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Abstract

Reconfigurable computing (RC) applications employing both microprocessors and FPGAs have po-
tential for large speedup when compared with traditional (software) parallel applications. However, this
potential is marred by the additional complexity of these dual-paradigm systems, making it difficult to
identify performance bottlenecks and achieve desired performance. Performance analysis concepts and
tools are well researched and widely available for traditional parallel applications but are lacking in RC,
despite being of great importance due to the applications’ increased complexity. In this paper we explore
challenges and present new techniques in automated instrumentation, runtime measurement, and visual-
ization of RC application behavior. We also present ideas for integration with conventional performance
analysis tools to create a unified tool for RC applications as well as our initial framework for FPGA
instrumentation and measurement. Results from a case study are provided using a prototype of this new
tool.

Keywords: Reconfigurable computing, FPGA, performance analysis, instrumentation, measurement, visual-
ization

1 Introduction

As parallel computing systems (e.g., multicore CPUs, clusters, etc.), multiprocessor system-on-chips (MP-
SoCs), and reconfigurable computing (RC) systems continue to mature, the amount of processing power
available to applications continues to increase. RC applications employ both microprocessors and reconfig-
urable hardware such as FPGAs to handle computationally intensive problems. These RC applications have
the potential to achieve orders-of-magnitude performance gains, using less power and hardware resources
than conventional software applications [1], [2]. However, the behavior of an RC application can be partic-
ularly difficult to observe and understand due to additional levels of parallelism and complex interactions
between heterogeneous resources inherent in such systems [2]. High-performance RC applications are by
definition a superset of traditional parallel computing applications, containing all the problems and com-
plexity of these applications and more due to their use of both microprocessors and FPGAs. To handle this
complexity, performance analysis1 tools will be indispensable in application analysis and optimization, even
more so than in parallel computing applications where such tools are already commonly used and highly
valued.

Unfortunately, traditional performance analysis tools are only equipped to monitor application behav-
ior from the CPU’s perspective. Systems such as the Cray XD1 [3] or those employing Opteron-socket-
compatible FPGA boards (e.g., XtremeData [4] or DRC [5]) are advancing the FPGA from slave to peer with
CPUs, enabling the FPGA to independently interact with resources including main memory, other CPUs,
and other FPGAs. Due to the increasingly significant role FPGAs play in RC applications, conventional

1Throughout this paper, performance analysis refers to experimental performance analysis (i.e., studying application behavior
on an actual system at runtime).
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Figure 1: Potential communication bottlenecks (represented by arrows) in an RC application

tools have an increasingly incomplete view of application performance, yielding the need for hardware-aware
performance analysis tools that can provide a complete view of RC application performance. To illustrate
this need, Figure 1 shows the hierarchy of parallelism and myriad of interactions inside an RC system,
differentiating between communications that can be monitored (light arrows) and others that cannot (dark
arrows) by traditional performance analysis tools. With FPGA communication paths to CPUs, other FP-
GAs, and various levels of memory, the amount of unmonitored communication is significant, hindering the
designer’s ability to understand and improve application performance.

In this paper, we explore the challenges faced in attaining low-overhead, automatable techniques for
instrumentation and runtime measurement of RC applications. We also present concepts for the integration
of these techniques into an existing parallel performance analysis tool, Parallel Performance Wizard (PPW),
with the goal of creating a unified performance analysis tool for RC applications. The remainder of this
paper is organized as follows. Section 2 discusses background and prior work related to performance analysis
in software and RC. Section 3 then explores the challenges and techniques for performance analysis of
RC applications. Next, Section 4 provides an overview of our performance analysis framework. Section 5
provides results from a case study to demonstrate the benefits and importance of performance analysis in
RC applications using a prototype of our hardware measurement module. Finally, Section 6 concludes this
paper and gives directions for future work.

2 Background & related research

The goal of performance analysis is to understand a program’s runtime behavior on a given system in
order to locate and alleviate performance bottlenecks. For parallel-computing applications, Maloney’s TAU
framework [6] and Chung et al.’s recent study of performance analysis tools on the Blue Gene/L [7] provide
a good introduction to the various challenges, techniques, and tools in performance analysis. Performance
analysis can generally be decomposed into five stages (shown in Figure 2): instrumentation, measurement,
analysis, presentation, and optimization. Instrumentation is the process of enabling access to application (or
system) data to be measured and stored at runtime. Measurement is then the act of recording and storing
data while the application is executed on the target system. The resulting measured data is next presented
via visualizations and analyzed by the application designer to locate potential performance bottlenecks.
Optionally, some analysis may be automated, allowing visualizations to be augmented with the locations
of potential bottlenecks. The designer then optimizes the application, attempting to remove performance
bottlenecks discovered in the previous stages. These steps may then be repeated until desired performance
is achieved or no further performance gains seem likely.

Performance analysis should not be confused with analytical models or simulation, which provide esti-
mates of application performance that must eventually be verified against actual performance. Performance
analysis is essential to capture actual application behavior on a given target system for the purposes of
optimization. Similarly, although debug techniques can be useful to performance analysis, this overlap is
limited by fundamental differences in their purpose. For example, debug techniques such as breakpointing
and FPGA readback must stop the FPGA application in order to retrieve data [8]. Unfortunately, this tech-
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Figure 2: Stages of performance analysis

nique effectively isolates the FPGA from the rest of the system, which typically cannot be paused. While
isolation is encouraged in debugging, it is extremely problematic in performance analysis since component
interaction in the system is a key factor. Tools such as Altera’s SignalTap [9] and Xilinx’s ChipScope [10] do
allow an FPGA to run at or near full speed in a system (minimizing changes to application behavior), but
are designed to monitor exact values at each cycle over a given period to ensure correctness, much like a logic
analyzer. In contrast, performance analysis assumes correctness and is instead concerned with timeliness of
application progress, often allowing data to be summarized or ignored. By reducing the data recorded, fewer
storage and communication resources are necessary to monitor an application, minimizing the distortion of
the original application’s behavior. In addition, SignalTap and ChipScope require separate connectors (e.g.,
JTAG) to acquire data, which are not readily accommodated or available for many systems.

