UNIVERSITY of WWW hcz;hufl edu
UF FiORIDA -ww:hes.ufl.

Parallel Performance Wizard:
An Infrastructure and Tool for Analysis
of Parallel Application Performance

>

Presenter: Hung-Hsun Su
Advisor: Dr. Alan D. George

Electrical and Computer Engineering Dept.,
University of Florida

Need for Parallel Performance Analysis Tool

are
constantly being developed in many scientific fields

Parallel programming models supply application writers
with In a given
environment

Unfortunately, the added complexity of the environment

and model makes it more difficult to optimize the
application to

Performance Analysis Tools (PATSs) increase productivity
by making application optimization process simpler for
user

UF | UFN]i,V(E)FiS(IfﬁA 2 www _ hcs, ufl,edu

‘ Role of Performance Analysis Tool

Original
Application

\ 4

Runtime
Performance Data “ .

Gathering

Data Processing ’
and Analysis

Data and Result ’
Presentation

PR

oooooooo0o0OO®
i

Optimized
Application

i

UNIVERSITY of WWW h(:ﬁ Ufl edu
UF \FLORIDA 3 High-perfermance Comperting & Simulation Rese

Need for Generalized Tool Infrastructure

= Development of a performance analysis tool is a time- consumlng
process (takes years to develop)

= Quite a few performance analysis tools exist

= However, majority of them support Message Passing Interface (MPI)
with very few supporting other models such as those in the Partitioned
Global Address Space (PGAS) family 7.8 MPI

= One of the reasons for the limited model support is that these tools
were designed and developed specifically to target a single model

o Toolis too , making it cumbersome to
add new model support

= A generalized performance analysis tool infrastructure would help in
this aspect

UNIVERSITY of www . hcs.ufl.edu
UF | FLORIDA_ 4 Hich-perfermance Compating & Simulation Research Lab

Properties of a Generalized Infrastructure

m Uses a generic operation type abstraction
o Each model construct is mapped to a generic operation type

o Tool is designed to work largely with generic operation types

= Components that only use generic operation types are model-independent (i.e.
reusable across models)

s The goal is to minimize the number of model-dependent

components
Data exchange Pair-wise Group-wise Local
(P2P) synchronization | synchronization processing
One-sided Lock Barrier Work distribution
(put, get, fence) manipulation (for-all)
Two-sided Wait on remote Collectives User functions &
(send, receive, | (spin lock, atomic I/O operations
wait) swap, etc.)

UF [FLORIDA ; yowwhes,ufl edy

PPW High-level Framework

Instrumentation Unit

-,
Z

A (V)
Z

“
“
;’/x///////// IIIIIY
TIPS

Model-independent
components

components

|
|
I Model-dependent
J

Instrumentation-
Measurement
Interface (IMI)

Measurement Unit I

(MU) — o
Ir B

Data-Format
Converter (DFC)

Performance-Data Ii Visualization Manager I
Manager (PDM) (VM)

I * Presentation I
| 1

<
—

_+_JI_____|
b ey

Bottleneck-Detection High-Level Analysis
Unit (BDU) Unit (HAU)

|

g
i

|

UF

FLORIDA

High-pertermancs Compatmg: & Simulation K

/. Event-Type Mapper

jﬁf’; (ETM) ; Bottleneck-Resolution
7 ’ Unit (BRU ;

7777777777777, 22? "t BRO) Analysis

LS LSS ?’:’//////f/////////

YIS SIS SIS IS
A _
UNIVERSITY o
/ 5 www, hes. ufl.edu

SEEarch Lak

Instrumentation-Measurement Intertace (GASP)

Instrumentation Unit Instrumentation Unit Instrumentation Unit
(Berkeley UPC) (HP UPC) (...)

MOdel-depen dent Instrumentation Unit Instrumentation Unit Instrumentatlon Unit
Tool-Independent (MPI MPICH) (SHMEM)

Instrumentation-Measurement Interface -

Model-Independent @
Tool-dependent

Measurement Unit
(ML)

Different instrumentation techniques (adding code to collect
performance data) are applicable to different programming model
implementations

However, one generic measurement unit is sufficient to record data
Standardized instrumentation-measurement interface (a.k.a. GASP)
facilitates the transition from multiple instrumentation units to a
single measurement unit

UF Uﬁfgﬁfﬁg 7 www hcs,ufl,edu

PPW Model Support

= PPW infrastructure was first immplemented to support Berkeley UPC
o Took approximately 1-2 years to develop (sans bottleneck detection)
o Supports one-sided transfer, global synchronization, locks, etc. operation
types
» Quadrics SHMEM and MPICH MPI were then quickly added
o Took about 3-6 month to complete
o Instrumentation provided via PSHMEM/PMPI interface with calls to GASP

o Majority of components remained unchanged

= Minor modification made to measurement unit and visualization unit to support
collectives and two-sided transfers

a8

‘-}mnmmmmmm

| . -
17 4] e
o | ¥
{3 { 3 R EEEE e e] sl
R 33
£l LEEs g
i " .'.'
UL LI O I
1 filp
EEEE i
| el

L T T T

HENEENEENEENER
il B
L d L4344 1

hEEEREELEEECEEREEERER

an
ERRERKERERRERNERERENT EREER
L

EEE
B -

I o
i

fi

B (LT TR T
g

. i
B
ol beee b e

o [
!LMII!IIP"P

UF FLGRiBA 8

Why do Automatic Analysis of Data?

