
Parallel Performance Wizard: A Performance Analysis Tool for Partitioned
Global-Address-Space Programming

Hung-Hsun Su Max Billingsley III
Alan D. George

High-performance Computing and Simulation (HCS) Research Lab
Dept. of Electrical and Computer Engineering

University of Florida, Gainesville, Florida 32611-6200
{su,billingsley,george}@hcs.ufl.edu

Abstract

Given the complexity of parallel programs, developers
often must rely on performance analysis tools to help them
improve the performance of their code. While many tools
support the analysis of message-passing programs, no tool
exists that fully supports programs written in program-
ming models that present a partitioned global address space
(PGAS) to the programmer, such as UPC and SHMEM. Ex-
isting tools with support for message-passing models can-
not be easily extended to support PGAS programming mod-
els, due to the differences between these paradigms. Fur-
thermore, the inclusion of implicit and one-sided communi-
cation in PGAS models renders many of the analyses per-
formed by existing tools irrelevant. For these reasons, there
exists a need for a new performance tool capable of han-
dling the challenges associated with PGAS models. In this
paper, we first present background research and the frame-
work for Parallel Performance Wizard (PPW), a modular-
ized, event-based performance analysis tool for PGAS pro-
gramming models. We then discuss features of PPW and
how they are used in the analysis of PGAS applications.
Finally, we illustrate how one would use PPW in the anal-
ysis and optimization of PGAS applications by presenting a
small case study using the PPW version 1.0 implementation.

Keywords Performance analysis tool, partitioned global
address space, UPC, SHMEM, profiling, tracing.

1 Introduction

To meet the growing demand for greater computing
power, new shared-memory machines and clusters are con-
stantly being built. In order to take advantage of these pow-

erful systems, various parallel programming models have
been developed, ranging from message-passing to parti-
tioned global-address-space models. Given the added com-
plexity (compared to sequential programming) of these par-
allel models, users often must rely on performance analy-
sis tools (PATs) to help them improve the performance of
their application. Among the available programming mod-
els, the Message Passing Interface (MPI) has received the
majority of PAT research and development, as it remains
the most well known and widely used parallel programming
model. Almost all existing parallel PATs support MPI pro-
gram analysis. These include tools such as HPCToolkit [1],
KOJAK [2], MPE/Jumpshot [3], Paradyn [4], and TAU [5].

Recently, SPMD-based models providing the program-
mer with a partitioned global address space (PGAS) ab-
straction have been gaining popularity, including models
such as Unified Parallel C (UPC) [6], SHMEM, Co-Array
Fortran [7], and Titanium [8]. By extending the mem-
ory hierarchy to include an additional, higher-level global
memory layer that is partitioned between nodes in the sys-
tem, these models provide an environment similar to that
of threaded sequential programming. This global memory
abstraction is especially important in cluster computing, as
it no longer requires programmers to manually orchestrate
message exchange between processing nodes. Instead of
the explicit, two-sided data exchange (i.e. send, receive)
required by message-passing models1, PGAS models al-
low for explicit or implicit one-sided data exchange (i.e.
put, get) through reading and writing of global variables.
These one-sided communication operations greatly reduce
the complexity of data management from a programmer’s
perspective by eliminating the need to carefully match sends
and receives between communicating nodes. Furthermore,

1MPI-2 does support one-sided operations, but with strong usage re-
strictions that limit their usefulness (e.g. no concurrent writes are allowed
from different nodes to separate locations in the same window).



PGAS models can enable the development of new algo-
rithms for large systems that are otherwise too complex to
program under a message-passing environment [9].

However, the PGAS abstraction does force the program-
mer to give up some control over the communication be-
tween processing nodes, which can lead to a reduction in
performance (due to increases in the likelihood of unde-
sired program behavior). This situation is especially true
in a cluster environment when inter-node operations are ex-
pensive compared to local operations. Therefore, PAT sup-
port for PGAS models becomes even more critical to the
programmer. Unfortunately, no tool exists that fully sup-
ports the analysis of programs written using PGAS models.