While some preliminary work exists in RC performance analysis, this field is significantly less mature
than its software counterpart. DeVille et al.’s paper investigates the use of distributed and centralized
performance analysis probes in an FPGA but is limited in scope to efficient measurement within a single
FPGA [11]. Schulz et al.’s OWL framework paper proposes the use of FPGAs for system-level performance
analysis, monitoring system components such as cache lines, buses, etc. However, their work is directed at
monitoring software behavior from hardware, rather than monitoring hardware itself [12].

3 Challenges for RC performance analysis

Significant challenges exist in each of the five stages of performance analysis. Instrumentation and mea-
surement form the foundation of performance analysis that is built upon by analysis, presentation, and
optimization. Thus, our focus in this paper will be instrumentation and measurement. We also briefly
present challenges in presentation as well as concepts toward a unified performance analysis tool. As au-
tomating analysis and optimization are still open research areas (and thus these stages are often performed
manually), these topics are beyond the scope of this paper. Within instrumentation and measurement, the
key goals of performance analysis tools are the following (adapted from [6]):

1. Perturb the original application’s behavior as little as possible (minimize impact).

2. Record sufficient detail & structure to accurately reconstruct application behavior (maximize fidelity).

3. Allow flexibility to monitor diverse applications and systems (maximize adaptability and portability).

4. Require as little effort from the designer as possible (minimize inconvenience).

Goals 1 and 2 are opposed to one another, as are Goals 3 and 4. Thus the challenges faced generally stem
from attempting to reach a compromise. The following two goals for presentation provide some context for
the four goals above, as presentation uses the measured data to reconstruct application behavior:
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5. Display only what is necessary to capture application behavior and bottlenecks (be concise).

6. Format data to allow rapid understanding of application behavior (be intuitive).

3.1 Challenges for hardware instrumentation

Instrumenting a hardware design involves gaining entry points to signals (i.e., wires) in the application. A
logic analyzer exemplifies this process with logic probes connected to external pins that are in turn connected
to values of interest in the application. By taking advantage of the reconfigurability of an FPGA, we can
use the built-in routing resources to temporarily access application data, acquiring the necessary entry
points for measurement. Instrumentation involves choosing what data to instrument, choosing the level(s) of
instrumentation (e.g., source, binary, etc.), and finally modifying the application at the chosen level to gain
access to the selected data. These issues are discussed in the following subsections.

3.1.1 What to instrument

Instrumenting an application begins with a selective process that determines what data to record and what
to ignore. The data chosen should reflect application behavior as closely as possible while simultaneously
minimizing perturbation of that behavior (Goals 1 and 2). While application knowledge is useful in making
these selections, it is desirable to automate this time-consuming process when possible (Goal 4). Software
performance analysis has demonstrated that such automation is possible by using knowledge of what con-
stitutes a common performance bottleneck to guide instrumentation. Thus, one key challenge in FPGA
instrumentation is determining common performance bottlenecks in a typical FPGA design.

Applications consist of communication and computation, both of which must be monitored to under-
stand application behavior. Software performance analysis typically monitors specific constructs that invoke
communication explicitly or implicitly through synchronization primitives such as barriers and locks. Com-
putation is typically monitored by timing function calls or other control structures such as loops, which are
similar to the mechanisms used to control subcomponents in hardware (e.g., state machines, pipelines, loop
counters, etc). Thus, these hardware communication and control constructs provide a starting point for
studying common performance bottlenecks in an FPGA.

In an FPGA, communication includes off-board (e.g., to another FPGA, CPU, main memory, etc.),
on-board (e.g., to on-board DDR memory or other FPGAs connected to the FPGA on the same board),
or on-chip (between components inside the FPGA device) communication. Communication off-board and
on-board is widely known to be a potential bottleneck in FPGA-based system designs. Nonetheless, on-
chip communication can be a significant bottleneck as well, especially if some form of routing network
or data distribution is implemented in the design (a common technique used in applications containing
multiple cores to exploit parallelism). Instrumenting on-chip communication between components (e.g., to
observe frequency of communication or bytes transferred) can help the designer to better understand how
the component is used. However, due to the large amount of parallelism possible in an FPGA, monitoring
all on-chip communication can incur significant overhead.

Control can become a bottleneck when too many cycles are used for setup, completion, or bookkeeping
tasks. However, the primary reason for instrumenting control is to gain insight into the application’s behavior,
helping the designer to locate other bottlenecks. As an example, if a state machine contains a state that
waits for data from an FFT core, recording the number of cycles spent in this wait-state can determine
whether the FFT core is a bottleneck in the application. This information is comparable to that obtained
by a software performance analysis tool monitoring the amount of time an FFT subroutine required.

It is important to note that instrumentation should generally be restricted to clocked elements in hard-
ware. Synthesis and place-and-route tools already optimize delays associated with unclocked (combinatorial)
signals; these delays can be analyzed via timing analysis, simulation, or debugging tools. Even in designs
that are primarily combinatorial, there is inevitably some clocked portion of the design that handles con-
trol or communication (and often multiple levels of communication and control), demonstrating the wide
applicability of these areas across designs (Goal 3).

