Practical Experiences with Modern Parallel Performance
Analysis Tools: An Evaluation

Adam Leko
leko@hcs.ufl.edu

Bryan Golden
golden@hcs.ufl.edu

Hans Sherburne
sherburne@hcs.ufl.edu

Hung-Hsun Su
su@hcs.ufl.edu

Alan D. George
george@hcs.ufl.edu

High-Performance Computing and Simulation (HCS) Laboratory
Department of Electrical and Computer Engineering
University of Florida, Gainesville, FL, USA

ABSTRACT

Achieving a significant fraction of peak performance on a
modern high-performance computer is a challenging task.
Fortunately, many performance analysis tools exist that can
be used to improve the efficiency of parallel programs. How-
ever, while these tools can be very effective at troubleshoot-
ing performance problems, finding the right performance
tool for each situation can be a time-consuming task. Since
performance optimization is generally considered near the
end of software development cycles, most developers cannot
afford to spend time examining each available performance
tool. Thus, it is common practice for developers to rely on
ad-hoc performance analysis techniques.

We have recently concluded an extensive study of several
existing performance analysis tools. This paper summarizes
our findings and is meant to serve as a guide to the latest
software in parallel performance analysis tools. We evaluate
each tool using a standard methodology and highlight each
tool’s key features and relative strengths. Finally, we give
general recommendations on how to best use each perfor-
mance analysis tool.
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1. INTRODUCTION

While hardware advancements have led to ever-increasing
maximum peak performance for modern high-performance
computing platforms, most software has not been able to ex-
ploit these advances to attain similar performance increases.

The gap between theoretical peak performance and real-
world performance has been driven further apart by increas-
ing hardware and software complexity. As a result, parallel
performance tools are playing an increasingly important role
in the software development process.

The existence of several performance tools gives software
developers many choices for analyzing performance bottle-
necks in their code. While the plethora of performance tools
affords developers much flexibility, the sheer number and va-
riety of tools can be daunting. A comprehensive overview
of available parallel performance tools aids developers since
it serves as a road map for what tools and analysis meth-
ods are currently available. Additionally, an overview also
aids researchers developing new tools by enabling them to
see what functionality is currently available and what open
research issues still exist.

We are currently designing a next-generation performance
analysis tool designed specifically for global address lan-
guages. As preparation for this task, we have performed
an extensive review of performance tools. We have chosen
a variety of tools that employ different analysis techniques
and have evaluated them against an application suite ex-
hibiting known performance problems. This paper presents
the findings from that tool study, giving an indication of
the relative strengths and weaknesses of each tool and giv-
ing recommendations on appropriate uses for each tool.

Since MPI [25] is a very popular standard for current
high-performance computing software, most of the tools we
examined are geared towards performance analysis of MPI
programs. Also, while techniques such as modeling and sim-
ulation may be used to reason about a program’s perfor-
mance, experimental performance analysis has historically
been the most effective method for troubleshooting perfor-
mance problems in real code. Therefore, this paper focuses
on experimental performance analysis tools as these types
of tools will be the most useful for the majority of software
developers.
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The rest of this paper is organized as follows. We first



2. BACKGROUND

In experimental performance analysis, there are two major
techniques that influence the overall design and work flow of
performance tools [31]. The first technique, profiling, keeps
track of basic statistical information about a program’s per-
formance at runtime. This compact representation of a pro-
gram’s execution is usually presented to the developer imme-
diately after the program has finished executing, and gives
the developer a high-level view of where time is being spent
in their application code. The second technique, tracing,
keeps a complete log of all activities performed by a devel-
oper’s program inside a trace file. Tracing usually results in
large trace files, especially for long-running programs. How-
ever, tracing can be used to reconstruct the exact behavior
of an application at runtime. Tracing can also be used to
calculate the same information available from profiling and
so can be thought of as a more general performance analysis
technique.

Performance analysis in performance tools supporting ei-
ther profiling or tracing is usually carried out in five dis-
tinct steps: instrumentation, measurement, analysis, pre-
sentation, and optimization. Developers take their original
application, instrument it to record performance informa-
tion, and run the instrumented program. The instrumented
program produces raw data (usually in the form of a file writ-
ten to disk), which the developer gives to the performance
tool to analyze. The performance tool then presents the
analyzed data to the developer, indicating where any per-
formance problems exist in their code. Finally, developers
change their code by applying optimizations and repeat the
process until they achieve acceptable performance. This col-
lective process is often referred to as the “measure-modify”
approach, and each step will be discussed in the remainder
of this section. For a more comprehensive background on
performance analysis techniques, we refer the reader to [18].

2.1 Instrumentation

During the instrumentation step, an instrumentation en-
tity (either software or a developer) inserts code into a devel-
oper’s application to record when interesting events happen,
such as when communication or synchronization occurs. In-
strumentation may be accomplished in one of three ways:
through source instrumentation, through the use of wrapper
libraries, or through binary instrumentation. While most
tools may use only one of these instrumentation techniques,
it is possible to use a combination of techniques to instru-
ment a developer’s application.