= With a long running and/or complex application, the
amount of performance data available can be
overwhelming

= Automatic performance analysis helps by presenting a set
of useful information out of a much larger data set

4 TimeLine : ft-b-132.slog2 <Identity Map> =13

Lowwest £ Max. Depth lZoom Level Global Min Time View Init Time Zoom Focus Time View Final Time &lobal Max Time Time Per Pixel Q : Row |v
Q712 i’ [u] 0.0053247 29 0.005354720 5.0872140205 A0 162043312 10.4G2043312 0.01T5256 £ o f
s sl RO Lourn
CumulativeE... - TimeLines - 230
ROET [a) 1|
| e — — — T ﬁ_-.- i b
I ——R S T D o= A Doum T T T - ik I i I
: T T — frs - |k :
b r Loms ar N —] R iR LK iy =i
o 7 = el il - -, Ramr P R S -
of | — = iy T dear A - WIKEE s By s -
| = b = LN s - WY B 3 ik N L
in i E—r - ﬂ ;.\\.:: _— i s L s -
i E %E E B ar e 3 i e =
of | — - = F L b = N R ™
K | | — - L= [i i - T — ik i
5 E E % Lo i il — my iz ik Er -,
H 4 - T wlg, S - e T i o -
i E g % L ad LUl - T R ﬂ 3 -
b 3 k 1 i i - T T i) =
| | — 3 lo= sl qum - e R [T B -
o | — 1m0 an i - - - o [T e =
| | — = S F I T ey - - - . Bk Clam =
H E . ﬁ H u: Ll - - ! 3 gk . lm =
H ; H . ulk -) T 2= 1 i T
: HE—3 . Mom . = oA P - - [= I 1 = -
H E . g ﬁ] N T & B [ik oy im] g l L -
= i ']) A =&] ik r | B i -
3 2 B im & Ak - s - T [E—] = ok - -
- T R T - m -— R . & A & — = A= . o
= ¢ 2= ; Sam B T P T R) - e P A = B -
N e S T et e TR LR TR
- |
4] D
- w1 K o] it
@ LinelD =l | Fit Al Ro
i | | | | | | | | | [
| | |roo 1.00 2.00 200 400 500 8.00 7.00 200 a0n 10, Ql‘imﬁ'
L] Y| | Time (seconds) = 4 mlu

UNIVERSITY of www . hcs.ufl.edu
UF I FLORIDA 9 Hiehe perfermance Compating & Simulation Research Lab

Automatic Performance Analysis

Pattern is a description of a program behavior

o Expert programmers know how to recognize performance patterns
where an everyday programmer may not

o Fair amount of performance patterns generated over the years by
researchers

Automatic performance analysis of an application
o Performs a series of tests to recognize patterns
o Classify the pattern base on the result of tests

o Suggest possible solution to remove the bottleneck (to some
extent)

. Classification of 4 . .
N Tests to recognize | m———3IN\ f o~ ., 5 . \ f===-a N Provide suggestion to
Application
PP |:> patterns |:> pattern based onthe) «____, /> remove the bottleneck
test results v

UF UFN]i,V(IS)I?iS{IrIF]Yj)A 10 www _ hcs, ufl,edu

Pattern Categorization

Patterns are categorized into one of the following three levels

o Experiment set level
Compare performance for a set of experiments
Pattern example: poor scalability of code

Time(p)x p Ratio < 1; non-ldeal application speedup of Algorithmic change for the
Time(q)xq application/region application/region

o Application level
Provide an overview of overall application performance
Pattern example: lots of small data transfers

Count(data.transfer) Ratio >= THRESHOLD; lots of small data Aggregate data transfers
transfers

Time(transfer)

o Node level

Enable detailed analysis of performance data that helps to pinpoint the
exact location and cause of the bottleneck

Pattern example: 2"d invocation of send on node 2, line 10 is a late sender

UF | UFN]i,V(E)FiS(IfﬁA 11 www _ hcs, ufl,edu

Node Level Patterns

Each node performs independent analysis using local data

and a small amount of data from other node when needed

o Each node tries to minimize its execution time

o Observed application execution time = execution time of the longest
running node

Pattern tests aim to detect deviation from the optimal

situation

o Excessiveness analysis: large number of operation occurrences
Frequency evaluation (lots of operations in a short time?)
Excessive operation evaluation (operation could be eliminated?)

o Delay analysis: long running operations

Baseline approach (actual time >> expected?)