Thus, communication and control are reasonable points to instrument initially. However, application
knowledge can often give further insight into what should be instrumented. Certain control and commu-
nication may be unnecessary to monitor in a specific application; performance may be better understood
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by monitoring a specific input value to a component. This application knowledge is extremely difficult
to automate, and thus determining what to instrument remains a significant challenge in RC performance
analysis.

3.1.2 Levels of instrumentation

Before reaching the challenge of modifying an application for analysis, the level at which instrumentation will
occur must be selected. The hardware portion of an RC application can be instrumented at any level between
source code (e.g., VHDL) and bit file (binary loaded directly onto the FPGA). While it is also possible to
use system-level instrumentation (e.g., OWL [12] discussed in Section 2), this approach lacks portability due
to the requirement of dedicated hardware to monitor system components such as cache lines, buses, etc. In
addition, data unrelated to the application is also captured, such as the behavior of the operating system
and other running applications, making system-level instrumentation less suitable for performance analysis
of a specific application. System-level instrumentation is thus not considered further here.

Graham et al. provides an excellent look at the various levels and associated tradeoffs of application-
level instrumentation inside an FPGA [13]. They indicate that while instrumenting at intermediate levels
between source code and binary offers some advantages (e.g., modifying clean abstract syntax trees as
opposed to source code or binaries), these advantages are not significant enough to counterbalance the poor
documentation and difficulty of accessing these levels (some levels exist only in memory during synthesis
and implementation). Thus, the levels of instrumentation are in practice polarized into source-level and
binary-level instrumentation.

Source instrumentation is attractive since it is easier to implement, is fairly portable across devices, is
flexible with respect to which signals can be monitored, and often minimizes the change in area and speed
of the instrumented design due to optimization of the design after instrumentation. Source instrumentation
also offers the possibility of source correlation, allowing behavior to be linked back to source code.

In contrast, binary-level instrumentation is attractive because it requires less time to instrument a design
(e.g., minutes instead of hours as it occurs after place-and-route), is portable across languages for a specific
device, and perturbs the design layout less, again since it is mostly added after the design has been optimized
and implemented. Unfortunately, binary instrumentation for FPGAs is very difficult, much more so than
instrumenting assembly code in a software binary. In addition, binary instrumentation loses some flexibility
since synthesis and implementation may have significantly transformed or eliminated some data during
optimization or made some data inaccessible via the FPGA routing fabric. Links between behavior and
source code are also lost.

It is also possible to apply instrumentation at both levels, allowing the designer to select the appropriate
compromise for each instrumented datum. Table 1 provides a summary of the comparison between source
and binary instrumentation.

Table 1: Source vs. binary instrumentation
Source-level Binary-level

Difficulty Text parsing Bit file signal routing
Design Perturbation Low change in area & speed Low change in on-chip physical layout
Time to Instrument Long (hours) Short (minutes)
Portability Good across devices Good across languages
Flexibility Access to all signals Some data inaccessible
Source Correlation Possible Generally not possible

3.1.3 Modifying the application

Once an instrumentation level has been selected, the application must be modified to allow access to whatever
data has been chosen for instrumentation. While both source and binary instrumentation can draw heavily
from similar techniques in software and FPGA debugging, automatic instrumentation based upon the decision
to instrument control and communication (discussed in Section 3.1.1) still poses a challenge for FPGA
instrumentation. For example, software instrumentation might involve scanning source code for specific API
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calls that are harbingers of communication (e.g., an MPI Send call in an MPI program), whereas FPGA
communication and control are not as easy to detect in either the High-Level Language (HLL) or Hardware
Description Language (HDL) portion of the application. Due to a lack of standards, FPGA communication
in HLLs is currently proprietary, appearing in forms such as vendor function calls, software pointers to FPGA
memories, and I/O calls. In an HDL, communication with a CPU, other FPGA, or on-board memory can
either be proprietary or conform to one of many standards depending on the actual hardware available (e.g.,
PCIx/e, HyperTransport, RapidIO, SDRAM, SRAM). On-chip communication, while better defined by the
component inputs and outputs, still poses similar difficulties. For example, components in an FPGA may
make use of a read enable signal which can be named arbitrarily, or the component may read data only when
a complex set of conditions are true.

Source-level instrumentation for hardware can employ a preprocessor to scan application code and insert
lines to extract the desired data at runtime (e.g., in VHDL, the component interface can be modified to
allow access to performance data). The challenge here lies in the expressiveness of the given language; the
preprocessor must be able to cope with the various ways in which a designer may structure or express the
behavior of their application. For example, the use of an enumerated type in VHDL along with a clocked
case statement using that type would usually suggest a state machine. However, the same structure could
be represented with constants and a complicated if-then-else structure.

Binary-level instrumentation suffers similar difficulties. Now control and communication must be detected
from a fully optimized and implemented design. While escaping the problem of the source language’s
expressiveness, the hierarchy and structure behind much of the application has been flattened and reformed
during synthesis and implementation. Given a set of physical lookup tables (LUTs) in the FPGA to monitor,
binary-level instrumentation can be performed by synthesizing and implementing the original design as usual,
except for the need to reserve space and connection points for the measurement device. After synthesis and
implementation, tools such as Xilinx’s JBits SDK [14] can be used to place the measurement framework in
the device and route signals to it from the application.

3.2 Challenges for hardware measurement

Measurement is concerned with how to record and store data selected during instrumentation. An integral
challenge of this process is to record enough data to understand application behavior while at the same
time minimizing perturbation caused by recording (Goals 1 and 2). Due to limited resources and a lack of
resource virtualization on an FPGA, resource sharing between the application and measurement framework
presents a unique challenge for RC performance analysis.

