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Need for Parallel Performance Analysis Tool

Computationally intensive parallel applications are 
constantly being developed in many scientific fields
Parallel programming models supply application writers 
with means to express parallelism in a given 
environment
Unfortunately, the added complexity of the environment 
and model makes it more difficult to optimize the 
application to achieve a desirable performance level

Performance Analysis Tools (PATs) increase productivity
by making application optimization process simpler for 
user
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Role of Performance Analysis Tool

Original 
Application

Optimized 
Application

Runtime 
Performance Data 

Gathering

Data Processing 
and Analysis

Data and Result 
Presentation



4

Need for Generalized Tool Infrastructure

Development of a performance analysis tool is a time-consuming 
process (takes years to develop)

Quite a few performance analysis tools exist

However, majority of them support Message Passing Interface (MPI)
with very few supporting other models such as those in the Partitioned 
Global Address Space (PGAS) family

One of the reasons for the limited model support is that these tools 
were designed and developed specifically to target a single model

Tool is too tightly coupled with the original model, making it cumbersome to 
add new model support

A generalized performance analysis tool infrastructure would help in 
this aspect
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Properties of a Generalized Infrastructure
Uses a generic operation type abstraction

Each model construct is mapped to a generic operation type
Tool is designed to work largely with generic operation types

Components that only use generic operation types are model-independent (i.e. 
reusable across models)

The goal is to minimize the number of model-dependent 
components
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PPW High-level Framework
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Instrumentation-Measurement Interface (GASP)

Different instrumentation techniques (adding code to collect 
performance data) are applicable to different programming model 
implementations
However, one generic measurement unit is sufficient to record data 
Standardized instrumentation-measurement interface (a.k.a. GASP) 
facilitates the transition from multiple instrumentation units to a 
single measurement unit

Instrumentation-Measurement Interface
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PPW Model Support 
PPW infrastructure was first implemented to support Berkeley UPC

Took approximately 1-2 years to develop (sans bottleneck detection)
Supports one-sided transfer, global synchronization, locks, etc. operation 
types

Quadrics SHMEM and MPICH MPI were then quickly added
Took about 3-6 month to complete
Instrumentation provided via PSHMEM/PMPI interface with calls to GASP
Majority of components remained unchanged

Minor modification made to measurement unit and visualization unit to support 
collectives and two-sided transfers
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Why do Automatic Analysis of Data?
With a long running and/or complex application, the 
amount of performance data available can be 
overwhelming
Automatic performance analysis helps by presenting a set 
of useful information out of a much larger data set
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Automatic Performance Analysis
Pattern is a description of a program behavior 

Expert programmers know how to recognize performance patterns 
where an everyday programmer may not
Fair amount of performance patterns generated over the years by 
researchers

Automatic performance analysis of an application
Performs a series of tests to recognize patterns
Classify the pattern base on the result of tests
Suggest possible solution to remove the bottleneck (to some 
extent)

Application Tests to recognize 
patterns

Classification of 
pattern based on the 

test results

Provide suggestion to 
remove the bottleneck
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Pattern Categorization
Patterns are categorized into one of the following three levels

Experiment set level
Compare performance for a set of experiments
Pattern example: poor scalability of code

Application level
Provide an overview of overall application performance
Pattern example: lots of small data transfers

Node level
Enable detailed analysis of performance data that helps to pinpoint the 
exact location and cause of the bottleneck
Pattern example: 2nd invocation of send on node 2, line 10 is a late sender

Algorithmic change for the 
application/region

Ratio < 1; non-Ideal application speedup of 
application/regionqqTime

ppTime
×
×

)(
)(

)(
).(

transferTime
transferdataCount Aggregate data transfersRatio >= THRESHOLD; lots of small data 

transfers 
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Node Level Patterns
Each node performs independent analysis using local data 
and a small amount of data from other node when needed

Each node tries to minimize its execution time
Observed application execution time ≈ execution time of the longest 
running node

Pattern tests aim to detect deviation from the optimal 
situation

Excessiveness analysis: large number of operation occurrences
Frequency evaluation (lots of operations in a short time?)
Excessive operation evaluation (operation could be eliminated?)

Delay analysis: long running operations
Baseline approach (actual time >> expected?)
Variant approach (min_time << avg_time or max_time >> avg_time?) 

Patterns are defined in term of the generic operation types, 
thus applicable to any model
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Node Level Detection Mechanism
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Example Node-Level Pattern: Lock Delay

Send “Lock (x, 10, 100)” to all other 
nodes

Receive from Node 0
Unlock(x), end (line 3, instance 1) =  26

Lock (x) at line 2, Time: 10  100

Receive from Node 3
Unlock(x), end (line 3, instance 1) =  56

Node 2's Local Trace Records
...
Lock (x) at line 2, Time: 10  100
…
Lock (x) at line 5, Time: 100  120
...
Lock (x) at line 2, Time: 120  140
...

Node 2's Potential Bottleneck List
...
Locks
Lock at Node 2, Line 2

A-2-A
...
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Example Analysis Result: Lock Delay
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Conclusions
Parallel Performance Wizard is an infrastructure 
designed to support multiple parallel programming 
models with ease

Uses the generic operation type abstraction that improves the re-
usability of the system components

A new automatic performance analysis approach is 
currently being developed and tested 

Captures known performance patterns in one of the three levels
Employs a distributed detection method to improve execution 
time and minimize data transfer among nodes
Potential to support multi-model and multi-level analysis

A working implementation of PPW is now available for 
UPC, SHMEM and MPI

For more information see http://ppw.hcs.ufl.edu
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Supplement Slide 1 - Instrumentation-Measurement Interface 
Overhead
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