, it is also
responsible for translating operations on a pointer-to-shared’s thread
affinity into local or remote accesses. However, the carefully-designed
infrastructure of the runtime allows the execution-time cost for deter-
mining local or remote affinity to be eliminated entirely for platforms
such as the X1 that feature global address space hardware.

An interesting issue for vectorizing shared memory accesses arises
in implementing blocking put operations, whose semantics require that
the value being stored be completely written to the destination address
prior to returning. The Cray X1, however, does not provide hardware
support that polls for the completion of remote writes, and the only
alternative for mimicking this behavior is to issue a global memory
barrier that enforces global ordering of all prior references before all
subsequent references. Not only is the global memory barrier overkill
when all that is needed is the guarantee of the completion of a single
access, but the presence of such a barrier immediately inhibits all au-
tomatic vectorization of the enclosing code. Our solution is to take
advantage of UPC’s relaxed consistency model to eliminate the mem-
ory barrier altogether for relaxed writes. UPC supports both a strict
and a relaxed memory model, and relaxed shared memory accesses
can be freely reordered as long as local data dependencies are still pre-
served [28]. Since the Cray X1 maintains the program order for two
scalar references to overlapping locations, correct local data depen-
dencies will be maintained, and there is therefore no need for explicit
instructions to enforce the completion of a put operation. This allows
the Cray C compiler to freely vectorize scalar memory references and
schedule synchronizations as necessary. While strict accesses require
stronger ordering guarantees and thus do not benefit from this opti-
mization, they occur with significantly lower frequencies in real appli-
cations and therefore are much less performance-critical.

5.3 Scalar Performance Microbenchmarks

In order to examine the execution overheads of the system, we mea-
sured the scalar overhead of various UPC shared memory operations
for both the Berkeley UPC and Cray UPC compilers. The numbers
reported here represent an upper bound on communication overhead
for applications whose fine-grained remote accesses could not be vec-
torized. Figure8 presents the execution time of the pointer-to-shared
manipulation functions, while Figure9 presents the respective mem-
ory access time.

As the results show, the Berkeley UPC compiler offers competitive
performance on pointer-to-shared arithmetic; block cyclic (generic)
pointers, in particular, demonstrate overhead comparable to that of
cyclic pointers, indicating there is little performance incentive for Cray
UPC to omit support for block cyclic pointers. The execution time
of UPC shared remote accesses is very close to GASNet’s get/put la-
tencies, signifying the overhead incurred by the runtime layer is very
low. A substantial difference in performance is also observed between
blocking and non-blocking remote puts, which can be attributed to the
cost of the global memory barrier that is included with each block-
ing put operation, but can be amortized over many non-blocking put
operations.

6. Sequential Performance

The popular GAS languages are designed as parallel extensions
of sequential programming languages, and UPC is no exception; a
thread’s local computation in its private address space is generally

written in language very similar to ordinary C code, and therefore
uniprocessor execution time is an important criteria in evaluating a
UPC compiler’s performance [14]. From previous work [7] we have
discovered that despite a source-to-source translation from UPC to C,
our compiler still delivers good serial performance on conventional su-
perscalar architectures. Cray X1’s dramatically different architectural
approach, however, challenges this observation by making vectoriza-
tion the dominant factor for achieving high performance. Although
our translator preserves the semantics of the sequential portions of the
program, the output will not be syntactically identical to the program
source, due to optimizations performed by the translator and the lack
of a one-to-one mapping between its intermediate representation and
C. Furthermore, the Cray C compiler’s vectorizer is highly sensitive to
small changes in inner loop expressions; our experiments have identi-
fied several constructs that tend to inhibit a loop’s vectorization, such
as function calls, type casts, and access to global variables in the pres-
ence of pointer arithmetic. One important topic in optimizing UPC
application performance for the Cray X1 thus involves investigating
if our code generation process can be extended to minimize interfer-
ences with the C compiler’s ability to automatically vectorize applica-
tion code.