3.2.1 Recording and storing performance data

To balance fidelity and overhead, software performance analysis employs techniques such as tracing (recording
individual event times and associated data) and profiling (recording summary statistics and trends, not when
specific events occurred). These methods can be triggered to record information under specific conditions
(event-based) or periodically (sampling). The efficacy of one technique over another is dependent upon what
behavior needs to be observed in the application.

Tracing is the methodology of recording data and the current time (based on a device clock) for individual
events, allowing the duration and relative ordering of these events to be analyzed. To maintain event ordering
between devices, clock offset and drift must be periodically monitored on all CPUs and FPGAs; methods
such as those in [15] estimate round-trip delay, enabling clock drift to be corrected postmortem. While closely
related to hardware debugging, tracing in performance analysis must be sustainable for an indefinite period
of time in order to capture application behavior (debug techniques often record until memory is exhausted).
To reduce the amount of data recorded, event-based tracing records data only under specified conditions,
whereas sample-based tracing records data periodically. Based on the event conditions or sampling frequency,
a different compromise is reached between fidelity and perturbation.

Profiling differs from tracing in that no specific event timing is stored. Rather, summary statistics of the
data are maintained, usually with simple counters that are extremely fast and fairly small. Profiling sacrifices
some of the fidelity of tracing for less perturbation of the design. Profile counters can provide statistics such
as totals, maximums, minimums, averages, and even variance and standard deviation, although at the cost
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of additional hardware (and possible performance degradation). As with tracing, profile counters can be
updated based upon an event or by periodically checking some condition (sampling).

One significant difference between software and hardware performance analysis with respect to profiling
and tracing is parallelism. While software measurement requires additional instructions to profile or trace
the application that generally degrade performance, profile counters and trace buffers can work indepen-
dently of the application and each other in hardware. Thus, hardware performance analysis can incur no
performance degradation if sufficient resources are available and the design’s maximum clock frequency is
unaffected. In addition, it is possible to monitor extremely fine-grained events, even those occurring every
cycle. Another significant difference involves limited memory availability in an FPGA. Software performance
analysis typically has hundreds of megabytes of memory or more to store profile and trace data, while an
FPGA such as Xilinx’s Virtex-4 LX100 device contains only 540KB of block RAM and 13.5KB of memory in
logic cells [16]. While profiling typically requires far less memory than tracing, profile counters that must be
accessed simultaneously are likely to be placed in logic cells (a set of profile counters can be placed in block
RAM if only one counter in the set will be updated per cycle). As an example, 512 36-bit profile counters
require a minimum of 16.7% of logic cells in Xilinx’s Virtex-4 LX100 device [16], and yet could be stored
in a single block RAM (representing only 0.4% of block RAM on the same device). In contrast, tracing is
well suited for block RAM and thus can make use of additional storage. Unfortunately, trace data can easily
exhaust block RAM resources, yielding a shortage of resources for both profiling and tracing.

In hardware, the tradeoffs between tracing and profiling provide a significant challenge to automating the
selection of the measurement type to use for a specific signal in an FPGA. While the designer may recognize
data that would be problematic for tracing or poorly represented by profile counters, this knowledge is
rarely explicit in the application code or bit file. Worse, once a selection has been made, the measurement
framework necessary to monitor this selection may not fit in the remaining logic or memory on the FPGA,
or the measurement framework may cause significant degradation of the maximum frequency at which the
application can run. Thus, finding a balance between perturbation and fidelity may require significant
knowledge of both the application and tradeoffs in measurement strategies.

3.2.2 Managing shared resources

One of the greatest challenges in RC performance analysis is the management of shared resources that were
once exclusively controlled by the application. Although the sharing of on-chip resources is important, this
sharing is handled by the synthesis and implementation tool, and thus is of less concern than off-chip memory
and communication sharing, which must be managed manually. While recording performance data would
ideally require no off-chip communication (or possibly use a separate communication channel such as JTAG),
the typical volume of trace data, the limited number and size of large memories, and the limited number
and bandwidth of communication channels will generally necessitate sharing of memory (e.g., the FPGA
on-board memory or the CPU main memory), the communication channel, or both.

Software performance analysis tools can share memory, communication, and processor time with the
application through operating system and hardware virtualization (processes, virtual memory, sockets, etc.).
FPGAs have none of this infrastructure, requiring the performance analysis tool to handle these complexities.
To share the FPGA interconnect, performance analysis frameworks must ensure performance and application
data can be distinguished so that each is delivered to the correct location, usually by allocating memory and
address space for performance data to use exclusively. Arbitration between the application and performance
analysis hardware is also necessary to ensure that only one can access the interconnect at a time.

One added complexity is that the communication architecture may only allow the CPU to initiate a data
transfer from the FPGA to main memory. This scenario can be handled by instrumenting the application
software to periodically poll the performance analysis hardware for data, either directly between other
application tasks or via a separate process or thread. If supported, interrupts can be used to have the CPU
initiate a transfer, although interrupts are often scarce and thus may also need to be shared if used by
the application. When CPU-initiated data transfers are used, the application and performance monitoring
software must use locks to guarantee they do not access the FPGA simultaneously.

Schemes to minimize the perturbation of application performance (Goal 1) must also be considered
when sharing any resource. These schemes generally reduce to conflict resolution between the performance
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framework and the application. With FPGA-initiated data transfers, decisions may be fairly fine-grained,
allowing a performance data transfer to be interrupted to permit application use of the shared resource.
CPU-initiated data transfers typically cannot be interrupted, requiring coarse-grained techniques such as
adapting the polling frequency dynamically to account for application use and available performance data.