In this paper, we present our work on Parallel Perfor-
mance Wizard (PPW), a new parallel performance analysis
tool that supports partitioned global-address-space program
analysis. The remainder of the paper is organized as fol-
lows: Section 2 provides a brief overview of existing per-
formance analysis tools. In Section 3 we present back-
ground research, and in Section 4 we introduce the high-
level framework for PPW. We then discuss features of PPW
and their usage in PGAS application analysis in Section 5.
Next, in Section 6, we demonstrate how PPW can be used
to optimize PGAS programs by presenting a case study. Fi-
nally, we conclude the paper and give future directions for
PPW research and development in Section 7.

2 Overview of Performance Analysis Tools

There are numerous performance tools based on the ex-
perimental measurement approach available for sequential
and parallel programming [10]. In this approach, pro-
grams are executed and performance data are gathered
through sampling or event recording under tracing or profil-
ing mode. In tracing mode, instances of performance data
are recorded separately from one another, while in profiling
mode only statistical information is kept. Figure 1 illus-
trates the typical stages in the experimental measurement
approach. In this cycle, user code is first instrumented by
the tool to provide some entry point for performance data
to be collected. This instrumented version is then executed
and event data are measured and recorded during runtime.
Based on these data, the tool then performs various data pro-
cessing and automatic analyses, and the result is presented
to the user through a text-based or graphical interface. Fi-
nally, optimizations are made to the original code and the
whole cycle repeats until an acceptable level of performance
is reached.

In terms of model support, tools supporting sequen-
tial C and MPI are the most common, with some also
supporting shared-memory programming models such as
OpenMP. Few tools have any support for SHMEM or UPC,
and tools with basic support for these models are typically

Figure 1. Experimental measurement stages

not portable and can only perform simple analyses. Many
performance tools use the Performance Application Pro-
gramming Interface (PAPI) [11], which provides platform-
independent access to hardware counters on a variety of
platforms. In addition, some tools, such as KOJAK and
Paradyn, also attempt to automatically identify performance
bottlenecks and quantify their impact on performance.

3 Background Research

In order to develop a suitable framework to fully support
PGAS models, we conducted several studies, including an
evaluation of existing performance analysis tools [12], an
examination of PGAS programming models, and a study
of tool usability. Based on the findings from these stud-
ies, we were able to identify several key characteristics and
techniques common to successful PATs that are also appli-
cable to PGAS models. These findings will be referenced
throughout the remainder of this paper.

1. It is critical for a successful tool to provide source-code
correlation so a user can easily associate performance
data with actual code.

2. Profiling data allow users to quickly identify possible
areas to focus their tuning efforts, while tracing data
provide detailed information that is often necessary to
determine the cause of performance degradation. Both
of these types of data are useful in their own right.

3. The wrapper approach for instrumentation commonly
found in MPI tools works well with SHMEM libraries,
but would be inadequate for compiler-based imple-
mentations of other PGAS models. A new instrumen-
tation method is needed to support PGAS models.

4. The inability of most existing tools in tracking and ana-
lyzing implicit one-sided communication remains one
of the biggest roadblocks in extending them to support
PGAS models. A new model is needed to handle im-
plicit one-sided communication.



5. Although PATs are effective in troubleshooting perfor-
mance problems, they are often too difficult to use and
as a result are not used by programmers. An intuitive
and easy-to-learn user interface is often the most crit-
ical quality of a productive tool. In addition, the tool
should automate the optimization process as much as
possible to alleviate the amount of effort needed from
the user.

4 PPW Framework

Figure 2 shows the framework of Parallel Performance
Wizard, which consists of modules corresponding to the
stages of the experimental performance analysis cycle.
While the overall design of our framework is similar to that
of other performance tools, there are a few key differences
in the design to accommodate the goal of supporting multi-
ple PGAS models in a single tool. Note that the optimiza-
tion stage is not included in the framework because auto-
matic code optimization is still not practical with current
technologies.

