
Parallel Performance Wizard Tutorial
a hands-on look at the Parallel Performance Wizard tool

for v3.2

Adam Leko

Copyright c© 2006-2011 HCS Lab, University of Florida.
All rights reserved.
Copying and distribution of this file, with or without modification, are permitted in any
medium without royalty provided the copyright notice and this notice are preserved.

i

Table of Contents

Parallel Performance Wizard Tutorial 1

1 Compiling the IS benchmark 2

2 The Initial Run . 3

3 Tweaking Instrumentation and Measurement
. 4

4 Analyzing the Profile Data . 6

5 Generating Trace Data . 11

6 Browsing the Trace with Jumpshot 12

7 Summary . 16

Parallel Performance Wizard Tutorial 1

Parallel Performance Wizard Tutorial

This document provides a hands-on look at the Parallel Performance Wizard (PPW) per-
formance analysis tool. In this tutorial we will analyze the GWU Unified Parallel C (UPC)
implementation of the NPB2.4 integer sort (IS) benchmark, showing how to use PPW to
identify potential performance issues in the code.

This tutorial assumes you already have PPW installed and working properly. For in-
structions on how to install PPW, please see the PPW user manual which is available online
at the PPW website.

Additionally, data from this tutorial was gathered on a 32-node AMD Opteron cluster
with a Quadrics interconnect. If follow along with this tutorial on other systems, you might
see slightly different performance characteristics for this benchmark.

Even though this tutorial focuses on UPC, most of the techniques presented here also
apply to other languages (such as SHMEM). See the PPW user manual for instructions on
how to use PPW with other parallel languages besides UPC.

Special thanks goes to the HPCL lab at GWU for releasing their NPB implementations
to the general public, provided excellent source material for dissection in this tutorial.

http://ppw.hcs.ufl.edu

Chapter 1: Compiling the IS benchmark 2

1 Compiling the IS benchmark

To analyze the IS benchmark, the first thing we must do is obtain a copy of it. The easiest
way to do this is to download the Berkeley UPC source code distribution, and then copy
the ‘NPB2.4’ directory from the ‘upc-tests’ directory, as in

$ tar xvzf berkeley_upc-2.8.0.tar.gz
$ cd berkeley_upc-2.8.0
$ cp -av upc-tests/NPB2.4 ~

This should result in a new directory named ‘NPB2.4’ being placed in your home direc-
tory. Note that your system may require slightly different commands as above, especially
if you are using a different version of Berkeley UPC.

Once you have a copy of the NPB2.4 benchmarks, the next thing to do is to compile
them. Normally, this benchmark suite is compiled using a command such as

$ make IS NP=32 CLASS=B

To generate performance data files for use with PPW, you must compile the benchmark
with the ppwupcc command instead of the regular upcc command. The ppwupcc command
is set up as a very thin wrapper to the normal upcc command, and will pass through any
flags it does not understand. The idea is to substitute ppwupcc into your makefiles or build
scripts, and ppwupcc will take care of the rest of bookkeeping required by PPW, such as
linking against any libraries it requires and keeping snapshots of source code files for later
viewing.

For the IS benchmark, if you grabbed a copy of the NPB2.4 source code from Berkeley
UPC, then you simply change your compilation command to

$ make UPCC=ppwupcc IS NP=32 CLASS=B

If you obtained the NPB2.4 source tree from somewhere else, you might have to hack
up the ‘make.def’ file in the ‘config’ directory.

Chapter 2: The Initial Run 3

2 The Initial Run

In general, if you don’t know much about the performance of the application you are
studying, it is a good idea to perform an initial “profiling run” on a moderate number of
nodes using representative input data. This is exactly what we are going to do with our IS
benchmark.

Since we don’t really have an idea of how time is being spent in the IS benchmark, it
would be really great if PPW could provide us with a breakdown of how much time was
spent executing different functions in the IS source code. To get this information, we make
use of the ‘--inst-functions’ flag. Go to the NPB2.4 directory that you set up in the
previous section and type

$ make UPCC="ppwupcc --inst-functions" IS NP=32 CLASS=B

or edit the ‘make.def’ file as before. After a short delay, you should have a shiny new
‘is.B.32’ executable in the ‘IS’ directory.