It is important to note that while measurement determines the need for communication sharing, instru-
mentation is affected as well, since it must now be aware of the application’s communication scheme and
seamlessly integrate with it. Communication schemes such as memory maps or network packets are used
with a variety of interconnects and by diverse APIs for FPGAs. In order to automate instrumentation, the
tool must be able to detect and assign some unused portion of the application’s address space (or some other
unique identifier not used by the application), connect to the application at the proper level in the design in
order to avoid dealing with the details of a specific interconnect, and detect and add locks around all FPGA
communication in the software portion of the application. Providing both automated instrumentation and
measurement techniques to support shared resources is thus a significant challenge for measurement in RC
performance analysis.

3.3 Challenges for performance presentation

Conventional trace-based display tools such as Jumpshot [17] use timeline views to show communication and
computation for parallel computing applications. These timeline views can be extended to include FPGAs
as additional processing elements for RC applications. A (mockup) visualization example is shown in Figure
3. In this example, the CPUs (nodes 0-7) are performing work and receiving data from the FPGAs (nodes
8-15). Nodes 3 (CPU) and 11 (FPGA) complete first near the middle of the diagram, while nodes 4 and
12 are lagging, completing toward the end, finally allowing global synchronization of all nodes before a new
iteration begins.

Figure 3: Mockup Jumpshot visualization of an RC application with 8 CPUs and 8 FPGAs

Unfortunately, such timeline views scale poorly as system sizes increase to hundreds or thousands of
nodes. Knüpfer et al. argue that as trace data sizes continue to grow, timeline views must continue to show
smaller fractions of this data and yet still convey meaningful information to the user [18]. They propose de-
tecting repetitive patterns and collapsing these patterns visually into a single box, thus highlighting irregular
behavior in the application to combat these scalability issues. These issues are present in RC performance
presentation as well and are further complicated by the task of concisely, yet accurately, displaying the
heterogeneous parallelism inside the FPGA. Traditional performance analysis tools treat any possibility for
parallel execution (e.g., via multiple cores in a CPU, CPUs in a symmetric multiprocessor, or nodes in a
cluster) as separate “threads” that serially run functions, communicate, wait for other nodes to complete,
etc. Due to the vast amount of parallelism possible in an FPGA, such an abstraction can be unwieldy
(violating Goal 5). Worse yet, treating the FPGA as a large uniform multicore device is inaccurate, given
the differing types of components and the specific hierarchy within which they exist. On the opposite end of
the spectrum, portraying an FPGA as a single processing element (as is done in Figure 3) may not be useful
as this excludes too much parallelism inside the FPGA.
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Hierarchical views may be better suited to the heterogeneous devices and behavior in a large-scale RC
system. For example, Figure 4 shows one possibility of such a display capturing both potential and actual
communication and computation in the context of a system. Actual communication rates are given nu-
merically, while the maximum bandwidth for each channel is depicted in the associated rectangular boxes.
Computation is depicted similarly, representing the percentage of time that the device or FPGA core was
busy. From the figure, four possible performance bottlenecks are readily visible: the network interface, the
communication channel to CPU 1, the two cores in FPGA 1, and the communication and computation
surrounding CPUs 4 and 5 and FPGA 2. It is also evident that there is relatively little use of resources such
as CPUs 2 and 3 and FPGA 0. A more detailed profile and trace data view could be integrated when the
user clicks on a node or communication channel (shown on left of figure). For example, from the detailed
communication channel view, the designer is able to see the duration of a communication spike that would
not be evident from a statistical average, maximum, or minimum.

Figure 4: Example hierarchical display of a complex RC application

From a practical standpoint, obtaining the communication and computation shown in Figure 4 is fairly
straightforward, requiring profile (and optionally trace) data to be collected on both the CPUs and FPGAs.
Generating the diagram layout automatically is non-trivial since the system architecture must be understood,
but this problem could be handled by querying the system for as many parameters as possible, filling in the
remaining gaps manually for a given system; this process would only need to be done once per system unless
the configuration was changed. If actual sustained throughput values are desired rather than maximum
theoretical bandwidth values, these must be obtained as well, usually via microbenchmarks.

Ultimately, the purpose of any performance visualization is to aid the designer in forming strategies for
optimization. For example, one possible improvement to the application in Figure 4 would offload some of
the workload from FPGA 1 to underutilized resources such as FPGA 0 or CPUs 2 and 3 (or both). Another
possibility consists of sharing some tasks currently assigned to CPUs 4 and 5 with CPUs 2 and 3. Both
of these improvements are dependent on the ability to further parallelize or partition tasks, and have the
possibility of affecting communication significantly. For example, CPUs 4 and 5 have nearly saturated their
communication channels; moving some of the work to CPUs 2 and 3 may incur additional communication or
may distribute some of the communication from CPUs 4 and 5 to CPUs 2 or 3. Given potential bottlenecks
and solutions, the designer can apply application knowledge to make the appropriate optimizations.
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3.4 Unified performance analysis tool

To create a holistic view of an RC application’s behavior, a unified software/hardware tool is essential.
Separate tools will give a disjointed view of the system, requiring significant effort to stitch the two views
back together. In addition, each tool must make decisions about instrumentation and measurement without
any knowledge of what is being monitored by the other. A unified tool can take advantage of strategically
choosing where to monitor a specific event (i.e., from software, hardware, or both) based upon factors such as
efficiency, difficulty in accessing information, and accuracy of that information. Also, some instrumentation
and measurement techniques require complimentary modifications to software and hardware (e.g., modifying
a memory map to allow CPU-initiated transfers of performance data).