One important, novel aspect of the design of this frame-
work is the use of generic operation types instead of model-
specific constructs whenever possible. This approach is vi-
tal in providing support for multiple PGAS models success-
fully while minimizing the number of components needed.
For each supported programming model, the Event Type
Mapper maps the model-specific constructs to their appro-
priate generic operation types (e.g. upc_memget maps to
one-sided get, shmem_barrier maps to all-to-all, etc.).
Once this classification has been made, the majority of the
components in PPW then work with the generic operation
types and consult the Event Type Mapper only when model-
specific information is needed. As a result, only a single
implementation of a component is often needed, which sig-
nificantly reduces the effort needed to support multiple pro-
gramming models. Currently, PPW includes the follow-
ing operation types applicable to existing PGAS models:
startup, termination, barrier, collective, point-to-point syn-
chronization, one-sided put, one-sided get, non-blocking
operation synchronization, and work sharing. The follow-
ing paragraphs describe each component in the framework
in more detail.

The Instrumentation Units deal with how to enable
recording of performance data and specify when these data
are gathered (i.e. what is considered an event and how it
will trigger the recording of data). Due to the differences
in techniques used in the development of PGAS program-
ming environments, no single existing instrumentation tech-
nique works well for all PGAS model implementations2.
Source instrumentation, in which entry points to data col-
lection are added in the original source code, may prevent

2See [13] for more information on various instrumentation techniques.

Figure 2. The high-level framework of PPW
organized with respect to the stages of ex-
perimental measurement

compiler optimization and lacks the means to handle a re-
laxed memory model. Binary instrumentation, in which the
compiled binary is modified to facilitate data collection, is
not available on some architectures, and it is often difficult
to relate the data back to the source code. Finally, the in-
termediate library approach (such as PMPI), in which li-
brary functions are wrapped with versions invoking mea-
surement code, does not work for “pure” compilers, such
as GCC UPC, that translate parallel constructs directly into
byte code.

To accommodate the many instrumentation techniques
appropriate for various PGAS model implementations,
without introducing multiple measurement components, we
proposed an Instrumentation-Measurement Interface called
the Global Address Space Performance (GASP) interface
[14]. Such an interface shifts the responsibility of where
to add instrumentation code and how to obtain source code
information (finding 1) from the tool writer to the compiler
writer, which improves the accuracy of the data gathered.
The simplicity of the interface minimizes the effort required
from the compiler writer to add PAT support to their sys-
tem. In addition, a PAT can quickly add support for any
PGAS compiler which includes an implementation of the
GASP interface by simply defining the body of a generic
event notification function (findings 1, 3, 5). We were able
to demonstrate that this is a suitable approach for PGAS
models with the Berkeley UPC GASP implementation3 (for
which we observed profiling overhead < 3% and tracing
overhead < 5%).

The Measurement Unit deals with what type of data to
record and how to acquire the data accurately. Like many

3Developed by the Berkeley UPC group for BUPC version 2.4+ [15].



Table 1. Example events recorded for each
generic operation type

Operation Type Event of Interest4

all-to-all time, system size (num nodes)
point-to-point time, sender, receiver
one-sided data transfer time, sender, receiver, data size
all other time

existing PATs, this unit supports both tracing and profiling
of data and allows the recording of PAPI hardware coun-
ters (finding 2). However, instead of dealing with model-
specific constructs as existing PATs do (which often leads
to multiple measurement units being needed for multiple
model support), this unit works with a generic data format.
This format, which is based on generic operation types de-
fined in the Event Type Mapper, describes a set of events of
interest to record for each operation type (Table 1). Using
this generic data format, additional model support requires
no modification of the Measurement Unit as long as the con-
structs of the new model can be associated with the existing
generic operation types of the Event Type Mapper.