Source instrumentation places measurement code directly
inside a developer’s source code files. While this enables
tools to easily relate performance information back to the
developer’s original lines of source code, modifying the orig-
inal source code may interfere with compiler optimizations.
Source instrumentation is also limited because it can only
profile parts of an application that have source code avail-
able, which can be a problem when users wish to profile
applications that use external libraries distributed only in
compiled form. Additionally, source instrumentation gen-
erally requires recompiling an entire application over again,
which is inconvenient for large applications.

Wrapper libraries use interposition to record performance
data during a program’s execution and can only be used
to record information about calls made to libraries such as
MPI. Instead of linking against the original library, a devel-

oper first links against a library provided by a performance
tool and then links against the original library. Library
calls are intercepted by the performance tool library, which
passes on the call to the original library after recording in-
formation about each call. In practice, this interposition is
usually accomplished during the linking stage by including
weak symbols for all library calls. Wrapper libraries can
be convenient because developers only need to re-link an
application against a new library, which means that there
is less interference with compiler optimizations. However,
wrapper libraries are limited to capturing information about
each library call. Additionally, many tools that use wrapper
libraries cannot relate performance data back to the devel-
oper’s source code (e.g., locations of call sites to the library).
Wrapper libraries are used to implement the MPI profiling
interface (PMPI), which is used by most performance tools
to record information about MPI communication.

Binary instrumentation is the most convenient instrumen-
tation technique for developers, but places a high technical
burden on performance tool writers. This technique places
instrumentation code directly into an executable, requiring
no recompilation or relinking. The instrumentation may be
performed before runtime, or may happen dynamically at
runtime. Additionally, since no recompiling or relinking is
required, any optimizations performed by the compiler are
not lost. The major problem with binary instrumentation
is that it requires substantial changes to support new plat-
forms, since each platform generally has completely different
binary file formats and instruction sets. As with wrapper
libraries, mapping information back to the developer’s orig-
inal source code can be difficult or impossible, especially
when no debugging symbols exist in the executable.

2.2 Measurement

In the measurement stage, data is collected from a devel-
oper’s program at runtime. The instrumentation and mea-
surement stages are closely related; performance information
can only be directly collected for parts of the program that
have been instrumented.

During measurement, the most common metric collected
by performance tools is the wall clock time taken for each
portion of a program. This timing information can be fur-
ther separated into time spent on communication, synchro-
nization, and computation. In addition to wall clock time,
a performance tool can also record the number of times
a certain event happens, the amount of bytes transferred
during communication, and other metrics. Many tools also
use hardware counter libraries such as PAPI [1] to record
hardware-specific information such as cache miss counts.

There is an obvious tradeoff between the amount of data
that can be collected and the overhead imposed by collecting
this data. In general, the more information collected during
runtime, the more overhead experienced and thus the less
accurate this data becomes. While early work has shown
that it is possible to compensate for much of this overhead
|17], overhead compensation has not become available for
the majority of performance tools.

Profiling tools may also use an indirect method known as
sampling to gather performance information. Instead of us-
ing instrumentation to directly measure each event as it oc-
curs during runtime, metrics such as a program’s call stack
are sampled. This sampling can be perfomed at fixed in-
tervals, or can be triggered by hardware counter overflows.



Using sampling instead of a more direct measuring tech-
nique drastically reduces the amount of data that a perfor-
mance tool must analyze. However, sampled data tends to
be much less accurate than performance data collected by
direct measurement, especially when the sampling interval
is large enough to miss short-lived events that happen fre-
quently.

2.3 Analysis

During the analysis stage, data collected during runtime
is analyzed in some manner. In some profiling or sampling
tools, this analysis is carried out as the program executes.
This technique is generally referred to as “online analysis.”
More commonly, analysis is deferred until after an appli-
cation has finished execution so that runtime overhead is
minimized. Performance tools using this technique are of-
ten referred to as “post-mortem analysis” tools.

The types of analysis capabilities offered varies signifi-
cantly from tool to tool. Some performance tools offer no
analysis capabilities at all, while others can compute only
basic statistical information to summarize a program’s exe-
cution characteristics. A few performance tools offer sophis-
ticated analysis techniques that can identify performance
bottlenecks. Generally, tools that provide minimal analysis
capabilities rely on the developer to interpret data shown
during the presentation stage.

We present a more complete discussion of the analysis
capabilities of each tool in Section

2.4 Presentation

After data has been analyzed by the performance tool,
the tool must present the data to the developer for interpre-
tation. Like the analysis stage, the types of presentations
offered by performance tools vary significantly and will be
discussed in detail in Section [3]

For tracing tools, the performance tool generally presents
the data contained in the trace file in the form of a space-
time diagram, also known as a timeline diagram. In timeline
diagrams, each node in the system is represented by a line.
States for each node are represented through color coding,
and communication between nodes is represented by arrows.
Timeline diagrams give a precise recreation of program state
and communication at runtime. Figure[l|shows an example
timeline view from Jumpshot-4 (discussed in Section [3.1.1]).