We can now run the ‘is.B.32’ executable directly as we normally would
(srun/yod/upcrun/etc). If you do this, you should get a new data file in the directory
where you ran the IS benchmark under a name like ‘ppw-2234.par’. This works OK, but
it is more useful if we can tell PPW which filename to use. To do this, prefix your normal
run command with the ppwrun command, such as

$ ppwrun --output=is.B.par srun -N 32 is.B.32

Typing ppwrun with no options will show a short help screen that gives all the different
options available for controlling PPW’s measurement code at runtime. If you make use of
the ‘--output’ option, remember to give your data files an extension of ‘.par’ to make
them easy to find in the GUI later on.

Note: ppwrun works its magic by setting a bunch of environment variables, and
relies on the job spawner to propagate these new environment variables when
launching the job. If it seems like ppwrun is ignoring your options, then your
job spawner probably doesn’t handle propagating environment variables. If so,
see the documentation for ppwrun in the user manual for some workarounds.
Luckily, most job spawners do a good job of environment propagation.

Now that we’ve figured out how to run applications with PPW, go ahead and run the
‘is.B.32’ executable using ppwrun. Then, take the new data file created after running the
benchmark and transfer it to your local workstation using scp or something similar. Start
up the PPW frontend GUI, and open up the newly-created data file.

If you don’t have an easy way of transferring data files from your parallel machine to
your local workstation, then you may use the ppwprof and/or ppwprof.pl to view text-
only performance information from the PAR data file. These commands provide only a
subset of the functionality available from the PPW GUI, but are useful for quickly browsing
performance data without having to transfer files around. The rest of this tutorial assumes
you are using the PPW GUI to browse performance data.

Chapter 3: Tweaking Instrumentation and Measurement 4

3 Tweaking Instrumentation and Measurement

One of the first things we must do when looking at a data file is to determine if the
performance data we obtained is accurate and hasn’t been adversely affected by the ex-
tra operations that PPW performs while tracking performance data. The most foolproof
method of doing this is to compare the overall time taken by a profiled run with the time
take for a run compiled without using ppwupcc. Another way to do this is to look for
any suspicious-looking data using the PPW GUI. For this tutorial, we opt for the second
method, using PPW itself to help identify suspect data.

Figure 3.1: Profile table showing rand1c is function

If you were paying attention to the time taken for the run in the previous section, you
may have noticed it took a bit longer than a normal run. If we open up that data file and
view the profile table visualization (see Figure 3.1), we see something interesting: when we
instrumented our program using the ‘--inst-functions’ flag, we inadvertently captured a
ton of calls to the ‘rand1c_is’ function. This function is highlighted in red because PPW
thinks that the overhead imposed by tracking each call to this function may have caused it
to over-report its influence on overall execution time.

To further check out this function, we un-hide the min and max columns of the table by
right-clicking on the table’s column headers. When we do this, we see that this function
was called about 134 million times, but the total, min, max times show that each individual
call took only a few microseconds to execute. Since PPW generally has a fixed amount of
work added to each function call, this function was heavily penalized with extra overhead.
Ouch!

Chapter 3: Tweaking Instrumentation and Measurement 5

This ‘rand1c_is’ function is only used in initialization, so we’re not really interested in
its performance. We could recompile our code without using the ‘--inst-functions’ flag,
but this would mean we’d lose all function-level data, which is too restrictive. Instead, we
can make use of some ‘#pragma’s offered by the GASP interface to ask the compiler to avoid
instrumenting this particular function. Find the ‘rand1c_is’ function, then add

#pragma pupc off

before the function body definition (somewhere around line 295) and
#pragma pupc on

just after the end of the function (somewhere around line 361). The next time we run
our IS benchmark, we will avoid getting performance information for this function, even if
we compile with ‘--inst-functions’.

Looking for more things to cut out, from Figure 3.1 we see that the ‘create_seq’ function
takes up a significant percentage of overall execution time, but is unrelated to the core
integer sort algorithm. We need a way for PPW to pretend that time spent executing
this particular function never happened in the first place. In other words, we want PPW
to subtract out the time spent in this function when displaying performance data. The
GASP interface comes to the rescue here again, by providing a simple API for disabling
measurement during your program’s execution. To do this, we add a special include to the
top of the IS source code file ‘is.c’:

#include <pupc.h>

Then we add calls to ‘pupc_control’ around the part of the code that calls ‘create_seq’:
/* Generate random number sequence and subsequent keys on all procs */
pupc_control(0);
create_seq(find_my_seed(

MYTHREAD,
THREADS,
4*TOTAL_KEYS,
314159265.00, /* Random number gen seed */
1220703125.00), /* Random number gen mult */
1220703125.00); /* Random number gen mult */

pupc_control(1);

The next time we run our benchmark, PPW will avoid capturing performance informa-
tion for the ‘pupc_control’ function, and will subtract out time spent executing that code
from the ‘main’ function’s totals. You’ll probably want to place similar statements around
calls to the calls to the ‘full_verify’ function, too.