We use Parallel Performance Wizard (PPW) [19] as a specific software performance analysis tool to
discuss integration here, although these concepts apply to other tools as well. PPW supports performance
analysis for Partitioned Global Address Space (PGAS) programming models such as UPC and SHMEM as
well as to message-passing models such as MPI. PGAS performance analysis is enabled by way of the Global
Address Space Performance (GASP) interface [20], which specifies the interaction between a performance
tool (such as PPW) and the programming model implementation (such as Berkeley UPC or gcc-upc). Based
on a specific language, many constructs such as synchronization primitives will warrant monitoring, which
the compiler instruments by using event callback functions (user-defined events are also possible). These
events can then be received by any tool supporting the GASP interface, where the tool can choose to profile,
trace, or ignore these events.

To track FPGA activity from software, the GASP interface can be extended with generic events such
as FPGA reset, configure, send, and receive. Upon receiving an FPGA event, the performance tool could
store information such as average bytes transferred, maximum time taken to reconfigure the FPGA, or
minimum latency observed, providing a detailed view of FPGA communication from software. However,
automatically adding these extended GASP functions around FPGA communication is difficult due to the
variety of ways FPGA communication can appear in software. Ideally, a standard API for FPGA access
could make detection of FPGA calls trivial. In the absence of such a standard, the performance analysis
tool must detect each vendor’s FPGA access methods and map them to the appropriate generic event.

4 Framework

In this section we propose an initial framework to instrument and measure an FPGA’s performance at run-
time using the same communication channel used by the application for performance data transfers. For
simplicity, portability, and flexibility in what can be monitored, our framework employs source instrumenta-
tion (specifically of VHDL). To ensure applicability to systems without FPGA-initiated transfers, interrupts,
or access to other large memories, we use CPU-initiated retrieval of FPGA performance data at runtime
using only on-chip FPGA resources. We discuss the instrumentation methodology first, followed by the
measurement portion of the framework.

4.1 Instrumentation

Figure 5 illustrates the changes to an RC application during instrumentation in order to support measure-
ment. These changes can be divided into the following seven steps:

1. All signals, variables, component ports, and other data available in the HDL source files are enumerated
along with their types, locations in the hierarchy, and other useful information. This information is
gathered by parsing the user’s VHDL code directly via a standard VHDL grammar and parser.

2. An automated selection of data is made based on a desire to monitor communication and computation.
For example, all state machines can be profiled, average use of the input and output ports of the top-
level file can be monitored, and any identifiable control signals for subcomponents can be profiled or
traced. This automation is based on common practices in VHDL code (e.g., state machines are often
used for component control and generally appear in case statements), and thus may fail to find data to
monitor (or conversely may monitor unnecessary data) depending on coding style and the nature of the
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Figure 5: Additions made by source-level instrumentation of an RC application

application. Therefore, the user is optionally given the ability to override any decision made by the tool
by adding or removing items to monitor (e.g., signals, variables, component ports), specifying whether
to use profiling or tracing, and choosing the amount of FPGA resources to devote to monitoring.

3. Given the final list of what data is to be monitored (and how to monitor it), the tool automatically
modifies a copy of the user’s VHDL code to output all monitored data to the user’s top-level file (illus-
trated in Figure 6a). Data types are converted to std logic vector whenever possible for simplicity
of monitoring (e.g., enumerated types are converted to std logic vector using the state’s position in
the enumerated list); any type that is not understood is passed out as a new type (e.g., HMM Type1)
defined identically to the original type, assuming the user will manually handle the analysis. Note that
the new type ensures the user’s data can traverse the component hierarchy to the top-level file; the
user’s original type may have been defined only in the component where it was used. Each compo-
nent in the design’s hierarchy must output its monitored data as well as all monitored data from its
subcomponent(s), if any.

4. A new top-level file is created by duplicating the user’s top-level file interface and splicing into the
communication scheme to allow the performance tool to gain access to the interface as well (e.g., the
performance tool might be assigned unused memory space to allow routing of incoming data to the
correct location). This step is extremely difficult to automate in a fool-proof manner and thus is
permitted to fail, allowing manual control by the user if necessary. Note that the new top-level file
is permitted to have additional HDL files above it (e.g., a wrapper to interface with a bus or other
interconnect) that the user has no interest in instrumenting.

5. The signals, variables, and other data to be monitored are then connected to the Hardware Mea-
surement Module (HMM) (see next section), which handles all recording of performance data and
transferring of that data to the CPU when requested. Any analysis or combination of the signals is
handled here, such as triggering an event only if both the error flag and write enable are true. If only
part of a signal or a subset of components needs to be monitored, then only these signals or components
are connected to the HMM, leaving the remainder unconnected for removal by the synthesis tool.

6. In software, a data transfer module is added immediately after the user’s initialization of the FPGA.
This module will execute as a separate thread that periodically polls the FPGA for performance data
and then transfers that data to main memory. This thread uses generic FPGA calls, coupled with
the appropriate mapping between these calls and the actual vendor-specific FPGA calls, to improve
portability.
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7. A lock is placed around any call to the FPGA in the user’s application, as the FPGA must be guarded
against simultaneous access by the application and data transfer thread. The same lock is already
present in the data transfer thread (this and previous step are illustrated in Figure 6b).