For profiling tools, the performance tool generally displays
the profile information in the form of a chart or table. Bar
charts or histograms graphically display the statistics col-
lected during execution. Text-based tools use formatted text
tables to display the same type of information. A few profil-
ing tools also display performance information alongside the
original source code, as profiled data such as the percentage
of time an instruction contributes to overall execution time
lends itself well to this kind of display.

2.5 Optimization

In most performance tools, the optimization stage is left
up to the developer. The majority of performance tools
do not have any facility for applying optimizations to a de-
veloper’s code. At best, the performance tool may indi-
cate where a particular bottleneck occurs in the developer’s
source code and expects the developer to come up with an
optimization to apply to their code.
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Figure 1: Example Timeline View from Jumpshot-4

3. PERFORMANCE TOOLS

In this section, we present an overview of each perfor-
mance tool we examined. We categorize each tool as a trac-
ing, profiling, or online analysis tool. For each tool, we
describe what hardware platforms and programming lan-
guages/models are supported. We also describe how each
tool can be used and point out any interesting analysis or
display capabilities.

To compare each tool under similar circumstances, we
devised a standardized evaluation methodology. After in-
stalling each tool, we used it on a suite of applications to
search for performance problems. This application suite
contained microbenchmarks from the PPerfMark suite [23]
(based off of GrindStone [10]), an in-house cryptanalysis ap-
plication developed by the HCS lab named CAMEL, and
the LU benchmark from the NAS NPB-3.1 MPI bench-
mark suite [33]. We used the PPerfMark microbenchmarks
to evaluate each tool’s ability to identify different types of
performance bottlenecks. The LU benchmark was used to
determine how well the tool worked with a more realistic
application code with no obvious bottleneck. Finally, we
used the cryptanalysis application as a control to test for
false positives for bottlenecks (e.g., when the tool identifies
a bottleneck that does not exist). We also measured the
overhead imposed by each tool by comparing the wall clock
times for instrumented and non-instrumented runs of each
application. Overhead times reported below refer to runs on
a Linux cluster with eight nodes (each with two Pentium-3
1.0 GHz processors) using MPICH 1.2.6 and gcc 3.3.2 on
RedHat 9, unless otherwise noted.

In addition to the application suite, we also devised a
comprehensive set of over 20 characteristics (such as doc-
umentation quality and software stability) and rated each
tool numerically on each scale. Space limitations prevent us
from including all scores for each tool; these are available on
our web site [15].

3.1 Tracing Tools

In this section, we present detailed overviews of several
popular tracing tools that give a representative sample of
the variety of available tracing tools. We also give brief
descriptions of other tracing tools in Section



3.1.1 MPE 1.26, Jumpshot-4 1.0.1.0

The Multi Processing Environment (MPE) [3] is a freely-
available trace library distributed with MPICH meant to
be used with Jumpshot, a trace file visualizer. MPE is
available for all platforms that MPICH supports (includ-
ing Linux, AIX, IRIX, and Tru64), and comes bundled with
the MPICH installation source. Since MPE uses PMPI to
record information about MPI applications, it can also be
used with a wide variety of vendor-supplied MPI libraries,
including Cray MPIL.

MPE supports three modes of operation: echoing all MPI
calls to stdout, animating communication for all MPI calls
in an X-Windows session, and logging all MPI calls in a trace
file. Of these three modes, the trace file creation library is
by far the most useful, as it allows developers to visualize
the behavior of their MPI code using the Jumpshot visu-
alization tool. To enable trace file creation with MPICH,
one uses mpicc -mpilog instead of mpicc when linking an
MPI executable and runs the MPI program as normal. In
addition, MPE also provides a simple set of functions that
developers can use to manually instrument basic blocks or
phases of their code.

The Jumpshot visualization tool is a Java program that
gives a graphical timeline representation of trace files col-
lected by the MPE logging library. By default, the MPE
logging library generates trace files in the CLOG format,
which must be converted to Jumpshot’s native SLOG-2 for-
mat before Jumpshot can display them. In our tests, the
conversion to SLOG-2 format was relatively quick — it took
only a few minutes for a 700MB CLOG file to be converted to
an SLOG-2 file, which shrunk the size of the file by approx-
imately one-third. The SLOG-2 file format is a graphics-
based format; it is more computationally expensive to create
than CLOG, but allows Jumpshot to more efficiently display
trace data.

Jumpshot provides an intuitive (though slightly cluttered)
user interface that follows most modern user interface con-
ventions and has excellent zooming and scrolling features
that make navigating large trace files relatively painless. It
tends to consume a lot of RAM during usage, but the inter-
face remains responsive even in the face of large trace files.
Since Jumpshot is written in Java, it can also run on a user’s
personal Windows or Linux workstation.