Keep in mind that while the ‘#pragma’ and ‘pupc_control’ techniques achieve similar
results, they perform different functions. The ‘#pragma pupc’s instruct the compiler to
avoid instrumenting particular sections of your code, while the ‘pupc_control’ API calls
do not affect instrumentation but turn the measurement code on and off at runtime. If
you’re looking to reduce overhead, use the ‘#pragma pupc’ directives, but if you’re looking
to ignore parts of your application, use the ‘pupc_control’ API calls.

Chapter 4: Analyzing the Profile Data 6

4 Analyzing the Profile Data

Once you’ve tweaked the instrumentation and measurement for the IS benchmark, run the
benchmark again using the ppwrun command as described in Chapter 2 [The Initial Run],
page 3. Transfer the resulting data file to your workstation, and open it up with the PPW
GUI.

Figure 4.1: Operation types pie chart for the IS benchmark

The first thing you should see when opening the file in the GUI is the operation types
pie chart, which is also shown in Figure 4.1. This pie chart shows how much time was spent
doing different types of operations at runtime over all nodes in the system. Of particular
interest here is the fact that more than 60% of time was spent doing notify operations (part
of a barrier), get operations, and global heap management operations.

Chapter 4: Analyzing the Profile Data 7

Figure 4.2: Profile metrics pie chart for the IS benchmark

If you switch to the profile metrics pie chart by clicking on the bottom row of tabs, you
should see a display similar to that in Figure 4.2. This shows us similar information to
the operation types pie chart, except that it displays data in terms of particular language
operations rather than generic classes of operations. From the figure we see that the ‘rank’
function comprises most computation time for our application, but calls to ‘upc_notify’,
‘upc_all_alloc’, and ‘upc_memget’ account for a large fraction of execution time. We need
to keep this in mind when hunting through our data set to identify performance issues.

Chapter 4: Analyzing the Profile Data 8

Figure 4.3: Load-balancing analysis on the IS benchmark

One novel feature provided by PPW is its load-balancing analysis, which you can run by
accessing the “Analysis” menu bar. After the analysis runs, it will display a dialog similar to
that shown in Figure 4.3. The analysis picks out lines of code where the time spent executing
varies a lot from node to node, then displays these lines (sorted by severity) alongside a
graph showing how time for that particular line of code was distributed among all nodes in
the system. Looking at the figure, we can easily tell that calls to ‘upc_reduced_sum’ end
up taking longer on threads 1-30 but not much time on thread 0 and 31.

In addition to the load-balancing issues with ‘upc_reduced_sum’ function itself, a call
to ‘upc_all_alloc’ within that particular function also had load-balancing problems. The
‘upc_all_alloc’ function, as its name implies, is a collective routine requiring participation
from all threads before the call will complete. Since the first and last thread spend the least
amount of time executing this function, this means that all of the other threads wasted
time waiting for these two threads to catch up to them. This explains the large slice for
‘upc_all_alloc’ we saw in the profile metrics pie chart visualization.

Chapter 4: Analyzing the Profile Data 9

Figure 4.4: Profile table visualization for the IS benchmark

Moving on to some of the other visualizations, selecting the profile table visualization
(in the tab row on the top of the GUI) should bring up a screen similar to Figure 4.4. The
profile table reports flat profile information, similar to what you’d expect to see from a tool
like gprof. However, unlike sequential tools, PPW aggregates data from all threads in the
run together to show you an overall summary of how time was spent in your program, and
will group similar operations together instead of showing a flat table.

From the figure, we see that the call to ‘upc_memget’ on line 679 accounted for nearly
30% of overall execution time, which explains the large slice for ‘Get’ operations we saw in
the operation types pie chart. (You can switch on the percentages display by choosing it
from the “Options” menu at the top of the GUI window.) Inspection of the code around the
‘upc_memget’ callsite shows it is from an all-to-all operation implemented with several calls
to ‘upc_memget’. Furthermore, this callsite also shows up on our load-balancing analysis
as having an uneven distribution on all nodes, so this particular all-to-all operation could
benefit from further tuning.