Once the performance data are collected by the Mea-
surement Unit, they are passed to the Performance Data
Manager. The primary responsibilities of this unit include
access and storage of data, merging of data, and simple
post-processing of data (e.g. calculating averages). Like
the Measurement Unit, this data manager operates on the
generic data format to support multiple models through a
single component implementation.

The analysis module aims to provide the tool with semi-
automatic program analysis capability. A new bottleneck
detection and resolution model based on the generic opera-
tion types is currently being developed (the details of which
are beyond the scope of this paper). The roles of each of
the three units in the analysis module are briefly mentioned
here. The Bottleneck Detection Unit, which operates on
the generic operation types, is responsible for the identifi-
cation of potential performance bottlenecks in a given ap-
plication. Once these are identified, the model-specific Bot-
tleneck Resolution Unit then tries to provide additional in-
sights into what caused these performance degradations and
possibly provide suggestions on how to remove them from
the application. Since resolution techniques can be differ-
ent for particular models even for the same type of oper-
ation (e.g. a technique to fix the performance degradation
stemming from upc_memget versus from shmem_get

4Note that PPW can record PAPI counter events for any type of opera-
tion, though they are mainly used for local analysis.

could be different even though they are both classified as
one-sided get operations), multiple model-specific resolu-
tion units are needed. Finally, the High-Level Analysis
Unit provides analyses applicable to the entire program,
such as critical-path analysis, scalability analysis, and load-
balancing analysis.

The Data Format Converter unit is solely responsible
for converting PPW performance data into other estab-
lished performance data formats. Again, only a single
component implementation is needed because of the use of
generic operation types (e.g. converting upc_memput and
shmem_memput to another format is essentially the same,
since the data recorded for both is the same).

The Visualization Manager provides the user-friendly,
graphical interface of the tool (finding 5). It is responsible
for generating useful visualizations from the performance
data gathered by the Measurement Unit or generated by the
analysis module. Version 1.0 of PPW includes traditional
visualizations such as charts and tabular views of profile
data, a graphical data-transfer view, and a novel shared-
array distribution diagram (see Section 4 for more informa-
tion regarding these), all with source code correlation when
appropriate (finding 1). In addition, viewing of trace data
in a timeline format is achieved by exporting through the
Data Format Converter to viewers such as Jumpshot and
Vampir [16]. With these, we were able to avoid replicat-
ing the capabilities of these full-featured timeline viewers,
while bringing these capabilities to the world of PGAS pro-
gramming.

5 PPW Features and Usage

In this section, we present several features of PPW and
outline how each is used in the optimization process. Many
of these features are borrowed from existing tools, helping
minimize the time needed to learn a new tool. Where ap-
propriate, new features have been developed as needed for
analyzing the performance of PGAS programs.

5.1 Semi-Automatic Instrumentation

One of the key features of PPW is the ability to en-
able performance data collection with little or no user input.
Through GASP implementations, all system events (user
functions and parallel model constructs) are automatically
instrumented by the tool (finding 5). In addition, users are
free to track the performance of any region of the program,
as GASP supports user-defined events that can be manually
defined anywhere in the application. During execution time,
PPW then automatically collects the data for all system and
user-defined events under trace or profile mode (as speci-
fied by the user). At the same time, PPW also captures in-
formation regarding the execution environment such as op-



Figure 3. PPW Region-based Load Balancing
Analysis visualization to facilitate the identi-
fication of load imbalance issues

timization flags used, machine hostnames, etc. These data
are then processed and used to create various visualizations
described in the following sections.

5.2 Visualizations for Program Perfor-
mance Overview

Amdahl’s Law suggests that to maximize the perfor-
mance gain from optimization, one should concentrate on
optimizing the most time-consuming parallelizable part of
the program. As a result, many programmers begin perfor-
mance analysis by identifying application regions that took
the longest time to run. Once identified, programmers then
concentrate their effort on finding performance issues re-
lated to these regions. To this end, PPW provides charts and
diagrams to facilitate the identification of time-consuming
application segments (for example, one of the pie charts in-
cluded in PPW shows the breakdown of time spent in the
10 longest running regions with respect to the total program
execution time).