MPE and Jumpshot performed well on our application
bottleneck suite, even though they only record and display
information about MPI calls. For the PPerfMark bench-
marks, Jumpshot’s timeline display allowed us to clearly
see MPI communication, which allowed us to pick out the
communication bottlenecks in the PPerfMark benchmarks.
Jumpshot did not show any anomalies on the CAMEL
benchmark, and the timeline view illustrated a few places
where message aggregation and collective functions could
have been used to increase scalability. Finally, on the LU
benchmark, Jumpshot clearly illustrated several places in
the application where an excessive number of small mes-
sages were being sent and hinted at the data dependencies
inherent in the benchmark code. In general, the overhead
imposed by recording traces of application code was less
than 10%, and the LU benchmark had only 5% overhead.

While we appreciate Jumpshot’s intuitive interface and its
ability to deal with large trace files, there are a few areas
that could use improvement. The first notable limitation
of Jumpshot is its inability to perform correlation with dis-

played events to lines in a user’s source code. While users
can manually insert instructions to indicate which function
or region of code is currently being executed, this limited
form of source correlation is not ideal and may take too long
to be useful for applications with hundreds of thousands of
lines of code. Second, while the Jumpshot viewer is able to
handle large trace files, trace files containing data from many
nodes can overwhelm users with too much data. Trying to
use Jumpshot to display more than 32 separate processes
becomes cumbersome, although Jumpshot does support his-
tograms which can help cut down on the information being
displayed and allow users to zero in on problematic sections
of code. Third, MPE and Jumpshot only record informa-
tion about the MPI activities of a program. This limitation
of only collecting performance data directly related to MPI
communication means that MPE and Jumpshot cannot be
used with non-MPI programs unless a lot of manual instru-
mentation is done. Finally, Jumpshot provides no facility to
show hardware counter data (e.g., information recorded by
PAPI), which can be extremely valuable in troubleshooting
performance bottleneck issues not related to communica-
tion.

In general, Jumpshot and MPE are valuable as a “first
line of defense” for performance analysis of MPI programs,
especially since they are freely available and distributed with
most versions of MPICH. With a small number of processes,
MPE and Jumpshot are able to display all MPI-specific
events of a program without inducing a large amount of
overhead. However, since they are tools specific to MPI
programs, they are best suited to troubleshooting MPI-only
problems.

3.1.2 Intel Trace Collector and Trace Analyzer

Trace Collector (v5.0.1.0) and Trace Analyzer (v4.0.3.1)
are Intel’s updated versions of Pallas’ VampirTrace and
Vampir tools [27]. Being Intel’s tools, they are only
supported on Intel architectures such as Xeon- and
Itanium-based systems. Trace Collector, the trace col-
lection component of Trace Analyzer, supports C/C++,
Fortran, and Java programs. MPI programs are monitored
through the PMPI interface, with direct support for Intel
MPI, LAM, and MPICH. In the versions of Trace Analyzer
and Trace Collector we tested, not much had been changed
from the Pallas versions of Vampir, except the drop of
support for non-Intel platforms.

Trace Collector supports static binary instrumentation
of user function entry/exit points. It also supports man-
ual instrumentation that enables users to record application
states, communication events, and arbitrary counters val-
ues. Trace Collector uses the Structured Trace File (STF)
file format to store trace information, which incorporates
some indexing techniques to speed data loading.

Trace Analyzer is an X-Windows visualization tool for
STF trace file, and supports several different visualizations
of data, including timeline views (with user-supplied or
hardware counter information), histograms, call trees, and
communication statistics. We found the main interface to
be very stable and responsive, although large trace files
tended to make the interface sluggish. Trace Analyzer
has excellent support for source code correlation; in the
timeline view, for instance, you may right-click on any event
displayed to find out what line of source code is attributed
to that event.



On the bottleneck test suite, we were able to identify and
troubleshoot nearly every test application. For the CAMEL
benchmark, the timeline view clearly displayed the com-
munication taking place and hinted that message aggrega-
tion and asynchronous communication could be used in a
few places to increase scalability. The LU trace file clearly
showed a large number of small messages and the complex
communication patterns used by the benchmark. We were
able to successfully identify each application in the PPerf-
Mark suite, except for the system-time benchmark because
Trace Analyzer has no way of showing time spent by the
operating system vs. user process time. The overhead in-
troduced by the Trace Collector library averaged less than
10% for all of our applications, with the LU benchmark ex-
periencing an overhead of only 2%.