6.1 Implementation Approach

Our goal in this section is to evaluate the serial performance of the
Berkeley UPC compiler, concentrating on its ability to maintain the
vectorizability of the sequential portion of the program. With full opti-
mizations enabled, the Cray C compiler [9] performs automatic vector-
ization on expressions inside a loop that it detects to be free of cycles
of dependences, after applying vectorization-enabling transformations
such as inlining, loop splitting, and loop interchange. The compiler
also vectorizes certain special recurrences such as reduction and scat-
ter/gather. Cray C provides two program-level techniques to assist the
compiler’s alias and dependence analysis:restrict pointers and
the pragmas that declare a loop to be free of vector dependences or
recurrences between array accesses. As such, our strategy is to keep
the translated output as syntactically similar as possible to the origi-
nal source. The level of the intermediate representation is kept suf-
ficiently high such that C loops are preserved in their original form.
Similarly, array expressions are recognized and handled specially by
the translator, both to allow for more aggressive transformations by its
optimizer and to provide the C compiler with more precise informa-
tion. Multidimensional array accesses are preserved in their original
form instead of being linearized into one dimensional arrays. Because
the Berkeley UPC compiler complies with the ISO C99 standard [5], it
already supportsrestrict -qualified pointers, and additionally UPC
source-level vectorization pragmas are accepted by the translator and
appear unchanged in the same relative location in the generated C out-
put. We are also currently implementing optimizations in the translator
that will leverage the semantic information available at UPC source
level to identify some vectorizable loops and automatically generate
the appropriate pragmas in the output.

6.2 Livermore Kernels

We chose the C version of the Livermore Kernels [20] to evaluate
the serial performance of our compiler. The Livermore Loops consist
of 24 sequential computation loops extracted from common scientific
applications, and should closely reflect the sequential computational
performance offered by our compiler. In particular, the X1’s reliance
on the vector unit to achieve both fast computation and high mem-
ory bandwidth means that application performance will often hinge on
whether the main computation loops can be efficiently vectorized. In
this test, we do not supply any vectorization pragmas and do not per-
form any manual transformations, as our goal is to test if the transla-
tion process interferes with Cray C’s automatic vectorization. Table1
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presents the aggregate performance for both the original C source and
the translated output with the-O3 flag, while Figure10 displays the
normalized performance of the individual kernels.

As Table1 shows, Berkeley UPC’s translated output performs al-
most identically to the original C source code. Performance results
from the individual benchmarks confirm this observation; the ratio
of UPC running time versus C running time is within 5% for nearly
all of the kernels (and the remaining differences can be attributed to
measurement noise). One notable exception occurs in kernel 8, where
Berkeley UPC’s output surprisingly outperforms the C code by about
10%. Examination of the translated output suggests that its perfor-
mance benefits from the Berkeley UPC translator recognizing several
three dimensional array accesses in the loop as common subexpres-
sions and replacing them with stack temporaries. The introduction of
the stack variables does not affect vectorization, and saves three ad-
dress calculations per iteration. Because the translated output exhibits

Geo. Mean Avg. Rate Har. Mean Max Min
C 160 756 58.7 6561 9.0
UPC 161.9 762 59.6 6652 9.0

Table 1. Aggregate performance of the Livermore Loops (in
MFLOPS)

similar performance to the C code for most of the kernels, we expect
the Berkeley UPC compiler to offer competitive serial performance on
a vector platform like the X1. Finally, we note that Cray C has failed to
vectorize a substantial number of the benchmarks, even though many
of them do not contain any vector dependences. This suggests that au-
tomatic vectorization alone is not sufficient for good absolute compu-
tational performance, due to the inherent limitations of static analysis
– in general, vectorization directives, code reorganizations, and algo-
rithm changes may all be required for achieving good performance
when porting applications to the X1. Furthermore, some algorithms
are inherently not amenable to vectorization, and applications whose
performance hinges on such algorithms are unlikely to ever perform
well on the machine.

7. Potential for UPC Parallel Compiler Optimiza-
tions

In an earlier paper [7], we identified several compiler optimizations
that prove valuable for implementing GAS languages such as UPC in
a distributed memory environment: communication and computation
overlap, prefetching of remote data, message aggregation, and priva-
tization of local shared data. The performance characteristics of the
Cray X1 that we have observed thus far, however, raise questions about
the appropriateness of these optimizations for this machine, whose
tightly-coupled architecture delivers impressive peak performance but
also limits the opportunities for GAS language implementations to ex-
ploit alternative techniques in reducing communication overhead. In
this section, we evaluate the effectiveness of two important optimiza-
tion techniques on the Cray X1.