Chapter 4: Analyzing the Profile Data 10

Figure 4.5: Tree table visualization for the IS benchmark

Finally, the last stop on our whirlwind tour of PPW’s main visualizations is the tree
table, which you can access by clicking on the tab row at the top of the GUI named
“Tree Table.” For the IS benchmark, you should see a screen similar to the one shown in
Figure 4.5. The tree table is very similar to the profile table we discussed above, except that
performance information is shown in the context of function calls rather than as a flat list.
This visualization allows you to “drill down” through your application’s call tree, adding
contextual information to the performance data.

Examining Figure 4.5, we see that the rank function accounts for nearly all of the bench-
mark’s execution time, of which nearly 30% of time can be attributed to the problematic
call to ‘upc_memget’ that we previously identified. Additionally, we see that the call to
‘upc_reduced_sum’ is indeed being hindered by the collective call to ‘upc_all_alloc’, as
we previously hypothesized.

One useful feature of both the profile table and tree table is that you are able to double-
click on any of the rows to bring up a window that shows how time for that particular
row was distributed among all threads. This can be useful for eyeballing how a particular
operation was distributed among all nodes in your system.

Chapter 5: Generating Trace Data 11

5 Generating Trace Data

While the profile data visualizations from the previous section are very useful in finding
general performance problems in your application, trace data can be used to troubleshoot
detailed performance problems that profile statistics may gloss over. Trace data can be
thought of as a “log” of all program activity, in that events are recorded at runtime and are
annotated with globally-synchronized timestamps. One of the more useful things you can
do with trace data is export it to a timeline viewer such as Jumpshot or Vampir, so you
can see exactly what is going on at a particular point in time during execution.

In order to get PPW to generate trace data, give the ‘--trace’ to ppwrun, as in:
$ ppwrun --trace --output=is-trace.B.par srun -N 32 is.B.32

If you are collecting trace data to view with the Jumpshot timeline viewer, we suggest
compiling without using the ‘--inst-functions’ flag, as the amount of information being
displayed can quickly become overwhelming, and excluding function calls from trace files
can significantly reduce their size. This is entirely a personal preference, however, so you
might experiment with your particular application to see which you prefer.

It is important to mention that one of the major drawbacks to tracing is that if left
unchecked, trace file sizes can grow to become very large and unmanageable. Unfortu-
nately, PPW currently does not have any fancy tricks for dealing with such large data
files. We recommend that you trace your application only after identifying specific perfor-
mance problems with a profile (as in the previous sections), and use the techniques outlined
in Chapter 3 [Tweaking Instrumentation and Measurement], page 4 to cut down on the
amount of data being collected.

The remainder of this tutorial will focus on analyzing trace data from our IS benchmark
using the Jumpshot timeline viewer, which is free and comes bundled with PPW. To view
trace data with Jumpshot, you first must open a PAR data file containing trace records (eg,
run with the ‘--trace’ option) with the PPW GUI, then choose “Export... SLOG-2” from
the main menu. Choose a file in which to save the exported data (give it an extension of
‘.slog2’), then open up the newly-created SLOG-2 file with the Jumpshot viewer. If you
have a working Java installation on your parallel machine, you can also use the command-
line program par2slog2 to do the conversion, as in

$ par2slog2 is-trace.B.par is-trace.slog2

This trace conversion process is CPU- and disk-intensive and may take a while for larger
trace files.

In addition to the SLOG-2 trace format, PPW also supports exporting trace data to
the OTF trace format, which is supported by newer versions of Vampir and the very cool
Vampir-NG tool. For more information on these trace viewers, visit the Vampir website.

http://www.vampir-ng.de

Chapter 6: Browsing the Trace with Jumpshot 12

6 Browsing the Trace with Jumpshot

After you start the Jumpshot viewer, and open up your new SLOG-2 file, you will be
presented with a multitude of windows.

Figure 6.1: Jumpshot display of a 32-node IS benchmark run

The main window in Jumpshot is the timeline window, which is shown in Figure 6.1.
This window is the one that displays the timeline view we discussed before, and is where
all the action happens when working with Jumpshot.

When opening a large trace file with Jumpshot, you will notice some interesting things
being displayed. In Figure 6.1, we see a bunch of strange-looking boxes and arrows. These
correspond to what Jumpshot calls “Preview drawables”; they are simply Jumpshot’s way
of summarizing a large amount of trace data for you. The summary boxes can be useful by
themselves (very tiny histograms are drawn inside these boxes), but in general it is more
useful to zoom in until you start noticing specific performance characteristics.