Intel’s Trace Collector and Analyzer show how effective a
tool can be that provides both profile-style statistical sum-
mary data and trace-style event timelines to users. How-
ever, the sheer number of available visualizations offered by
the program can be daunting. The tool does not offer any
automatic analysis capabilities that can guide users to prob-
lematic areas of execution, which can make it difficult to use
with complex applications. Additionally, while the STF file
format deals relatively well with larger files, loading trace
files larger than 200MB has a negative effect on Trace An-
alyzer’s responsiveness. While it is understandable for Intel
to drop support for other non-Intel platforms, it severely
limits the usefulness of the tool for high-performance com-
puting users. Finally, we suggest that Intel should release
the specifics of the STF file format so users of non-Intel
platforms may benefit from Trace Analyzer’s excellent dis-
play capabilities. If this is not possible, we suggest that In-
tel should continue to support the older VTF trace format,
which is documented.

In general, Trace Analyzer is best used in conjunction
with other performance tools such as TAU or KOJAK that
can write to the VTF format, which allows Trace Analyzer
to benefit from the portability and additional analysis capa-
bilities of these tools. It is also worth mentioning that the
University of Dresden is also working on a next-generation
version of Vampir supporting advanced analysis capabilities,
such as parallel analysis of trace files |2].

3.1.3 KOJAK 2.0

The Kit for Objective Judgement And Knowledge-based
detection of performance bottlenecks (KOJAK) is a soft-
ware suite aimed towards automatic performance analysis
and bottleneck detection of parallel programs [22]. KO-
JAK supports MPI and OpenMP programs on almost every
modern computing platform, including Itanium/Opteron,
Power, MIPS, SGI Altix, SPARC, Cray X1 and T3E, NEC
SX, Hitachi SR-8000, and IBM BlueGene/L based systems.

For most platforms, KOJAK relies on the MPI profiling
interface and manual instrumentation to record performance
data. For OpenMP programs, KOJAK has a specific tool,
OPARI, that is able to perform automatic source instru-
mentation. One can also use TAU to record trace data (and
thus benefit from TAU’s automatic source instrumentation),
and convert the TAU trace files to KOJAK’s own EPILOG
format. Additionally, KOJAK is also able to automatically
instrument executables on a few platforms by taking advan-
tage on undocumented compiler features. On the IBM AIX
platform, KOJAK is also able to leverage DPCL [4], a soft-

ware toolkit that provides dynamic binary instrumentation
for distributed environments.

KOJAK’s main feature is its automatic bottleneck detec-
tion trace analysis program, EXPERT. EXPERT searches
through trace files for patterns of performance bottlenecks,
which can be described in either C or Python code. The
bottleneck analysis can take a long time, but the time taken
is generally proportional to the size of the trace file. In our
tests, the LU benchmark’s class W trace file was 23MB and
took just under 9 minutes to analyze on a 2.2+ GHz AMD
Athlon XP processor.

To visualize the analyzed data from EXPERT, KOJAK
relies on the CUBE viewer. The CUBE viewer is a sim-
ple viewer consisting of three main panels: a metric pane, a
source code location pane, and a node/thread location pane.
The metric pane uses a simple hierarchy for describing dif-
ferent metrics, such as time or bottleneck type. Each metric
has a color-coded severity displayed alongside it, which can
be further separated out into source code and machine loca-
tions by expanding nodes in the middle and rightmost pan-
els. The interface used by CUBE does take a few minutes to
get used to, but is able to compactly represent profile-style
timing and bottleneck information. For visualizing the com-
plete trace data, KOJAK also supports exporting EPILOG
trace files to Vampir.

KOJAK’s pattern-matching bottleneck detection worked
well for identifying bottlenecks in the test suite. For the
CAMEL benchmark, KOJAK was able to point out a few
places where asynchronous communication could have been
used by identifying a “late sender” bottleneck. KOJAK also
identified a few late sender and receiver communications in
the LU benchmark, but the CUBE viewer did not illustrate
that too many small messages were being sent. For the rest
of the PPerfMark tests, KOJAK was able to correctly iden-
tify bottlenecks except for a few load imbalance problems.
The overhead imposed by tracing EPILOG files was reason-
able, averaging at less than 10% and adding less than 2%
overhead for the CAMEL and LU benchmarks.

We appreciated KOJAK’s ability to identify multiple
bottlenecks in each application and think its “severity”
attribute for each bottleneck provides a good method
for quantifying the effect of the bottleneck on overall
performance. While it is nice to see that users can record
arbitrary PAPI metrics in each run, it would be better
if KOJAK supported more PAPI metrics in its built-in
library of performance problems used during EXPERT’s
bottleneck searches, which currently only uses floating-point
instructions and L1 cache misses. While the CUBE viewer
does support source code correlation, it would be nice to
see MPI functions related to call sites in a user’s code for
platforms where automatic instrumentation is not available.
Finally, we would also like to see KOJAK export trace files
to Jumpshot in addition to Vampir.

In general, we suggest that KOJAK be used when users
want a detailed analysis of where potential bottlenecks exist
in their code without having to manually search through an
entire trace file. While the bottleneck detection process can
be time-consuming for large files, the analysis can be carried
out while users work on other tasks.

