Performance Analysis Tools for Partitioned Global-Address-Space Programming Models

Adam Leko', Hung-Hsun Su', Dan Bonachea?, Max Billingsley IIT',
Hans Sherburne', Bryan Golden', and Alan D. George'

'Department of Electrical and Computer Engineering
University of Florida
{leko, su, billingsley, sherburne, golden, george}@hcs.ufl.edu

*Department of Computer Science
University of California at Berkeley
bonachealcs.berkeley.edu

Extended Abstract (Oral Presentation/Demonstration)

The Partitioned Global-Address-Space (PGAS) programming model provides important productivity advantages over traditional
parallel programming models. However, due to their implementation complexity, languages and libraries using PGAS models
currently have little to no support from existing performance tools. We have designed the Global Address Space Performance tool
interface (GASP) that is flexible enough to be used with any PGAS model, while simultaneously allowing existing performance tools
to leverage their existing tool's infrastructure to quickly add support for programming languages and libraries using PGAS models.
Additionally, we have developed Parallel Performance Wizard (PPW), a performance tool focused towards PGAS models, which
provides a strong proof-of-concept for the GASP interface.

GASP

The GASP interface was born out of the need to support several different PGAS models in our PPW tool. As we studied different
PGAS implementations we soon realized that large development complexity would be necessary to support different PGAS model
implementations, as the flexibility of PGAS models allow for many implementation techniques. This development complexity is
prohibitive to performance tool developers, inhibiting wide-scale support for PGAS languages in performance tools.

To encourage performance tool support for PGAS models, we created a simple, model-independent, portable and flexible performance
tool interface based on callbacks that is especially useful for capturing performance from programs using PGAS models. In our talk,
we will give a high-level overview of the GASP tool interface, showing how the interface has been successfully implemented in
Berkeley UPC and how the interface can be easily applied to upcoming high-productivity programming languages such as X10,
Fortress, and Chapel. The presentation will include empirical results demonstrating the instrumentation overheads of GASP for
several UPC applications, and the scalability of the approach. A major goal of this presentation is to raise awareness for the GASP
interface so that it gains momentum for both performance tool developers and PGAS model implementers.

PPW

PPW is a performance tool specifically geared towards maximizing user productivity for tuning programs using PGAS models. The
tool features easy-to-use compiler wrapper scripts that control the instrumentation process, and support for profile and trace data.
Additionally, PPW provides a cross-platform user interface with PGAS-specific visualizations, including an array layout visualization
feature for UPC programs, a communication visualization that gives a detailed breakdown of inter-thread communication (Figure 1),
and profile data viewers that give a high-level overview of program performance (Figure 2). The tool also includes a SLOG-2 trace
export for use with the scalable Jumpshot trace viewer (Figure 3). Finally, PPW integrates support for hardware counters through the
PAPI library so users may perform detailed analysis of architectural behavior in computational regions of their applications.

As part of our talk, we will give a brief demonstration of the PPW tool, showing how the tool uses the GASP interface and how the
visualizations aid users in pinpointing bottlenecks in their applications.

Project References
PPW: http://www.hcs.ufl.edu/ ppw - includes alpha release of PPW tool

GASP: http://www.hcs.ufl.edu/upc/gasp - includes draft GASP specification
Berkeley UPC: http://upc.lbl.gov/

4 _parallel Performance Wizard - ft.a.16.ptl =il £ Parallel Performance Wizard - ft.a.16.ptf =1ol x|
file Tools Help Filz Tooks Help
Profile Table Tres Table | Communication | Resource wiew | Profils Charts | Profile Table | Tres Table Communication | Resource View | Profile Charts |
Hetic: [Tme =] Thread: [aiTheads =] zomtsvel | — f———— [
Name [motal [seF [mn [Max [count [subcount | Metric [Ava Payload Sizz =] operation [Puts + Gets x| Payioadsize [AllPayloads =l
A Root = Data Affinity Thread ST
T e épplication 46,285,153 23,506,038 2,892,224 2,893,122 16 1664
(= ® upc_notify 2,124,052 2,124,062 1 49,577 738 0 4 5 6 7 8% 9 10 11 12 13 14 15
[1,412 1,412 13 104 16 o [[T
203 213 1 z 16 0 3 470000
121,198 121,198 11 2,953 128 o z
43 796,143 2 0 E
b E 5510 5,510 26 453 16 o E
o frosag 3,061 3,061 17 e 15 0 E Sy
o fELCI364 137,362 137,362 9 1,956 96 o
b fsez 1,587 1,587 2 147 % b
o 3 i =17} 18,969 18,969 1 556 96 o 380000
b Frcioee 14,907 14,907 4 178 % o
b frciEEr 12,104 12,104 4 510 16 .
330000
fr.c
T =
1938 int i =l 280000
1333 long wisigned int chunk = NTDIVHP / THREADS:
1940
1341 timer_start(T_ALLTOALL): o
1942
1943 upe_barrier:
1844 /% X0 Fortran version uses an HPI_alltoall() here +/
SEvE - 180000
1945 for {i = 0; i < THREADS: i++
1947 {
1948 upc_memgeti (doomplex *)sdst[MYTEREAD].cell[chunk#i], 130000
1943 srol1]. celll chunk *HYTHREAD],
1350 sizeof| doowplex] * clawk |;
1951 } 80000
1952
1953 upc_harrier; (UNIT: Bytes | Op)
1954 =
1955 timer_stop(T_ALLTOALL }; _|;|
4 »

Figure I: Calltree profile viewer. The display shows profile data
for a 16-node run of the NAS FT benchmark alongside the

Figure 2: Communication visualization. This viewer allows one
to view payload size statistics for gets and puts broken down by

original source code.

payload size.

0z

JsLoG-2 |~
Gyo
(AR
[2
M
4
Oys
Gys
07
NE:
Gya
10
11
12
13
14
Gy1s [+

4| [»

@ LinelD -

1]

Lowest £ biax Depth i

CumulativeE... | w

> _|o) x|
B €| & & | BN @ @
Zoom Level Global Min Time Wiew Init Time Zoom Focus Time Wiew Final Time Global tax Time Time Per Pixel @ é:ﬂ-p | o -
4 0.004279 0422302723228 0.5120655605 05020032026 20224 0.0002637428 d -
TimeLines - 17.0
15
duration = 15.492 msec
[a]: time = 0.436007, LinelD = 0 .
[1]: time = 0.451489, LinelD = 0
Source code: o339
11
Q
7
D upc_memget
duration = 1.174 msec s
[0]: time = 0.571450, LinelD = 0
1] time = 0.572624, LinelD =0
Source code: fLe1950 3
Ho
4 L] ik [[»
Fit All R
| | | | | | | | |
044 0.46 0.4s 0.50 0.52 0.54 0.56 0.58 0.6 QI{“‘?
Time (zeconds) < 4 | M || ¥

Figure 3: SLOG-2 export viewed in the Jumpshot viewer. Right-clicking on events in the timeline
brings up detailed information about that event, including source code information. This type of
viewer is very useful for visually detecting load imbalances, such as the imbalance of time spent in
upc_notify in thread 1 in this example.