5.3 Statistical Data Tables

Like other successful tools, PPW displays high-level sta-
tistical performance information in the form of two tables
that show statistical data for all regions of a program. The
Profile Table reports flat profile information while the Tree
Table (Figure 7) separately reports the performance data for
the same code region executed in individual callpaths. Se-
lecting an entry in these tables highlights the corresponding
line in the source code viewer below the tables, allowing

Figure 4. PPW Experimental Set Comparison
chart providing side-by-side comparison of
data files loaded

the user to quickly associate performance data and corre-
sponding source code (finding 1). These statistical data,
such as total time, percentage of whole program, average
time, minimum time, maximum time, and number of calls,
are useful in identifying specific code regions with long ex-
ecution time. Moreover, the user can use them to identify
potential bottlenecks. A region with the minimum or maxi-
mum time far below or exceeding its average execution time
could potentially be a bottleneck in the application. An ex-
ample is when particular instances of the region’s execution
took much longer than others to complete, which suggests
that these instances were not executed optimally (PPW also
provides a Load Balancing Analysis visualization to detect
this behavior, as shown in Figure 3). In addition, if the user
has some idea of the region’s expected execution time (e.g.
shmem_barrier takes around 100µs to execute when no
bottleneck exists), he or she can quickly identify potential
bottleneck regions if the actual average execution time far
exceeds the expected value.

5.4 Multiple Data Set Support

PPW supports the loading of multiple performance data
sets at once, a feature that proves useful when working with
multiple related experimental runs. Included also in PPW
is the Experiment Set Comparison chart (Figure 4) that the
user can use to quickly compare the performance of data
sets loaded. For example, when the user loads the data sets
for the same program running on different system sizes, he
or she can quickly determine the scalability of the program
and identify sequential and parallel portions of the program.
Another use is to load data sets for different revisions of the



Figure 5. PPW Data Transfers visualization
showing the communication volume between
processing nodes for put operations

program running on the same system size and compare the
effect of the revisions on performance.

5.5 Communication Pattern Visualization

In many situations, especially in cluster computing, sig-
nificant performance degradation is associated with poorly
arranged inter-node communications. The Data Transfer vi-
sualization (Figure 5) provided by PPW is helpful in iden-
tifying communication related bottlenecks such as commu-
nication hot spots. While this visualization is not unique
to PPW, ours is able to show communications from both
implicit and explicit one-sided data transfer operations in
the original program. By default, this visualization depicts
the inter-node communication volume for all data transfer
operations in the program, but users are able to view the
information for a subset of data transfers (e.g. puts only,
gets with payload size of 8-16kB, etc.). Threads that initi-
ate an inordinate amount of communication will have their
corresponding blocks in the grid stand out in red. Similarly,
threads that have affinity to data for which many transfers
occur will have their column in the grid stand out.

5.6 Array Distribution Visualization

A novel visualization provided by PPW is the Array Dis-
tribution, which graphically depicts the physical layout of
shared objects in the application on the target system (Fig-
ure 6). Such a visualization helps users verify that they

Figure 6. PPW Array Distribution visualiza-
tion showing the physical layout of a 7x8 ar-
ray with blocking factor of 3 on a system with
8 nodes

have distributed the data as desired, a particularly important
consideration when using the PGAS abstraction. We are
also currently investigating the possibility of incorporating
communication pattern information with this visualization
to give more insight into how specific shared objects are be-
ing accessed. This extension would allow PPW to provide
more specific details as to how data transfers behaved dur-
ing program execution.

6 Case Study

In this section, we present a small case study conducted
using PPW version 1.0 [17]. We ran George Washington
University’s UPC implementation [18] of the FT bench-
mark (which implements an FFT algorithm) from the NAS
benchmark suite 2.4 using Berkeley UPC 2.4, which in-
cludes a fully functional GASP implementation. Tracing
performance data were collected for the class B setting exe-
cuted on a 32-node Opteron 2.0 GHz cluster with a Quadrics
QsNetII interconnect. Initially no change was made to the
FT source code.