In step 6, the software interface to launch and manage this thread is wrapped into four simple calls:
HMM Init, HMM Start, HMM Stop, and HMM Finalize (shown in Figure 6b). The initialize and finalize routines
manage the setup and cleanup of all necessary memory and thread resources on the software side. The start
and stop routines act as a stopwatch, launching and stopping the data transfer thread (and optionally
the hardware measurement itself) for portions of code that do not require monitoring. In general, it is
possible to override key vendor API functions to manage this thread automatically, allowing HLL source
instrumentation (steps 6 and 7) to be fully automated. Note that source instrumentation of the user’s HDL
requires the application to be resynthesized and implemented before executing, while source instrumentation
of the user’s HLL requires use of the vendor’s API to access the FPGA.

--Application libraries
use work.HMM_Types.all;
entity ... is port (

HMM_Data1 : out HMM_Type1;
HMM_Data2 : out HMM_Type2;
-- Application signals

);
end ...

architecture ... Is
...
begin

HMM_Data1 <= App_Value_1;
...
process ... begin

HMM_Data2 <= App_Value_2;
...

end process;
end ...

(a) HDL source code modifications

#include “HMM.h”
int main() {

// Application initializes FPGA
HMM_Init(...);
...
HMM_Start(...);
...
// Application FPGA call
pthread_mutex_lock(lock);
FPGA_Write(...);
pthread_mutex_unlock(lock);
...
HMM_Stop(...);
...
HMM_Finish(...);
// Application closes FPGA

}
(b) HLL source code modifications

Figure 6: Instrumentation of user source code

4.2 Measurement

At the center of measurement in the FPGA is the Hardware Measurement Module (HMM). The HMM is
responsible for implementing all profile, trace, and sampling capabilities, as well as packaging that data for
retrieval by software. The HMM allows quick customization of (and easy access to) all of these resources,
eliminating the time-consuming and error-prone process of manually measuring performance. Features in-
clude arbitrary counter and trace sizes (limited by resources); storage of maximums, minimums, and averages
of selected values; counters for each trace buffer indicating the number of records dropped (trace records may
be dropped due to insufficient buffer space); ability to clear, stop, hold, and acknowledge errors in profile
and trace units; packaging of all performance data to the specified interface width for export to the CPU;
and storage of records in logic cells, block RAM, or on-board memories (if available). Figure 7 illustrates
the design of the HMM.

At runtime, the polling thread inserted by instrumentation periodically retrieves all trace data (and op-
tionally profile data as well) from the FPGA. To minimize perturbation of the application’s communication
channel, the polling rate can be adaptive, increasing or decreasing based upon a target usage of the commu-
nication channel, the application’s usage of the communication channel, or the number of recently dropped
trace records on the FPGA. The HMM receives a request for profile data, trace data, or module statistics
(e.g., dropped trace records), and splits the data up into pieces the size of the communication channel width.
The HMM can also receive commands to clear, stop, or acknowledge overflows of profile counters and trace
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buffers. Sampling capabilities are also available, allowing trace buffers to record for a specified number of
cycles. Once data is retrieved from the HMM, this data may be lightly processed to reduce storage overhead.

5 Case Study

To demonstrate the benefits and importance of RC performance analysis techniques, as well as explore
the associated overhead, we present results from a case study using a prototype version of the framework
discussed in Section 4. In our prototype version, the instrumentation steps are performed manually (Section
4.1), with profile counters and a trace buffer available in the HMM. The data transfer module retrieves data
at a fixed rate, polling once per millisecond.

For our case study, we executed the N-Queens benchmark application on two RC systems. The first
RC system, the Cray XD1, consists of six nodes, each containing two Opteron 250 CPUs and a Xilinx
Virtex-2 Pro 50 FPGA connected via a high-speed interconnect (3.2GB/s ideal peak) [3]. The second RC
system is a 16-node Infiniband cluster, each node containing a 3.2GHz Intel Xeon EM64T processor and
a Nallatech H101-PCIXM application accelerator [21] employing a Xilinx Virtex-4 LX100 user FPGA and
connected via a PCI-X bus (1GB/s ideal peak). The N-Queens application was implemented using UPC
(software) and VHDL (hardware). Compilation for the Cray XD1 was performed using Synplicity’s Synplify
Pro 8.6.2, Xilinx’s ISE 7.1.04i, and Berkeley UPC 2.4.0, while compilation for the 16-node Infiniband cluster
was performed using Nallatech’s Dimetalk 3.1.5, Xilinx’s ISE 9.1.03i, and Berkeley UPC 2.4.0.

The N-Queens problem asks for the number of distinct ways that N queens can be placed onto an N ×N
chessboard such that no two queens can attack each other [22]. As only one queen can be in each column,
a simple algorithm was employed to check all possible positions via a back-tracking, depth-first search.
Parallelism was exploited by assigning two queens within the first two columns; each core then receives a
partial-board and generates all possible solutions by moving queens in the remaining N−2 columns, returning
the number of solutions to software. The program was executed on both RC systems using a board size of
16× 16. The N-Queens application was first executed without hardware instrumentation to acquire baseline
timing, and then with instrumentation to collect measured data. The HMM was configured to include 16
profile counters in each FPGA (six for monitoring application communication, nine for monitoring an N-
Queens core state machine, and one to monitor the number of solutions found by that core) and one 2KB
trace buffer to monitor the exact cycle in which any core in the application completed.

Table 2 provides the overhead incurred by adding instrumentation to the N-Queens cores and periodically
measuring profile counters and trace data from the N-Queens application at runtime. From this data,
a maximum overhead bandwidth of 33.3KB/s was observed, which is negligible when compared to the
interconnect bandwidth (the application used very little bandwidth as well, polling the device only once per
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100 milliseconds). Less than 7% of the FPGA’s logic resources and 2% of the block RAM were needed to
monitor the application. Frequency degradation ranged from 1% on the XD1 to no degradation on the larger
LX100 devices in the Nallatech cluster.

