
Parallel Performance Wizard:
An Infrastructure and Tool for Analysis

of Parallel Application Performance

Presenter: Hung-Hsun Su
Advisor: Dr. Alan D. George

Electrical and Computer Engineering Dept.,
University of Florida

2

Need for Parallel Performance Analysis Tool

Computationally intensive parallel applications are
constantly being developed in many scientific fields
Parallel programming models supply application writers
with means to express parallelism in a given
environment
Unfortunately, the added complexity of the environment
and model makes it more difficult to optimize the
application to achieve a desirable performance level

Performance Analysis Tools (PATs) increase productivity
by making application optimization process simpler for
user

3

Role of Performance Analysis Tool

Original
Application

Optimized
Application

Runtime
Performance Data

Gathering

Data Processing
and Analysis

Data and Result
Presentation

4

Need for Generalized Tool Infrastructure

Development of a performance analysis tool is a time-consuming
process (takes years to develop)

Quite a few performance analysis tools exist

However, majority of them support Message Passing Interface (MPI)
with very few supporting other models such as those in the Partitioned
Global Address Space (PGAS) family

One of the reasons for the limited model support is that these tools
were designed and developed specifically to target a single model

Tool is too tightly coupled with the original model, making it cumbersome to
add new model support

A generalized performance analysis tool infrastructure would help in
this aspect

5

Properties of a Generalized Infrastructure
Uses a generic operation type abstraction

Each model construct is mapped to a generic operation type
Tool is designed to work largely with generic operation types

Components that only use generic operation types are model-independent (i.e.
reusable across models)

The goal is to minimize the number of model-dependent
components

User functions &
I/O operations

CollectivesWait on remote
(spin lock, atomic

swap, etc.)

Two-sided
(send, receive,

wait)

Work distribution
(for-all)

BarrierLock
manipulation

One-sided
(put, get, fence)

Local
processing

Group-wise
synchronization

Pair-wise
synchronization

Data exchange
(P2P)

6

PPW High-level Framework

Measurement Unit
(MU)

Instrumentation-
Measurement
Interface (IMI)

Performance-Data
Manager (PDM)

Visualization Manager
(VM)

Bottleneck-Detection
Unit (BDU)

High-Level Analysis
Unit (HAU)

Data-Format
Converter (DFC)

Model-independent
components

Model-dependent
components

Analysis

Presentation

Instrumentation

Measurement

Event-Type Mapper
(ETM)

Instrumentation Unit
(IU)

Bottleneck-Resolution
Unit (BRU)

7

Instrumentation-Measurement Interface (GASP)

Different instrumentation techniques (adding code to collect
performance data) are applicable to different programming model
implementations
However, one generic measurement unit is sufficient to record data
Standardized instrumentation-measurement interface (a.k.a. GASP)
facilitates the transition from multiple instrumentation units to a
single measurement unit

Instrumentation-Measurement Interface

Instrumentation Unit
(MPI MPICH)

Measurement Unit
(MU)

Instrumentation Unit
(Berkeley UPC)

Instrumentation Unit
(HP UPC)

Instrumentation Unit
(SHMEM)

Instrumentation Unit
(...)

Instrumentation Unit
(...)

Model-dependent
Tool-Independent

Model-Independent
Tool-dependent

8

PPW Model Support
PPW infrastructure was first implemented to support Berkeley UPC

Took approximately 1-2 years to develop (sans bottleneck detection)
Supports one-sided transfer, global synchronization, locks, etc. operation
types

Quadrics SHMEM and MPICH MPI were then quickly added
Took about 3-6 month to complete
Instrumentation provided via PSHMEM/PMPI interface with calls to GASP
Majority of components remained unchanged

Minor modification made to measurement unit and visualization unit to support
collectives and two-sided transfers

9

Why do Automatic Analysis of Data?
With a long running and/or complex application, the
amount of performance data available can be
overwhelming
Automatic performance analysis helps by presenting a set
of useful information out of a much larger data set

