
Unified Parallel C Profiling Interface Proposal

Adam Leko, leko@hcs.ufl.edu
UPC Group, HCS Lab
University of Florida

July 2, 2005

Abstract

Due to the wide range of compilers and the lack of a standardized pro-
filing interface, writers of performance tools face many challenges when
incorporating support for Unified Parallel C (UPC) programs. This docu-
ment presents a preliminary specification for a standard profiling interface
that attempts to be flexible enough to be adapted into current UPC compiler
and runtime infrastructures with little effort, while allowing performance
analysis tools to gather much information about the performance of UPC
programs.

1 Introduction

The Unified Parallel C (UPC) [6] language offers parallel programmers several ad-
vantages over other parallel languages that require programmers to manually han-
dle communication between nodes. The global address space presented to UPC
programmers provides them with a convenient environment similar to threaded
programming on serial machines, but comes at a cost of increased complexity in
UPC compilers and runtime systems. This gives parallel programmers a much-
needed increase in productivity; however, since UPC compilers handle much of
the low-level communication and work distribution details of UPC programs, it
can be difficult or impossible for UPC programmers to determine how a given
UPC will perform at runtime.

Indeed, recent research has indicated that performance tuning for current gen-
erations of UPC compilers is absolutely critical in order to achieve comparable

1

performance to MPI code, especially on cluster architectures [5]. Although recent
work has produced several techniques to improve the performance of compilers
by taking advantage of specific architectures [1] or employing TLB-like lookup
tables for remote pointers [4], the UPC programmer’s ability to exploit locality
remains the most influential factor on overall UPC program performance.

The importance of performance analysis for UPC programs has also been ag-
gravated by the lack of performance analysis tools supporting UPC. The newness
of the UPC language is partly responsible for the lack of tool support, but tool
developers face a major roadblock even if they wish to add UPC support in their
tools: the UPC specification currently does not define a standard profiling in-
terface that can be used to portably gather performance information from UPC
programs at runtime. The extensive and almost exclusive use of the MPI profil-
ing interface [7] by MPI performance tools illustrates the usefulness of a common
profiling interface.

To rectify this situation, the UPC group at the University of Florida has de-
veloped a preliminary profiling interface to accompany the UPC specification. In
a nutshell, we are trying to help users answer the question “Why does my UPC
program have bad performance?” by providing tool developers with a consistent
profiling interface so that their performance tools can help users identify and fix
performance bottlenecks. We have examined several existing UPC implementa-
tions and have attempted to devise an interface that will have a minimum impact
on existing compilers that target both shared-memory and distributed architec-
tures. Since UPC is somewhat similar in spirit to OpenMP, we have tried to incor-
porate many ideas used for the OpenMP profiling interface [9] in our proposal.

Note: In order to keep the language of this document concise, we have adopted
the following terminology. “UPC” refers to the Unified Parallel C language as de-
fined by the current language specification. “Users” refers to individuals using
a parallel language such as UPC. “Developers” refers to individuals who write
parallel software infrastructure such as UPC compilers. “Tools” refers to per-
formance analysis tools such as Vampir, TAU, or KOJAK, and “tool developers”
refers to individuals who write performance analysis tools.

2 Current challenges for UPC tool developers

MPI and other library-based parallel language extensions generally use techniques
like weak bindings, which make developing “wrapper” libraries very straightfor-
ward. For example, Figure 1 illustrates a typical wrapper that can be use to profile

2

int MPI_Send(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

{
int val;
Record_message(comm, dest, count, buf);
Timer_start("MPI_Send");
val = PMPI_Send(buf, count, datatype, dest, tag, comm);
Timer_end("MPI_Send");
return val;

}

Figure 1: Example wrapper function

calls toMPI_Send for MPI programs. MPI tool developers can rely on the ex-
istence of aPMPI_Send binding in every MPI implementation which has the
same semantics as the originalMPI_Send function. Tool developers may place
any code they wish in their wrapper libraries, which allows them to support trac-
ing, profiling, and several other analysis strategies. In addition, users of MPI tools
need only to relink against a profiled MPI library in order to collect information
about the behavior of MPI functions in their code.