In our case with the IS benchmark, the overall screen doesn’t really tell us much so we’ll
have to zoom in more closely to get an idea of what is going on. To zoom in, choose the
magnifying glass tool from Jumpshot’s toolbar and click on the screen, or select a horizontal
section of the timeline by selecting it with your mouse (drag with the button down). Try
to zoom in on one of the blocks with a bunch of yellow mush around it.

Chapter 6: Browsing the Trace with Jumpshot 13

Figure 6.2: Jumpshot view of two iterations of the IS benchmark

If you zoomed in on one of the blocks closer to the center of the screen, you should see
a window similar to the one in Figure 6.2. This is starting to look a little more sane, since
Jumpshot is now displaying real trace records instead of summary previews.

If you’ve never worked with timeline diagrams before, then you might be wondering
what exactly Jumpshot is trying to tell you with this sort of display. Essentially, what
Jumpshot does is draw one line per thread in your trace data file. On these lines, Jumpshot
will draw boxes and arrows that represent states and communication from your run. Since
we’ve decided to exclude function information in our trace file, we assume that anything
drawn as black area can be attributed to “computation” (roughly speaking), and so any
communication or other language-level operations will stick out on the timeline display.

Looking at Figure 6.2, we see two iterations of the IS sort benchmark kernel, which have
similar behavior. One interesting thing we immediately notice is the big yellow boxes on
the left side of the screen. Looking at the function key (not pictured), we find that these
boxes correspond to calls to ‘upc_all_alloc’. As we found before in our profile data, the
first and last threads in the system spend less time executing these functions. Since the
function is a collective one, we can infer that these two threads were “late”, so we should
look at the computational operations that immediately preceded these calls to figure out
what is causing them to be slower than the other nodes.

One very useful tweak we’ve made to Jumpshot (by exploiting some interesting parts
of its file format) is that by right-clicking on any particular box in the timeline window, a
popup dialog will tell you exactly which line of code caused that particular operation. By

Chapter 6: Browsing the Trace with Jumpshot 14

right-clicking on one of the yellow boxes, we find that our old friend ‘upc_all_alloc’ on
line 878 is definitely the perpetrator of this performance problem.

Figure 6.3: Jumpshot view of a broadcast pattern

If you zoom in much closer by the red part of the trace file just to the right of the yellow
‘upc_all_alloc’ boxes, you will see a display similar to that in Figure 6.3. One thing
that we immediately see here is a broadcast-style operation being implemented by using a
string of ‘upc_memget’ operations. This particular benchmark was written before UPC had
collective operations in its standard library, so rewriting the code to make use of these new
collective operations might yield better performance.

Chapter 6: Browsing the Trace with Jumpshot 15

Figure 6.4: Jumpshot view of an all-to-all pattern

Scrolling over a little to the right of the previous broadcast operation and zooming out
a little bit will produce a display similar to the one shown in Figure 6.4. Interestingly, this
mass of communication stems from a single line of code, the ‘upc_memget’ operation on
line 679 of ‘is.c’. Our profile data tells us that this single line of code takes up 30% of
execution time in our runs, and this diagram provides visual cues as to why this might be
the case: implementing an all-to-all communication operation on a Quadrics cluster as a
sequence of unscheduled get operations does not yield very good overall performance. As
with the previous broadcast, using the new collective functions would undoubtedly squeeze
more performance out of our Quadrics cluster.

In this tutorial, we’ve only covered a few of Jumpshot’s features. For more information
on Jumpshot, refer to the frontend GUI reference chapter of the PPW user manual, or the
Jumpshot user manual available from the Jumpshot website.

http://www.mcs.anl.gov/perfvis

Chapter 7: Summary 16

7 Summary

In this tutorial, we have shown how to use PPW to analyze the GWU UPC implementation
of the NPB2.4 IS benchmark, and how to use PPW to generate trace data that can be viewed
with the Jumpshot trace visualization tool. We hope that we have inspired you to try out
our tool, which is available from the PPW website. If you found this information useful,
you might check out the PPW user manual, which is also available from the aforementioned
website.

Conspicuously absent from this tutorial are specific instructions on how to optimize this
benchmark based on the information discovered from using PPW. This is left as an exercise
for the reader :-)

Finally, we are actively seeking feedback on our tool. If you find PPW useful or annoying,
please drop us a line at ppw AT hcs DOT ufl DOT edu.

http://ppw.hcs.ufl.edu

	Parallel Performance Wizard Tutorial
	Compiling the IS benchmark
	The Initial Run
	Tweaking Instrumentation and Measurement
	Analyzing the Profile Data
	Generating Trace Data
	Browsing the Trace with Jumpshot
	Summary