3.1.4 Other Tracing Tools

MPICL [34] and Paragraph [8] are two older tools that
support recording and visualizing MPI traces. MPICL is



a trace capture library that supports many vendor-specific
message-passing libraries that were in existence before the
PVM or MPI standards. With the introduction of the MPI
standard, this library is not as useful on modern platforms.
Paragraph is a visualization tool first developed between
1989 and 1991 that supports over 30 different visualizations.
While most of the visualizations such as timelines have sur-
vived in modern tools, Paragraph contains a few esoteric
visualizations that no modern tool has, such as the “streak”
and “phase plot” visualizations. While the visualizations
provided by Paragraph allowed us to pinpoint most of the
bottlenecks in our performance bottleneck suite, it was very
difficult to know beforehand which visualization provided
us with the correct type of data needed to identify those
bottlenecks.

Paraver [14] is another trace visualization tool that is
geared towards displaying timeline views of trace data.
It has a very complicated user interface and uses a tape
metaphor instead of scroll bars for navigating through trace
data, which tends to be counter-intuitive and less flexible.
However, Paraver supports many different analysis modes
and can display just about any statistic you can think of
once you spend enough time to master it. Additionally,
Paraver can be paired with Dimemas, a simulation tool
that can be used to perform what-if analysis on real traces,
such as “What would happen if I doubled my network
bandwidth?” Dimemas also generates trace files that can
be read by Paraver, which gives users a unified way of
dealing with either simulated or real data.

Kappa-PI [24] is a unique research prototype that analyzes
MPI traces, searches for bottlenecks, and makes suggestions
to users on how to fix each bottleneck. Kappa-PI is tar-
geted towards new users, but we hypothesize that a similar
knowledge-based system might also work well for experi-
enced users. While Kappa-PI has not been made publicly
available at the time of this writing, a version of it is sched-
uled to be released in December 2005.

3.2 Profiling Tools

In this section, we present an illustrative sample of avail-
able profiling tools. We also quickly review some of the other
available sampling tools in Section |[3.2.4] relating their anal-
ysis and presentation techniques to the tools we have already
discussed.

3.21 TAU2.144

Tuning and Analysis Utilities (TAU) [21] is a portable
performance tool written by researchers at the University of
Oregon. One of TAU’s greatest strengths is the number of
hardware and software platforms it supports. TAU can be
run on just about any modern high-performance comput-
ing platform and supports several languages, including C,
C++, Java, Python, Fortran, SHMEM, OpenMP, MPI, and
Charm.

Most of TAU’s options are controlled at compile time,
specified as options to a configure script. TAU can be con-
figured to use profiling or tracing, and has many options
controlling the type of profiling that can be done. While
many of TAU’s options are mutually exclusive, it is possi-
ble (though somewhat awkward) to install multiple versions
of TAU and select between them by adjusting environment
variables.

At the highest level, TAU relies on source instrumenta-
tion performed by the user (or a tool in conjunction with
PDToolkit [16]) to record entry and exit events for user func-
tions. When combined with “lightweight” functions (i.e.,
functions that do a small amount of work but are called
many times), this can result in a lot of runtime overhead;
to overcome this problem, TAU provides a tau_reduce tool
that can be used with existing runtime data to automat-
ically avoid instrumenting functions that are called many
times. Additional instrumentation levels supported include
dynamic binary instrumentation through Dynlnst 9], wrap-
per libraries for MPI (using the PMPI interface), virtual
machine instrumentation for Java programs, and interpreter
instrumentation for Python code.

TAU’s default mode of operation is profiling. To this
end, TAU is distributed with two profile visualization
tools: pprof and paraprof. pprof is a text-based tool
that produces output similar to prof or gprof in which
functions are listed (per node) in order of increasing time
consumption. paraprof shows the same data available as
pprof, but displays it graphically using bar charts and
three-dimensional visualizations. Additionally, in newer
versions of TAU, paraprof can make use of the new
PerfExplorer [11] interface to perform data mining and
cross-experiment performance analysis. While TAU does
not directly collect line-level source correlation, it can be
configured to collect complete call paths to get a better
idea of the context of each function call. In our testing, we
found both pprof and paraprof to be exceptionally stable.

TAU does not contain any built-in trace viewers (al-
though newer versions of TAU are being distributed with
Jumpshot). TAU instead relies on exporting trace files from
its native format to other formats, and currently supports
Jumpshot’s SLOG-2 format, KOJAK’s EPILOG format,
and Vampir’s native format VTF.

For the bottleneck suite, we chose to use paraprof to trou-
bleshoot performance problems since it was the most func-
tional user interface distributed with TAU. On the CAMEL
application, we were able to easily identify the most time-
consuming functions, but we were unable to determine how
communication could be restructured to gain efficiency. For
the LU benchmark, paraprof showed that much of the ap-
plication time was spent on communication, but we gained
little insight on what communication patterns were causing
performance degradation. Finally, on the PPerfMark suite,
we found that paraprof was able to identify most computa-
tion bottlenecks easily, but did not provide us with enough
information to identify bottlenecks that resulted from vari-
able communication patterns or poor dynamic load balanc-
ing (such as the wrong-way and random-barrier bench-
marks).