UPC tool developers are not as lucky. Since UPC is not merely comprised
of library functions, the wrapper approach mentioned above does not present a
tractable (or even valid) strategy for recording the behavior of UPC programs.
Even for UPC implementations that encapsulate much behavior in library func-
tions (such as Berkeley UPC [8] with GASNET [2]), no weak binding support is
available to write wrappers for these libraries. In addition, different UPC compil-
ers use vastly different techniques to translate UPC code into executables, rang-
ing from source-to-source transformations to more direct compilation techniques.
This leaves the UPC tool developer with only a few methods for collecting infor-
mation about a UPC program: binary instrumentation and source instrumentation.

Binary instrumentation seems like a decent option at first glance. Libraries
like DynInst [3] make it relatively easy to insert arbitrary instructions at points
in a user’s code, and since the user’s source code does not have to be changed
this reduces the overhead imposed upon users. However, in order to insert instru-
mentation code, binary instrumentation requires tool developers to explicitly state
exactlywhere they wish to insert their code in an executable. Since UPC com-
pilers can use any one of a number of techniques to translate UPC code into an

3

executable, binary instrumentation for UPC programs will have to be added on a
compiler-by-compiler basis after an extensive analysis of how that particular com-
piler translates the relative UPC constructs into executable code. This presents a
severe maintenance problem for tool developers: what happens when developers
change their implementation internals between versions?

In short, tool developers adopting a binary instrumentation strategy will have
to spend a large portion of their time keeping up with the internal workings of each
UPC compiler they wish to support. In addition, binary instrumentation makes it
very difficult to relate performance information back to actual lines in source code.
Another blow to binary instrumentation is the possibility that choosing instrumen-
tation points in UPC binaries may be impossible without proprietary information
from developers of commercial UPC compilers. Finally, while DynInst provides
great functionality for tool developers wishing to use binary instrumentation, there
are no plans to port it to Cray architectures such as the X1 that are not based on
Linux. The X1 and X1E provide excellent vehicles for running UPC code [1], so
excluding tool support for these architectures would be disappointing to say the
least.

Source instrumentation affords the most flexibility to the tool developer. With
source instrumentation, a tool developer can record any data they wish, provided
that the information can be extrapolated from a user’s code. However, with the
increasing complexity of UPC runtime systems and the use of techniques such as
remote reference caching, using source instrumentation alone limits a tool devel-
oper’s ability to actually find out when certain eventsactually occur instead of
when the tool developerthinksthey might occur. UPC’s relaxed memory model
further blurs the distinction between the sequence of actions specified in the UPC
source code and what actually happens at runtime.

Source instrumentation also places a higher technical burden on the tool writer.
Since UPC allows users to treat remote pointers in the exact manner as built-in
C pointers, source code instrumentation systems must be able to perform afull
parse of a user’s UPC source code so that remote variable accesses can be differ-
entiated from local variable accesses. Several complications arise when doing a
full parse, including variable name shadowing (which implies that the parser must
fully implement scoping rules), complicated user macros, and semantic analysis
of complicated expressions involving both local and shared variables. To give a
concrete example of the possible difficulties in parsing a complicated expression,
consider the code in Figure 2. Depending on the algorithms used to translate the
UPC code into machine code, several different sequences of remote read and write
operations are possible. In addition, compilers which can do complicated strength

4

#include "upc.h"

shared int c = 44;
shared int f = 2;

int main() {
f = ((c + 3) - (c - 3) == c) ? 4 : (c = 0);
return 0;

}

Figure 2: UPC code with a complicated expression

reductions may be able to reduce the first line ofmain to f = 0; c = 0; ,
which drastically reduces the number of remote memory references.

Clearly, neither source nor binary instrumentation represent optimal paths for
tool developers that wish to add UPC support to their tools. Having a standard
profiling interface into the UPC compiler and runtime systems would make tool
developer’s jobs much easier and would allow them to easily add support for any
compiler that implements the interface. We describe our ideas for such an inter-
face in the next section.