7.1 Message Coalescing and Aggregation

The widely used LogGP network performance model [1] speaks
volumes about the effectiveness of message coalescing and aggrega-
tion; by combining small puts and gets into large messages, not only
does one save on the per-message startup overheads, but one can also
exploit the higher bandwidth offered by modern high-performance net-
works for large messages. The most common realization of this opti-
mization, calledmessage vectorization, significantly improves the per-
formance of a fine-grained loop by fetching all the remote values it
needs in a single bulk transfer instead of issuing fine-grained read op-
erations in every iteration. Other similar techniques include copying
an entire object when accessing its fields, and packing together mes-
sages bound for the same destination node.

Our benchmarking of the Cray X1’s memory and communication
performance, however, raises doubt about the relevance of converting
fine-grained accesses into coarse-grained bulk transfers on this plat-
form. If the latency and bandwidth of a remote memory access are
comparable to those of a local access, it may not make sense to bulk
fetch remote data into local buffers, since one still has to pay for the
overhead of moving data from the main memory into cache. Further-
more, hardware support for vectorized loads can alleviate much of the
communication overhead for small messages. On the other hand, if
a remote shared object is to be referenced multiple times, it might
be beneficial to copy the object locally (as permitted by UPC’s re-
laxed consistency model) so that its value resides in cacheable local
memory, because X1 nodes do not cache remote memory locations.
Essentially, we seek to evaluate the impact of a shared memory pro-
gramming paradigm for UPC application performance on the Cray X1;
if the X1’s transparent global loads and stores can efficiently support
fine-grained accesses to remote data, programmers can enjoy both the
simplicity offered by a shared memory programming style and appli-
cation performance comparable to programming with coarse-grained
bulk-synchronous style communication.
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To answer these questions, we compared the performance of two
versions of the NAS conjugate gradient (CG) benchmark from [3].
The first is derived from an OpenMP-style shared memory implemen-
tation, with the exception that the column vector is replicated to avoid
repeated random indexing into it. The second version is written in the

bulk-synchronous style of one-sided coarse-grained communication,
through the use ofupc memget library calls. The sparse matrix-
vector multiplication in both versions was tuned to ensure that the
inner loops were vectorized. Both are compiled in SSP mode and ex-
ecuted such that the UPC threads are evenly distributed among the
two nodes. Performance results from the MPI Fortran version of the
benchmark were also included for comparison†. As Figure11 shows,
performance of the shared memory style version lags behind that of
code with coarse-grained parallelism. Much of the performance ad-
vantage offered by the coarse-grained version can be attributed to a
tighter inner loop for the matrix-vector product, as the boundary infor-
mation for each thread can be precomputed due to explicit partitioning
of the sparse matrix. In summary, although the Cray X1’s tightly-
coupled shared memory interface lowers the communication overhead,
a coarse-grained communication pattern is likely to still outperform a
fine-grained access pattern, even for applications with irregular and
dynamic parallelism. This also suggests that UPC’s hybrid program-
ming model can be well-suited for the Cray X1; fine-grained accesses
through pointers-to-shared can deliver acceptable performance if they
can be vectorized, while performance critical sections of the code can
be further optimized into a bulk synchronous programming style.

7.2 Communication/Computation Overlap

Compiler-controlled overlapping of communication and computa-
tion is a crucial optimization for parallel programs on conventional
distributed-memory systems, as it can effectively hide communication
latencies by keeping the processor busy with independent local com-
putation while waiting for remote data to arrive. This capability is
especially relevant for UPC programs; unlike other parallel program-
ming paradigms such as MPI or Split-C [11], UPC currently offers
no non-blocking communication operations at the language level and
instead expects compilers to perform all such optimizations automati-
cally. The straightforward approach to applying this transformation is
to convert one-sided blocking get/put operations into an initiation call
and a corresponding synchronization call, then perform code motion
to separate the two as far as possible while inserting independent com-
putation or communication code in between. Several studies [30, 17,
6] have proposed global communication scheduling techniques that
attempt to find an optimal arrangement for all non-blocking memory
accesses. Other variants of this optimization such as message strip
mining [27] and software prefetching [18] are also useful in reducing
an application’s stall times due to communication latencies.