Variant approach (min_time << avg_time or max_time >> avg_time?)
Patterns are defined in term of the generic operation types,
thus applicable to any model

UF ‘ %hi‘&l?ﬁfﬁg 12 www hcs,ufl,edu

Node Level Detection Mechanism

Trace data
(remote, selective)

Trace data Bottlenecks & causes
(local, all)

Profile data (local)

|
-_ Potential bottlenecks

Local
Analysis

1y M |
TRNEAN A0
[S A
Global AN AN
cocs D Analysis L DA AN
10GB TN VLS e D} Local
ST Analysis
S ML
| | ~ Ld
— D Local
10GB 10GB 10GB Analysis
Local
Analysis

UF I UFTBT{TBA 13 _www.hcs, ufl,edu

Example Node-Level Pattern: L.ock Delay

£ Timeline : a_test_ul_4.slog? <Identity Map>

<2 ajajg/a]s o D Lock (x) at line 2, Time: 10 > 100

| T T T o ¥ [o
: imeLines - rﬁ
[JsL0G-2
Send “Lock (x, 10, 100)” to all other
: nodes
O
Ot = 3
‘-' Receive from Node O
- Unlock(x), end (line 3, instance 1) = 26
Cis
| - 1 AmG Receive from Node 3
@ Lineln =]z Fit All Ro o .
il daem ewm saws dem bwmm smm csws dme 'J o) Unlock(x), end (line 3, instance 1) = 56
[l ok Time sesonds) 4 | ([T

N >'s Potential Bottleneck List Node 2's Local Trace Records

Lock (x) at line 2, Time: 10 > 100
Locks
Lock at Node 2, Line 2 Lock (x) at line 5, Time: 100 -> 120

QA Lock (x) at line 2, Time: 120 - 140

UF 5L ORIDA 14 ~ww. hes, ufl edy

Example Analysis Result: Lock Delay

Ratios showing that lots
Total Time = 7.75E07 ns of time were lost due to
Computation Time = 2.51E07 ns, Ratio = 32.45% data transfer and
Communication Time = 0.00E0O0 ns, Ratio = 0.00% synchronization

Count = 0.00E00,
Bandwidth = 0.00 MB/s [low bandwidth meanstots of small data transfers]
Global Sync Time = 9.52E06 ns, Ratio = 12.28%
P2P Sync Time = 4.28E07 ns, Ratio = 55.27%
Comm / Comp Ratio 0.0000 [Low number means more work done]
Sync / Comp Ratio 2.0821 [Low number means low overhead]
Btnk Time = 5.22E07 ns, Ratio = 67.36% [of program with performance bottlenecks]

XXXXXXXXXX BOTTLENECKS (S) XXXXXXXXXXX

: At node 2, upc_lock at line 2
Found total of 7 filtered bottleneck(s) -

(1*" occurrence) executed
much slower than expected

--- P2P Operations (S) ---

Node#2, Line#2, upc_lock(UPC), T(avg) = 2.40E6, T(exp) = 5907, 5 Call(s), Ratio = 4.06E2, 15.45%
Program, 15.42% Degradation
|---> [Instance#1] Ratio = 3.78E2, 0.0020 s --> 0.0043 s, Duration = 0.0022
|--> [Node#0-Line#3] :Wait for lock to be avaliable from specified node;

|--> [Node#3-Line#3] :Wait for lock to be avaliable from specified node; " More detailed analysis

reveals node 2 waits on node
XXXXXXXXXX BOTTLENECKS (E) XXXXXXXXXXX 0 and 3 to release lock

UF |1 ORIDA 15 o s ufl ey

Conclusions

Parallel Performance Wizard is an infrastructure
designed to support multiple parallel programming
models with ease

o Uses the generic operation type abstraction that improves the re-
usability of the system components

A new automatic performance analysis approach is
currently being developed and tested
o Captures known performance patterns in one of the three levels

o Employs a distributed detection method to improve execution
time and minimize data transfer among nodes

o Potential to support multi-model and multi-level analysis

A working implementation of PPW is now available for
UPC, SHMEM and MPI

o For more information see http://ppw.hcs.ufl.edu

UF | Uﬁfﬁjﬁfﬁg 16 www _ hcs, ufl,edu

Acknowledgements

Department of Defense
o Funding the PPW project

Dr. Alan D. George

o Advisor for my research

Adam Leko, Max Billingsley lll, Bryan Golden, Hans
Sherburne [U. of Florida]

o Design discussion of infrastructure, low-level design and
implementation, visualization generation

Dan Bonachea [U.C. Berkeley]

o Berkeley GASP discussion and implementation

UF - %Pi%lﬁfﬁﬁ 17 www _ hcs, ufl,edu

@

a

&

UF F1.ORIDA i v hes,ufl.edy

Supplement Slide 1 - Instrumentation-Measurement Interface

Overhead

9 %

a8 % O Measurement (tracing)

A A N | — W PAPI |
T o | TR T T O Measurement (profiling) |7~
S 6 % ! ||
 EEEnEEEEEEEEEEEEEEEE EEr e M Instrumentation -
S 5%
o 00 beeee_ . ____ e
4%
e of - (T
E 3% - —

e

s i B

D UJ"‘E" | . | |

CG CG MG 1S
profile trace profile trace profile trace profile trace

Benchmark

UF - UFN]i,V(IS)I?iS{IrIF]Yj)A 19 www _ hcs, ufl,edu

Profile Filtering Performance Improvement

O Checked records B Total time (ms)

100-

UF |1 ORIDA 20 o s ufl ey