3 Proposed profiling interface

In order for a profiling interface to be effective, it must meet several criteria and
strike a balance between functionality for tool developers and ease of implemen-
tation for compiler developers. We have designed a basic profiling interface that
tries to follow these design guidelines:

• Flexibility – In order for the interface to be most useful, it must be flexible
to support several different performance analysis methods. For example,
some tools rely on capturing full traces of a program’s behavior, while oth-
ers calculate statistical information at runtime and display it immediately
after a program finishes executing. Our profiling interface should support
these two main modes of operation, and should not overly restrict the tool
developer’s analysis options.

• Ease of implementation– It is imperative to have the full support of UPC
compiler developers for our profiling interface. There are many existing

5

UPC compilers that translate UPC code into executables using a wide va-
riety of methods, and we do not wish to favor one compilation approach
over the others. We do not wish to alienate compiler writers by making our
profiling interface difficult to implement for a small group of unlucky com-
pilers. In addition, many UPC compilers are proprietary, which limits the
amount of help we can give in implementing the profiling interface. There-
fore, our interface should be as implementation-neutral as possible while
meeting the rest of our design goals.

• Low overhead– Our profiling interface should not drastically affect overall
runtime of profiled UPC programs. Performance data collected for pro-
grams that do not exhibit the same behavior as their unprofiled counterparts
is not very useful to users. Due to the fine-grained nature of most UPC pro-
grams, we do expect some perturbation of overall execution time for profiled
programs. However, at every opportunity we wish to engineer solutions that
minimize the effect instrumentation has on a user’s program.

• Usefulness– Simply meeting the above three goals without providing useful
information to users will still result in a tool that does not help a user trou-
bleshoot their performance problems. Performance tools need to be pro-
vided with enough information to analyze so that the tools can present the
user with potential problem areas in their application codes. Specifically,
we feel it is absolutely necessary to incorporate source code correlation for
data reported to the user down to the source line level.

In addition to the above design guidelines, we shall favor simpler solutions
over more complex ones. We do not wish to over-engineer a solution that could
be obtained by simpler methods. In other words, our profiling interface should be
as simple as possible to meet the above guidelines, but no simpler.

We envision our profiling interface working in the following manner. First,
the user compiles their code using special compilation flags that insert standard
function calls into the user’s code as defined by our profiling interface, along
with the standard translation that occurs as part of a normal UPC compilation
process. The user links their code against a library provided by a tool developer
that implements part of the profiling interface, then runs their program. During
runtime, when certain events happen, appropriate function calls are made to the
tool developer’s library code, which produces data files or output to the screen
(depending on how the tool developer writes their profiling library).

6

The first half of our profiling interface is a set of functions implemented by tool
developers which are akin to callback functions. The UPC runtime system invokes
these functions when certain events happen during runtime, and tool developers
decide what information to record and what actions to take. These functions are
defined and discussed in Section 3.1. The second half of our profiling interface is
a set of functions tool developers can use to gather information from the UPC run-
time and compiler systems. These functions are defined and discussed in Section
3.2.

3.1 Tool-provided functions

Using a callback model for notifying tools about when certain activities occur af-
fords the tool developer much flexibility and shifts the responsibility of tracking
performance data from the compiler writers to the tool developers (where it be-
longs). While inserting function calls does increase overall execution overhead
slightly, it is a much simpler alternative than trying to have compilers inline pro-
filing code inside a user’s program, which would create a very challenging static
analysis problem.

Our interface proposes two main types of callback functions: simple wrappers
and start/end function pairs. Simple wrappers are appropriate for the utility UPC
functions (such as the memory and lock allocation/deallocation routines) since
this part of the language already exists in the form of functions. Start/end func-
tion pairs are more appropriate for constructs and other parts of the language that
do not follow the function format, such as the synchronization statements (like
upc_notify andupc_wait) and language constructs (likeupc_forall).

Trying to provide a wrapper interface for non-function language constructs
would be extremely difficult, since a unified interface would have to be exported
from compilers so that the original functionality of these activities could be called
from within the wrapper. For example, trying to wrap theupc_forall would
be problematic; what is an appropriate way for the wrapper library to let the UPC
runtime know it should execute a particularupc_forall loop? Therefore, we
feel it is appropriate to notify tools when the particular statements start and finish
executing, and also provide these functions with extra information that lets them
relate timing information back to the source-code level. A very similar approach
is taken by POMP, OpenMP’s profiling interface, which is exploited by OPARI
[9].