We should note that when TAU’s profiles were combined
with TAU’s traces and another visualization tool such as
Jumpshot or Vampir, we were able to identify almost every
performance bottleneck in our suite. We will return to this
observation later.

TAU’s measurement libraries also did a good job record-
ing profile data with minimal overhead. TAU’s profile modes
generally introduced negligible overhead (less than 1%) as
long as lightweight functions were not profiled. TAU also
includes a configuration option that instructs it to compen-
sate for the overhead introduced by profiling. This option
works fairly well, but often the simpler solution of excluding



lightweight functions from instrumentation can be more ef-
fective. TAU’s measurement libraries also introduced a min-
imal overhead (less than 5%) for our tracing experiments.

While we liked TAU’s portability and depth of features,
we encountered a few issues worth mentioning. First, TAU
relies on other software such as PDToolkit for some basic
functionality; this makes the installation process a bit more
involved, since extra software has to be downloaded and
installed first. Second, even though TAU provides a very
helpful user manual, getting acquainted with all of TAU’s
features can take some time. Additionally, sometimes it is
easier to use other tracing tools by themselves instead of
using them through TAU. For instance, it is generally easier
to use mpicc -mpilog and Jumpshot than the equivalent se-
quence of operations to get the same functionality through
TAU. Finally, while TAU’s wrapper Makefiles make it rela-
tively easy to use the correct compilation and linking argu-
ments to instrument code and link against TAU’s libraries,
getting these working correctly with an existing application
can take some trial and error. However, newer versions of
TAU provide scripts that can be used in place of compil-
ers invocations (e.g., tau_cc.sh instead of cc); this makes
it much easier to instrument applications that have unique
build processes (such as the NAS benchmark suite).

In general, TAU is a powerful but complex tool well suited
to users that require a lot of functionality and are willing to
invest time to learn how to use its advanced features.

3.2.2 HPCToolkit1.1.0

HPCToolkit [19] is a suite of tools that helps program-
mers collect, organize, and display profile data. It runs on
many Linux-based platforms, including IA32, Opteron, and
Ttanium systems with the PAPI library installed. It also
runs on AlphaServer Tru64, IRIX64 MIPS machines, and
Solaris SPARC machines. Since HPCToolkit relies on sam-
pling metrics, it can work with any compiled executable,
including threaded, MPI, and OpenMP code. HPCToolkit
requires no instrumentation phase, but does require executa-
bles to be compiled with debugging information for source
correlation to work.

HPCToolkit is composed of several smaller tools that pro-
vide most of the functionality of the tool set. The hpcrun
tool is used to perform monitored runs of executables using
PAPI, which produces several text profile files. These pro-
files are merged with executable format structure informa-
tion from bloop by the hpcprof tool, which creates simple
profile information. Additionally, the profiles can be used
with the hpcview tool, which packs up the performance in-
formation and source code referenced in the files into a re-
port directory that can be opened by the hpcviewer pro-
gram.

HPCToolkit allows users to collect wallclock metrics or
any PAPI metrics for each sampled run. When viewed
in the hpcviewer Java-based viewer, these metrics are dis-
played alongside a user’s code. Users may aggregate the
metrics in any way they wish by constructing MathML ex-
pressions, which the hpcviewer tool uses when displaying
the data. Additionally, since HPCToolkit makes no assump-
tions about the nature of performance data, it is very easy
to include metrics collected from different runs in a single
hpcviewer session.

On the bottleneck test suite, HPCToolkit was able to
identify computation-bound code sections. However, as

there are no high-level communication metrics supported by
PAPI, HPCToolkit was not able to show any communica-
tion characteristics of the application other than time spent
inside each MPI function call. This inability to characterize
communication patterns also affected the remainder of our
benchmark suite: HPCToolkit makes it very easy to identify
compute-bound sections of code, but it can be difficult or
impossible to infer communication problems when only
profiled data for metrics is available. HPCToolkit averaged
less than 20% overhead for all applications in our bottleneck
test suite.

HPCToolkit is exceptionally good at debugging perfor-
mance problems in sequential code and other code with lit-
tle communication, such as threaded code. HPCToolkit also
excels in its ability to relate performance metrics to lines of
source code, even in the face of aggressive loop transforma-
tions. However, the data presented by HPCToolkit can be
very low-level, often showing where time is being spent in-
side a library (such as time spent in internal MPI function
calls). It would be helpful to provide an option where timing
information is related to callsites inside a user’s code, rather
than to internal routines used by libraries, since most users
are unable or unwilling to change external library code for
better performance.