The Cray X1’s choice to hide the messaging layer and instead rely
on vectorization for communication performance makes it a less-than-
ideal target for GAS language implementations that wish to explic-
itly overlap communication and computation. As Section4.2 men-
tions, the Cray X1 offers only a load/store based interface for re-
mote accesses. While limited overlapping between scalar loads may
be achieved with code scheduling to exploit instruction-level paral-
lelism, such assembly-level optimizations are generally not applica-
ble for implementations relying on source-to-source transformation, at
least not in a portable manner. The X1 ISA also provides limited soft-
ware prefetching support with a scalar data prefetch instruction, but
the lack of inline assembly support in the C compiler prevents portable
implementations from accessing the feature. Stores are inherently non-
blocking, and as mentioned in Section5, we pipeline outstanding re-
laxed scalar puts and eliminate the individual synchronization calls
that block for their completion, taking advantage of hardware memory
ordering guarantees on scalar conflicting accesses. However, this code
generation strategy hinges on the automatic vectorizor’s ability to vec-
torize these fine-grained writes in the inner loops in order to achieve
efficient communication.

This heavy reliance on vectorization to effectively utilize the high

†The MPI Fortran code only works for threads in powers of 2.



memory bandwidth is a major reason the Cray X1 can achieve a high
percentage of the peak hardware performance, but imposes unfortunate
limitations for portable parallel language compilers or libraries seeking
to exercise detailed control over communication optimizations. Com-
piler and library developers have no direct control of an application’s
parallel performance, other than to apply transformations that result
in the most vectorization; our experiences with UPC benchmarks sug-
gest that vectorization directives and code modifications are generally
necessary for good performance. While the amount of reengineering
required for vectorization will likely decrease as Cray’s compiler ma-
tures, a fundamental problem is that C makes a poor compilation tar-
get for vectorization, due to the lack of language-level vector opera-
tions and the conservatism introduced into data dependence analysis
by pointer aliasing. Portable implementations for Fortran-based GAS
languages such as Co-Array Fortran [8] will likely fare better on the
X1, due to the relative ease of vectorizing Fortran 90 code. However,
programs with distributed pointer-based data structures are unlikely
to benefit from vectorization at all, whereas compiler-controlled data
prefetching transformations using split-phase operations could be an
effective approach.

8. Parallel Performance

The NAS Multigrid (MG) benchmark was used to evaluate our
compiler’s parallel performance, as the program contains a good bal-
ance of computation and communication. Running in both SSP and
MSP mode, we compared two configurations: UPC compiled with
Berkeley UPC versus Fortran MPI with Cray Fortran. The Cray C
compiler fails to automatically vectorize the computation loops in the
UPC code, and we had to explicitly insert pragmas to enable vector-
ization and multistreaming. As Figure12 shows, both UPC and MPI
Fortran perform well in the absolute sense, with performance in the
giga-flops range. This result is expected, as both the UPC and MPI ver-
sion use coarse-grained communication, and their computation code is
very similar. A more interesting comparison is between the relative
performance of the MSP and SSP configurations; in MSP mode the
Cray compilers determine (with help from programmer annotations)
how to distribute loop iterations among the four SSPs, while the SSP
mode introduces more parallelism at the program level by mapping ap-
plication threads to each individual SSP. The measured performance of
one MSP is approximately three times of that of a single SSP while it
uses four times the amount of hardware, which would seem to suggest
that the SSP mode makes more efficient use of the available hardware.
Performance data from executing more than four SSPs on the same
node, however, contradicts this hypothesis. Regardless of the program-
ming model used, a significant performance degradation was observed
when scaling from 4 to 8 threads under SSP mode. Our investigation
reveals the cause to be increased cache miss traffic in the two-way set-
associative E-cache shared by the four SSPs in an MSP. The X1 cur-
rently does not grant users control of SSP placement across the MSPs
under SSP mode, and the scheduler attempts to allocate application
threads to all four SSPs in the same MSP. Four independent threads
therefore share a two-way set-associative cache [24], and due to the
SPMD model all have the same memory layout; as the four proces-
sors execute in parallel, the private objects owned by different threads
map to the same cache entry due to identical offsets in the low bits of
the virtual address, resulting in a significant, pathological increase in
cache misses from conflict interferences for memory intensive bench-
marks. The MSP mode, on the other hand, is not susceptible to this
phenomenon, as there is only one process image (and hence one copy
of the private objects) per MSP/E-cache.