We propose that the callback and wrapper functions be allowed to use all avail-
able UPC language constructs and functions in order to ease the tool developer’s

7

job. This could be easily accomplished by compiling the wrapper library itself
using a UPC compiler. This should also enable compiler writers to implement the
functions defined in the UPC specification any way they wish, including inlining
the code for functions such asupc_memget , without sacrificing support for the
profiling interface.

The rest of this subsection describes the wrapper function and start/finish func-
tion callback pairs for each major part of the UPC language: synchronization
statements, language constructs, utility functions, and implicit communication.
Note that all of thepupc* functions take an extra argument as compared with
their upc* equivalents, which is a pointer to a typepupc_location . This
type is a struct that contains source code information, and is defined as below:

int pupc_num_locations;
struct pupc_location {

const char * source_file;
unsigned int start_line;
unsigned int end_line;

};
pupc_location* pupc_locations;

The information contained in this struct should point to the location of the callsite
or construct location in the original (untranslated) version of the user’s code. The
pupc_locations is a pointer to an array of sizepupc_num_locations
that lets a tool easily iterate over all existing instrumentation points in a user’s
program1. By allocating this source code information statically inside an instru-
mented executable, source correlation can be achieved at relatively low CPU and
memory cost. Also note that by passing pointers to each function, a tool can easily
differentiate between two or more of the same constructs on a single source line.

3.1.1 Synchronization callback functions

Function prototypes:

void pupc_notify(int , pupc_location*);
void pupc_wait_start(int , pupc_location*);
void pupc_wait_end(int , pupc_location*);
void pupc_barrier_start(int , pupc_location*);

1This may be difficult for compiler writers to perform that do not have fine-grained control
over the linking phase of a program

8

void pupc_barrier_end(int , pupc_location*);
void pupc_fence_start(pupc_location*);
void pupc_fence_end(pupc_location*);

These functions are inserted into the user’s code and get called at runtime
before and after execution of the notify, wait, barrier, and fence synchronization
statements. Sinceupc_notify is a nonblocking operation, only one callback
function is needed. The first argument to the notify, wait, and barrier should be
the value of evaluating the optional integer expression; if the user has not specified
one, a value of zero should be passed to these functions.

3.1.2 Language construct callback functions

Function prototypes:

void pupc_forall_start(pupc_location*);
void pupc_forall_end(pupc_location*);

These functions are inserted before and afterupc_forall constructs and
get called at runtime before and after theupc_forall construct executes.

3.1.3 Utility function wrappers

Function prototypes:

void pupc_lock(upc_lock_t*, pupc_location*);
void pupc_unlock(upc_lock_t*, pupc_location*);
int pupc_lock_attempt(upc_lock_t*, pupc_location*);
void pupc_lock_init(upc_lock_t*, pupc_location*);
upc_lock_t* pupc_all_lock_alloc(pupc_location*);
upc_lock_t* pupc_global_lock_alloc(pupc_location*);
void pupc_lock_free(upc_lock_t*, pupc_location*);
void pupc_memcpy(shared void *, const shared void *,

size_t, pupc_location*);
void pupc_memget(void *, const shared void *,

size_t, pupc_location*);
void pupc_memput(shared void *, const void *,

size_t, pupc_location*);
void pupc_memset(shared void *, int ,

size_t, pupc_location*);
void pupc_init(int *, char ***);

9

void pupc_global_exit(int status, pupc_location*);

These function wrappers are exactly the same as their counterparts defined
in the UPC specification, with the slight name change and extra argument that
is a pointer to the source code location for each invocation. We have also in-
cluded a genericpupc_init that gets called at the beginning of every execu-
tion after the UPC runtime library has been initialized so that tool developers
may easily include any initialization code they require. We recommend that the
UPC runtime callpupc_global_exit at the end of program execution with
a NULL value for the pupclocation pointer, even if the user makes no calls to
upc_global_exit . This will enable tool developers to ensure that any cleanup
code they require will always get executed just before a UPC program finishes ex-
ecution.