From the Tree Table for the FT benchmark (Figure 7),
it was immediately obvious that the fft function call (3rd
row) constitutes the bulk of the execution time (9s out of
10s of total execution time). Further examination of per-
formance data for events within the fft function revealed
that upc_barriers (represented as upc_notify and
upc_wait) in transpose2_global (6th row) ap-
peared to be a potential bottleneck. We came to this con-
clusion from the fact that the actual average execution time



Figure 7. PPW Tree Table visualization for the
original FT shown with code yielding part of
the performance degradation

for upc_barrier at lines 1943 (176 ms) and 1953 (0.5s)
far exceeds the expected value of 2ms on our system for
32 nodes (we obtained this value by running a benchmark
with no bottlenecks). Looking at the code between the two
barriers, we saw that multiple upc_memgets were issued
and suspected that the performance degradation might be
related to these upc_memgets. However, we were unable
to confirm this suspicion based on the data provided by the
Tree Table alone, since we did not know the expected execu-
tion time for upc_memget for that payload size. More de-
tailed performance data regarding these lines of code were
needed.

We next converted the performance data from the PPW
format into the Jumpshot SLOG-2 format in order to look
at the behavior of upc_barriers and upc_memgets
in a timeline format. With the viewer, we discovered
that the upc_barrier at line 1953 was waiting for
upc_memget calls to complete. In addition, we saw that
upc_memget calls issued from the same node were un-
necessarily serialized, as shown in the annotated screenshot
of the Jumpshot viewer in Figure 8 (note the zigzag pattern
for these memgets). Looking at the start and end time of
the upc_memget calls issued from node 0 to all nodes in
the system, we saw that the later upc_memget must wait
for the earlier upc_memget to complete before initiating,
even though the data obtained are not related.

The apparent solution to improve the performance of
the FT benchmark was to replace the serialized ver-

Figure 8. Annotated Jumpshot view of the
original version of FT showing the serialized
nature of upc memget

sion of upc_memget with a parallel one. Fortunately,
Berkeley UPC includes such an asynchronous memget
operation (bupc_memget_async). When the original
upc_memget was replaced with the asynchronous ver-
sion, we were able to cut down the execution time of the
FT benchmark by 1.56s, an improvement of 14% over the
original version.

In this small case study, we have shown how PPW was
used to optimize a PGAS program. With little knowledge
of how the FT benchmark works, we were able to remove a
major bottleneck in the program within a few hours of using
PPW.

7 Conclusions

As hardware technologies for parallel computing mature,
so too does the development of programming models to
support the execution of parallel applications. While such
applications have the potential to achieve very high perfor-
mance, this is often not realized due to the complexity of
the execution environment. To tackle this problem, many
parallel performance analysis tools have been developed to
help users optimize their code, with most tools support-
ing the message-passing model. However, newer models
such as those for partitioned global-address-space program-
ming have very limited tool support. In this paper, we have
outlined the bridging of this gap with the introduction of
our PGAS performance analysis tool called Parallel Perfor-
mance Wizard. We presented the high-level framework de-
sign of PPW based on generic operation types, and we then



discussed features and usage of these features provided by
the tool. We also demonstrated the effectiveness of PPW in
PGAS application analysis through a small case study using
the version 1.0 release of the tool.

We are currently working to complete the development
of the bottleneck detection and resolution model mentioned
above and to improve the usability of the tool’s user inter-
face. In addition, we are in the process of extending the
design and implementation of PPW to fully support a vari-
ety of additional programming models, including MPI and
Reconfigurable Computing (RC) systems. Finally, we are
also investigating the possibility of mixed-model analysis
for applications written using multiple programming mod-
els.