In our performance study we next used the NAS integer sort (IS)
kernel, a benchmark written in a bulk synchronous style with high
communication bandwidth requirements. A UPC version of the bench-
mark compiled with Berkeley UPC was compared against another ver-

sion written with MPI in C. Both versions were compiled with full
optimizations enabled, and we do not distinguish between SSP and
MSP mode, as the benchmark contains no loops that can profit from
multi-streaming. As Figure13 shows, Berkeley UPC achieves similar
performance to MPI, with both scaling well, even in the presence of
inter-node communication. In terms of absolute performance, how-
ever, both versions are quite inefficient, achieving only 1% of peak
performance on the X1. This is due to the fact that loops in the bench-
mark have true recurrences and thus do not benefit from vectorization,
but instead must be executed on the slower scalar processor. This sup-
ports our argument in Section7.2 that questions the elimination of
split-phase remote gets from the X1; whereas vectorization has failed
to optimize the IS benchmark, split-phase operators could still be used
to convert the remote bulk transfers into non-blocking operations and
overlap the communication time with independent computation.

9. Analysis

Superficially, the X1 is an ideal machine for GAS languages, be-
cause the global memory operations are directly supported in hard-
ware. However, we found several features of the X1 present challenges
for our compilation approach, and we believe this experience may be
useful for the designers of future GAS language compilers and system
architects.

• Heavy reliance on vectorization: The performance gap between
scalar and vector code is dramatic, due to the 2x factor in clock
rate and 2x factor in available functional unit parallelism. Both a
faster scalar processor and a more powerful vectorizing compiler
would help address this issue. The use of vectorization to mask
communication means that, even if the scalar processor were
faster, vectorization would still be critical for communication
overlap.

Applications whose main computation loops contain true recur-
rences (e.g., NAS IS) run very inefficiently because they do not
benefit from the computational power and memory bandwidth
offered by the vector pipelines, which are essentially wasted.
The C compiler’s ability to automatically identify candidates for
vectorization could also be further improved, as demonstrated
by the Livermore loop results and the fact that we had to manu-
ally insert multiple pragma directives to achieve acceptable per-
formance on our parallel benchmarks.

• Limited forms of communication: Cray’s decision to avoid caching
remote data matches UPC’s affinity model quite well, and allows
for a simpler hardware design and faster remote access times
– however this mandates more careful attention to the data ac-
cess locality pattern. The hardware provides fast communica-
tion between memory and registers, but no direct support for
memory to memory operations, which are important for non-
blocking bulk-synchronous communication. While the regis-
ter level operations are powerful in tightly integrated commu-
nication and computation code, they consume critical register
resources and provide only limited forms of synchronization.
For remote loads, the synchronization is automatic when a suc-
cessive operation accesses the register, but for remote stores,
explicit synchronization is often needed. The X1 architecture
provides only a single heavyweight synchronization mechanism
(gsync) to wait for the completion of all outstanding remote
writes, and lacks fine-grained forms of synchronization which
could admit more general forms of communication pipelining.
The addition of memory-to-memory operations would provide
additional flexibility in code generation, especially if they were
combined with flexible synchronization primitives to synchro-
nize on sets of outstanding operations. Although memory-to-
cache operations (such as prefetches) have some advantages in
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enabling prefetching optimizations, we believe that the added
complexity currently required to exploit this functionality from
the C source level is probably not justified.