3.1.4 Implicit communication callback functions

Function prototypes:

void pupc_remote_get_start(shared void *, void *, int ,
size_t, pupc_location*);

void pupc_remote_get_end(shared void *, void *, int ,
size_t, pupc_location*);

void pupc_remote_put_start(shared void *, void *, int ,
size_t, pupc_location*);

void pupc_remote_put_end(shared void *, void *, int ,
size_t, pupc_location*);

These functions are inserted into a user’s code before and after singular remote
memory transfers take place. The first argument to these functions is the shared
pointer to the remote variable being read from or written to. The second argument
is a pointer to a local memory address that the source location is being read into
or written from. The third argument is an integer value specifying if the transfer
taking place is being performed under the relaxed memory model or not. A zero
value indicates that the strict memory model has dictated this memory transfer,
while a nonzero value indicates that the variable is using the relaxed memory
model under the duration of this transfer. Finally, the last two arguments give
the size of the transfer and a pointer to the source code location that caused this
remote transfer.

10

3.2 Compiler-provided functions

While the above provides tools with a large amount of information, it would be
beneficial for the UPC compiler and runtime system to have a few utility routines
that may be used to enhance the information the tool can gather. First, it would be
very advantageous to have a global wallclock timer, similar to MPI’sMPI_Wtime
function, so that assigning timestamps to events is more convenient for the tool
developer. Second, it would extremely useful to have a generic routine that tools
could use to answer queries about arbitrary shared variables, such as determining a
variable’s blocking factor, size, type, and the source code location of its definition.

Function prototypes and related structs for these two functions are shown be-
low2:

unsigned long long pupc_wtime();
enum pupc_variable_type {

ptr, int , char , long , float , double
};
struct pupc_variable_info {

const char * name;
enum pupc_variable_type type;
size_t total_size;
unsigned int array_size;
unsigned int blocking_factor;
pupc_location* source_location;

};
void pupc_query_variable(shared void *,

pupc_variable_info*);

4 Examples

To provide a concrete example of how our profiling interface would work on an
actual program, we present a example of how a compiler might translate a simple
UPC program by adding appropriate calls to the profiling functions.

Consider the simple UPC program listed below, with line numbers included
for reference:

2I’m not sure how to handle querying the variable type here. The enum was all that I
could come up with. Also, I don’t know how difficult it would be to do something like the
pupcqueryvariable, but it would definitely be incredibly useful for performance tools.

11

1 #include "upc.h"
2
3 shared int a[5*THREADS];
4
5 shared int b = 0;
6
7 int main(int argc, char ** argv) {
8 int i;
9

10 upc_fence;
11 sleep(1);
12 upc_forall(i = 0; i < 5*THREADS; &a[i]) {
13 a[i] = 44;
14 if (MYTHREAD == 1) {
15 b = i;
16 }
17 }
18 return 0;
19 }

Based on the interface defined in the previous section, a source-to-source com-
piler might translate the code to the following UPC code (assuming it realizes that
the first assignment of theupc_forall is always a local assignment):

#include "upc.h"
#include "pupc.h"

shared int a[5*THREADS];

shared int b = 0;

struct pupc_location loc1, loc2, loc3;
int pupc_num_locations = 3;
struct pupc_location* pupc_locations;

int main(int argc, char ** argv) {
int i;

pupc_locations = (pupc_location*)malloc(

12

sizeof (pupc_location) * pupc_num_locations
);
pupc_locations[0] = loc1;
pupc_locations[1] = loc2;
pupc_locations[2] = loc3;

loc1.source_file = __FILE__;
loc1.start_line = 10;
loc1.end_line = 10;

loc2.source_file == __FILE__;
loc2.start_line = 12;
loc2.end_line = 17;

loc3.source_file == __FILE__;
loc3.start_line = 15;
loc3.end_line = 15;

pupc_init(&argc, &argv);

pupc_fence_start(0, &loc1);
upc_fence;
pupc_fence_end(0, &loc1);

sleep(1);

pupc_forall_start(&loc2);
upc_forall(i = 0; i < 5*THREADS; i++; &a[i]) {

a[i] = 44;
if (MYTHREAD == 1) {

pupc_remote_put_start(&b, &i, 0,
sizeof (int), &loc3);

b = i;
pupc_remote_put_end(&b, &i, 0,

sizeof (int), &loc3);
}

}
pupc_forall_end(&loc2);

13

pupc_global_exit(0, NULL);
}

5 Conclusions

We have presented a profiling interface for UPC codes that will enable tool de-
velopers to easily add support for UPC programs in their tools. The interface is
flexible enough to support both profiling and tracing UPC programs, and should
impose only a slight overhead on compiler developers.