It is important to note that even though some decrease in maximum frequency may occur, some FPGA
systems have only coarse-grained or fixed clocks, polarizing the importance of frequency degradation. For
example, if the FPGA clock operates at either 75 or 100MHz, a drop from 102MHz to 101MHz would have
no effect while a drop from 102MHz to 99MHz would necessitate a significant drop in FPGA speed, reducing
the accuracy of performance data measured. However, both the XD1 and the Nallatech hardware allow
for fine-grained control of the clock, permitting a change of 1MHz or less via the Digital Clock Managers
(DCMs).

Table 2: Performance Analysis Overhead
Original (XD1) Instrumented (XD1) Resource change (XD1)

Slices (23616 total) 9041 (38.3%) 9901 (41.9%) +860 (3.7%)
Block RAM (232 total) 11 (4.7%) 15 (6.5%) +4 (1.7%)
Frequency (MHz) 124 123 -1 (-0.8%)
Communication (KB/s) 0.08 33.29 +33.21

Original (Cluster) Instrumented (Cluster) Resource change (Cluster)

Slices (49152 total) 23086 (47%) 26218 (53%) +3132 (6.4%)
Block RAM (240 total) 21 (8.8%) 22 (9.2%) +1 (0.4%)
Frequency (MHz) 101 101 0 (0%)
Communication (KB/s) 0.04 29.86 +29.82

The number of cycles spent in each state of an N-Queens core state machine was monitored in order to
understand a core’s behavior at runtime. While not accessible from a software performance analysis tool,
this information is easily obtained by using as many profile counters as there are states, with each counter
incrementing when that state occurs. From this data, the percentage of cycles spent in each state was
calculated and is shown in Figure 8. More than a third of the total time is spent determining whether any
queens can attack each other. While this state would normally be targeted for optimization, it was already
heavily optimized, leaving little room for improvement. However, Figure 8 also shows that the Reset Attack
Checker state consumes 12% of the total state machine cycles, which is surprising given the relatively small
job that this state performs. Thus, a relatively simple modification was made to combine the Reset Attack
Checker state, as well as the Finished and Reset Queen Row, with the remaining states, yielding a potential
speedup of 16.3% versus the non-optimized version (based upon removing these states from the graph);
the actual speedup is expected to be less as communication and setup portions of the application have not
changed. While merging states could reduce the maximum frequency of the design, a negligible drop in core
clock frequency of the optimized version was observed. The optimized N-Queens core was then measured on
the target systems, giving an average speedup of 10.5%. This performance gain was greatly facilitated by the
use of hardware performance analysis, removing guesswork from understanding the application’s behavior
and aiding in the detection of performance bottlenecks.

The trace buffer was used to monitor the cycle in which any core in the device completed in order
to understand the penalty of the application’s static scheduling, which requires all cores in the device to
complete before receiving further work. Tracing data (ignoring trivial completions of invalid starting boards)
revealed that the first core to complete was idle 25% of the time, waiting for the last core to complete; on
average cores were idle 10% of the time. Thus, a dynamic scheduling algorithm could theoretically improve
speedup by 11%.

Figure 9 shows the speedup of the parallel software and both the initial and optimized hardware versions
of N-Queens over the baseline sequential C version. The 8-node software version was able to achieve a
speedup of 7.9 over the sequential baseline. The cluster executing the optimized hardware on 8 FPGAs
achieved a speedup of 37.1 over the baseline.
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6 Conclusions

In this paper we have explored various challenges faced in RC performance analysis. While we discussed
some challenges that are shared by software performance analysis, many of these challenges are more difficult
in or unique to RC. Challenges such as resource sharing, automation of instrumentation and measurement,
as well as compromises between accurate and precise measurement all need to be addressed for performance
analysis to be successful. Furthermore, difficulties in representing increasingly large FPGAs and RC systems
in meaningful visualizations are significant barriers as well. To address these challenges, we proposed a
framework to instrument an RC application and measure runtime performance data as well as concepts for
visualizations involving RC resources. We argued that, due to the complexity inherent in large-scale RC
systems and applications, unification of software and hardware performance analysis into a single tool is
crucial to efficiently record and understand application behavior at runtime.

To demonstrate the overhead and benefits of these techniques, results from an N-Queens case study were
provided. Using N-Queens on two RC platforms, we demonstrated that our prototype hardware measurement
module (HMM) incurred little overhead. Measuring application behavior using profile counters and trace
buffers cost no more than 6.4% of the logic resources in a medium-sized FPGA, 1.7% of the block RAM, 1% in
frequency degradation, and 33KB/s in bandwidth when polled once per millisecond. From the performance
data returned, including statistics on time spent in the main N-Queens state machine, the behavior of the
application was readily understood, resulting in a 10.5% speedup with minimal modifications.

Directions for future work include studying more advanced methods of signal analysis, measurement
approaches (e.g., FPGA-initiated transfers), and other techniques to minimize overhead and improve the
fidelity of measured data. In addition, further study of automated instrumentation techniques as well as
development of large-scale visualizations will be critical in order for performance analysis of RC applications
to achieve widespread use. Recording data from additional, more complex designs, including designs with
multiple clock domains or an embedded processor, is also important. In addition, performance analysis of
hardware generated from a high-level language is extremely important since another layer of abstraction
is added, further obfuscating application behavior. Finally, automation of analysis and optimization are
open areas of research that could enable more widespread and effective use of performance analysis without
intricate design knowledge.
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