10

Automatic Performance Analysis
Pattern is a description of a program behavior

Expert programmers know how to recognize performance patterns
where an everyday programmer may not
Fair amount of performance patterns generated over the years by
researchers

Automatic performance analysis of an application
Performs a series of tests to recognize patterns
Classify the pattern base on the result of tests
Suggest possible solution to remove the bottleneck (to some
extent)

Application Tests to recognize
patterns

Classification of
pattern based on the

test results

Provide suggestion to
remove the bottleneck

11

Pattern Categorization
Patterns are categorized into one of the following three levels

Experiment set level
Compare performance for a set of experiments
Pattern example: poor scalability of code

Application level
Provide an overview of overall application performance
Pattern example: lots of small data transfers

Node level
Enable detailed analysis of performance data that helps to pinpoint the
exact location and cause of the bottleneck
Pattern example: 2nd invocation of send on node 2, line 10 is a late sender

Algorithmic change for the
application/region

Ratio < 1; non-Ideal application speedup of
application/regionqqTime

ppTime
×
×

)(
)(

)(
).(

transferTime
transferdataCount Aggregate data transfersRatio >= THRESHOLD; lots of small data

transfers

12

Node Level Patterns
Each node performs independent analysis using local data
and a small amount of data from other node when needed

Each node tries to minimize its execution time
Observed application execution time ≈ execution time of the longest
running node

Pattern tests aim to detect deviation from the optimal
situation

Excessiveness analysis: large number of operation occurrences
Frequency evaluation (lots of operations in a short time?)
Excessive operation evaluation (operation could be eliminated?)

Delay analysis: long running operations
Baseline approach (actual time >> expected?)
Variant approach (min_time << avg_time or max_time >> avg_time?)

Patterns are defined in term of the generic operation types,
thus applicable to any model

13

Node Level Detection Mechanism

60GB

10GB10GB 10GB

10GB 10GB 10GB

Global
Analysis

10GB

10GB 10GB

10GB

10GB

10GB

Local
Analysis

Local
Analysis

Local
Analysis

Local
Analysis

Local
Analysis

Local
Analysis

14

Example Node-Level Pattern: Lock Delay

Send “Lock (x, 10, 100)” to all other
nodes

Receive from Node 0
Unlock(x), end (line 3, instance 1) = 26

Lock (x) at line 2, Time: 10 100

Receive from Node 3
Unlock(x), end (line 3, instance 1) = 56

Node 2's Local Trace Records
...
Lock (x) at line 2, Time: 10 100
…
Lock (x) at line 5, Time: 100 120
...
Lock (x) at line 2, Time: 120 140
...

Node 2's Potential Bottleneck List
...
Locks
Lock at Node 2, Line 2

A-2-A
...

15

Example Analysis Result: Lock Delay

16

Conclusions
Parallel Performance Wizard is an infrastructure
designed to support multiple parallel programming
models with ease

Uses the generic operation type abstraction that improves the re-
usability of the system components

A new automatic performance analysis approach is
currently being developed and tested

Captures known performance patterns in one of the three levels
Employs a distributed detection method to improve execution
time and minimize data transfer among nodes
Potential to support multi-model and multi-level analysis

A working implementation of PPW is now available for
UPC, SHMEM and MPI

For more information see http://ppw.hcs.ufl.edu

17

Acknowledgements
Department of Defense

Funding the PPW project

Dr. Alan D. George
Advisor for my research

Adam Leko, Max Billingsley III, Bryan Golden, Hans
Sherburne [U. of Florida]

Design discussion of infrastructure, low-level design and
implementation, visualization generation

Dan Bonachea [U.C. Berkeley]
Berkeley GASP discussion and implementation

18

19

Supplement Slide 1 - Instrumentation-Measurement Interface
Overhead

20

0
10
20
30
40
50
60
70
80
90

100

%

a_test_u1

his_mpi_8

corner_turn_16

sar_upc_p2_11

sar_upc_p1_11

sar_mpi_16

Profile Filtering Performance Improvement

Checked records Total time (ms)