While we have strived to make our profiling interface as lightweight as possi-
ble, there will still be some unavoidable overhead that will occur on fine-grained
UPC programs that use a large number of remote accesses. This will generally
only be an issue for programs that only run well on shared-memory machines.

In order for a performance tool to be useful it must be able to get an accurate
reading of a program’s actual runtime behavior. While hardware counters may be
used on some platforms to gauge how many remote accesses are occurring for a
UPC program, hardware counters can only provide a very rough approximation
of a UPC program’s behavior. In addition, it is nearly impossible to relate the
hardware counter information down to the source-code level for UPC programs
without having a profiling interface like the one proposed in this document.

Since there will undoubtedly be some unavoidable overhead associated with
the use of a fully-profiled UPC program, we suggest that compilers provide two
flags that may be used at compile time to decide which parts of a user’s pro-
gram to instrument. One flag, say--profile , will be used to specify that the
compiler add profile hooks forall of the interface as defined in this document,
while another flag, say--profile-partial , profiles everything except for
implicit communication. This should enable performance tools to record accurate
performance data even for fine-grained UPC programs on shared-memory archi-
tectures, even though the amount of data recorded will be incomplete. We feel that
recording performance data for theupc_forall construct and recording timing
information spent in barriers will still provide users with adequate information to
tune their UPC code.

Finally, we welcome (and encourage!) any constructive criticism of this pro-
posal, especially from compiler writers. We have made some assumptions in this
document, and if they are incorrect please let us know! We would like to work as

14

closely as possible with UPC compiler developers to ensure that the UPC profiling
interface becomes a reality.

References

[1] Christian Bell, Wei-Yu Chen, Dan Bonachea, and Katherine Yelick. Evaluat-
ing support for global address space languages on the Cray X1. InICS ’04:
Proceedings of the 18th annual international conference on Supercomputing,
pages 184–195, New York, NY, USA, 2004. ACM Press.

[2] Dan Bonachea. GASNet specification, v1.1. Technical report, University of
California at Berkeley, Berkeley, CA, USA, 2002.

[3] Bryan Buck and Jeffrey K. Hollingsworth. An API for runtime code patch-
ing. The International Journal of High Performance Computing Applications,
14(4):317–329, Winter 2000.

[4] François Cantonnet, Tarek A. El-Ghazawi, Pascal Lorenz, and Jaafar Gaber.
Fast address translation techniques for distributed shared memory compilers.
In IPDPS. IEEE Computer Society, 2005.

[5] Cristian Coarfa, Yuri Dotsenko, John Mellor-Crummey, François
Cantonnet, Tarek El-Ghazawi, Ashrujit Mohanti, Yiyi Yao, and Daniel
Chavarría-Miranda. An evaluation of global address space languages:
co-array fortran and unified parallel c. InPPoPP ’05: Proceedings of the
tenth ACM SIGPLAN symposium on Principles and practice of parallel pro-
gramming, pages 36–47, New York, NY, USA, 2005. ACM Press.

[6] Tarek A. El-Ghazawi, William W. Carlson, and Jesse M. Draper. UPC lan-
guage specification (v 1.2), June 2005.

[7] Message Passing Interface Forum. MPI: A message-passing interface stan-
dard. Technical report, University of Tennessee, Knoxville, TN, USA, 1994.

[8] Parry Husbands, Costin Iancu, and Katherine Yelick. A performance analysis
of the Berkeley UPC compiler. InICS ’03: Proceedings of the 17th annual
international conference on Supercomputing, pages 63–73, New York, NY,
USA, 2003. ACM Press.

15

[9] Bernd Mohr, Allen D. Malony, Sameer Shende, and Felix Wolf. Design and
prototype of a performance tool interface for OpenMP.J. Supercomput.,
23(1):105–128, 2002.

16