Acknowledgments

This work was supported in part by the U.S. Department
of Defense. We would like to acknowledge former mem-
bers of the UPC group at UF, Adam Leko, Hans Sherburne,
and Bryan Golden, for their involvement in the design and
development of PPW. Also, we would like to express our
thanks for the helpful suggestions and cooperation of Dan
Bonachea and the UPC group members at UCB and LBNL.

References

[1] J. Mellor-Crummey, R. J. Fowler, G. Marin, and N.
Tallent. “HPCVIEW: A tool for top-down analysis of
node performance”. The Journal of Supercomputing,
23(1):81–104, August 2002.

[2] B. Mohr and F. Wolf. “KOJAK – a tool set for au-
tomatic performance analysis of parallel applications”.
European Conference on Parallel Computing (EuroPar),
pages 1301–1304, Klagenfurt, Austria, LNCS 2790, Au-
gust 26–29, 2003.

[3] A. Chan, W. Gropp, and E. Lusk. “Scalable log files for
parallel program trace data(draft)”, 2000.

[4] B. P. Miller, M. D. Callaghan, J. M. Cargille, J.
K. Hollingsworth, R. B. Irvin, K. L. Karavanic, K.
Kunchithapadam, and T. Newhall. “The paradyn par-
allel performance measurement tool”. IEEE Computer,
28(11):37–46, November 1995.

[5] S. S. Shende and A. D. Malony. “The Tau Par-
allel Performance System”. International Journal of
High-Performance Computing Applications (HPCA),
20(2):297–311, May 2006.

[6] The UPC Consortium, “UPC Language Specifica-
tions”, May 2005.
http://www.gwu.edu/˜upc/docs/upc specs 1.2.pdf

[7] B. Numrich and J. Reid, “Co-Array Fortran for Parallel
Programming”, ACM Fortran Forum, 17(2), pp. 1–31,
1998.

[8] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Lib-
lit, A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay, P.
Colella, and A. Aiken, “Titanium: A High-Performance
Java Dialect”, Workshop on Java for High-Performance
Network Computing, Las Vegas, Nevada, June 1998.

[9] A. Johnson, “CFD on the Cray X1E Using Unified Par-
allel C”, a PowerPoint presentation, 5th UPC Workshop,
September 2005.
http://www.gwu.edu/˜upc/upcworkshop05/ahpcrcUPC
User Forum.pdf

[10] L. DeRose, B. Mohr and K. London, “Performance
Tools 101: Principles of Experimental Performance
Measurement and Analysis,” SC2003 Tutorial M-11.

[11] K. London, S. Moore, P. Mucci, K. Seymour, R.
Luczak, “The PAPI Cross-Platform Interface to Hard-
ware Performance Counters”, Department of Defense
Users’ Group Conference Proceedings, Biloxi, Missis-
sippi, June 2001.

[12] S. Shende, “The Role of Instrumentation and Mapping
in Performance Measurement”, Ph.D. Dissertation, Uni-
versity of Oregon, August 2001.

[13] A. Leko, H. Sherburne, H. Su, B. Golden, A.D.
George. “Practical Experiences with Modern Parallel
Performance Analysis Tools: An Evaluation”.
http://www.hcs.ufl.edu/upc/toolevaluation.pdf

[14] H. Su, D. Bonachea, A. Leko, H. Sherburne, M.
Billingsley III, and A. George, “GASP! A Standard-
ized Performance Analysis Tool Interface for Global
Address Space Programming Models”, Proc. of Work-
shop on State-of-the-Art in Scientific and Parallel Com-
puting (PARA06), Umeå, Sweden, June 18–21, 2006.
http://gasp.hcs.ufl.edu/

[15] Berkeley UPC project website. http://upc.lbl.gov/

[16] Vampir tool website. http://www.vampir-ng.de/

[17] PPW Project website. http://ppw.hcs.ufl.edu/

[18] GWU UPC NAS 2.4 benchmarks.
http://www.gwu.edu/ upc/download.html