• Cache structure: The mapping algorithm in the shared E-cache
within an MSP makes it difficult to obtain high performance
for SPMD programs in SSP mode, due to the high likelihood
of cache conflicts between symmetric data objects associated
with each SSP thread. We believe a software workaround may
be possible by staggering allocations in memory, at the cost of
some added complexity in pointer arithmetic. A slightly smarter
cache hashing function or a 4-way set associative E-cache would
have been a better design match to the 4 SSPs sharing the cache.

10. Conclusions

We have described our implementation of the Berkeley UPC com-
piler on the Cray X1 architecture. We showed that the Berkeley com-
piler performs comparably to the Cray UPC compiler, even though
the Berkeley compiler supports the entire UPC language specification,
while the Cray compiler omits support for some UPC language fea-
tures. One of the key features currently missing from Cray UPC is
support for arbitrary blocked cyclic data layouts. We have shown that
static typing information can be used to specialize the generation of
pointer arithmetic for the important special case of phaseless point-
ers, ensuring that programmers only pay for the generality of blocked-
cyclic pointers-to-shared when they are actually used in the applica-
tion. As a concession to portability and compiler development time,
the Berkeley compiler generates C, rather than native assembly, and
relies on the vendor compiler to perform most serial optimizations.
Surprisingly, the generated C code from our compiler often vectorizes
as well as the input code, which validates our approach.

Our benchmarks demonstrate that the X1’s architectural global ad-
dress space support is used most effectively by a global address space
programming model that integrates communication and computation.
The one-sided put/get model inshmemis significantly faster than the
two-sided MPI interface, however the use of direct loads and stores
that we leverage in our GASNet implementation is faster still. We
built an implementation of our GASNet layer starting with the active
message-based Core API, whose generality is exploited to provide a
high-performance implementation of the more challenging features of
UPC, such as the ability to non-collectively allocate remote memory.

The user does not pay for this generality when it is not needed, be-
cause the remote memory access operations in the extended GASNet
interface are implemented as macros that translate to direct loads and
stores.

A remaining open issue is the vectorization of code that mixes com-
munication and computation. The reliance on vectorization in the X1,
not only for computational performance but also to overlap remote ac-
cess times, means that vectorization of communication code is critical.
For programs with fine-grained irregular accesses, the vector instruc-
tion set supports indexed loads and stores (scatter/gather), yet the Cray
compiler will not vectorize loops that contain function calls (most no-
tably including calls toshmem), nor does it support inline assembly
instructions. This limits our ability to generate the type of mixed com-
munication and computation code that would most effectively use the
hardware. We believe this is an issue for application-level library ef-
forts, not just our own source-to-source compilation strategy, because
scientific libraries are often written with separate modules and runtime
phases for communication and computation. A strategy for annotating
or rewriting the separate communication and computation code to en-
able vectorization may perform reasonably well, but will miss the op-
portunity to take advantage of Cray’s tight integration of the network
and the processor, in which the basic communication mechanism is a
transfer between local registers and remote memory. In one of these
phased, bulk-synchronous programs, data will flow from remote mem-
ory to the local vector registers and then to local memory during com-
munication, and from local memory back to registers when that data is
needed during computation. Cray compiler support for inline assem-
bly and interprocedural analyses to support the automatic vectorizer,
or at least special recognition of theshmemcalls, would all help to
address this issue.

On balance, our layered approach to compiler design has proven
quite effective across a wide range of architectures. GASNet has a
carefully designed API which is used in generating code for Titanium
as well as UPC, and we are currently extending it to include strided
and scatter/gather accesses that are important for enabling various par-
allel compiler optimizations and supporting Co-Array Fortran. A key
design point has been the use of macros and inline expansion for sim-
ple GASNet functions, such that despite API abstraction layering, ac-
cesses to remote values translate directly to loads and stores on ma-
chines that support direct remote access. Our UPC runtime layer now
contains three different UPC pointer-to-shared representations, includ-
ing one designed specifically to match the memory layout on the X1.



We believe that both the pointer and GASNet work will be useful on
other architectures with similar memory layout and access characteris-
tics (specifically including the SGI Altix), and that our analysis of the
architectural support provided by the X1 will be useful in the design
of future architectures intended to support GAS languages.
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