In general, HPCToolkit is best used to troubleshoot per-
formance problems in sequential parts of a parallel applica-
tion. HPCToolkit’s integration with PAPI and its excellent
source code correlation make it very valuable for tuning code
to minimize cache misses and maximize floating-point oper-
ations per second.

3.2.3 mpiP 2.8

mpiP [32] is a lightweight tool for profiling MPI appli-
cations. It supports Linux, Tru64, IBM AIX, Cray UNI-
COS, and IBM’s BlueGene/L platforms. While many tools
have problems running on systems with thousands of proces-
sors, mpiP has been successfully run on massively-parallel
machines. mpiP also contains a comprehensive, portable
address-to-source translation and stackwalking API that it
uses to collect information about MPI callsites while only
using the PMPI instrumentation interface.

mpiP records statistical information about the MPI com-
munication for a program: time per MPI task, aggregate
message size and time per MPI callsite, time and message
stats per MPI callsite, and I/O stats per MPI callsite. It
also provides a basic summary of the amount of time in a
user’s application that can be attributed to MPI calls. After
running an MPI program, mpiP produces a simple text out-
put file. The contents of this text file are human-readable,
but the output file can also be used with the Mpipview pro-
gram (distributed as part of Tool Gear [7]) which shows the
information alongside the user’s source code.

In the bottleneck suite, mpiP was able to identify prob-
lematic MPI callsites in code, but was not able to provide
any information about non-MPI parts of each benchmark,
because it only uses PMPI to gather performance data. For
the CAMEL benchmark, mpiP showed that the application
spends a small fraction of time within MPI functions and il-
lustrated a few MPI send and receive pairs that had a time
imbalance. For the LU benchmark, it showed that a sig-
nificant fraction of execution time was spent in MPI calls,
but since the communication calls are spread out in the ap-
plication, mpiP was not able to narrow down the excessive



communication to a problematic set of callsites. mpiP also
performed well on the PPerfMark tests, but had trouble
with the benchmarks that had time-varying problems (such
as diffuse-procedure and hot-procedure). The overhead
imposed by mpiP was small, averaging less than 3% for all
benchmarks.

While mpiP provides only a small amount of performance
information when compared with other, more full-featured
tools, it can still be quite valuable when trying to trou-
bleshoot MPI communication problems that occur as the
system size is scaled up to several thousand processors.

3.2.4 Other Profiling Tools

Profiling tools have long been used with sequential pro-
grams, and many vendors have shipped tools such as prof,
gprof, or pixie as part of their standard software installa-
tions. Most of these vendor-supplied tools rely on callstack
sampling and debug symbols to relate performance infor-
mation back to lines of source code. Many parallel profiling
tools try to provide a straightforward parallel extension to
prof-like tools, such as PGI’s pgprof [28], vprof |12], HPM
Toolkit [29], and PerfSuite [13], in addition to the text out-
puts from HPCToolkit’s hpcprof and TAU’s pprof tools
mentioned above. Two more ambitious commercial profil-
ing tools that attempt to provide a user with suggestions on
how to fix bottlenecks in their code are Crescent Bay Soft-
ware’s DEEP/MPI and Intel’s VTune software (although
VTune is currently available for sequential programs on In-
tel platforms only).

SvPablo [5] is a profiling tool that displays performance
metrics color coded alongside a user’s source code. Unlike
the other profiling tools mentioned above, SvPablo has a
graphical interface that lets users perform source instrumen-
tation interactively. SvPablo also is able to do basic cross-
experiment performance analysis by automatically produc-
ing parallel efficiency charts based on recorded performance
data. SvPablo also uses a language-independent file format
for recording performance data, which lets the interface vi-
sualize profile data from any language. In our testing with
SvPablo, we had problems getting the built-in C parser to
recognize modern C99 code. SvPablo performed well on our
bottleneck suite, but suffered from similar problems expe-
rienced by other profile-only tools; namely, communication
bottlenecks are sometimes impossible to pinpoint when only
profiling information is available.

AIMS [35] is a tool written by the NASA AMES research
center that is probably closest in functionality to TAU.
AIMS supports overhead compensation, along with some
interesting visualizations and statistical analysis capabil-
ities. Unfortunately, AIMS has not been updated since
1999, and we have not been successful at running it on any
modern platforms.

Cray’s PAT [6] offers support for sampling, profiling, and
tracing, and is available on most of Cray’s platforms such
as the X1/X1E and XD1. Cray PAT uses static binary in-
strumentation and can export data in XML format for use
with other tools. The basic analysis capabilities provided
by Cray PAT are similar to prof-like tools, and Cray PAT
can also be coupled with Apprentice? for visualizing both
MPI traces and sampled program data. Cray PAT supports
a wide variety of languages, including UPC, SHMEM, Co-
Array Fortran, MPI, and OpenMP programs.

3.3 Online Analysis Tools

In this section, we describe tools that mainly rely on online
analysis techniques instead of post-mortem analysis tech-
niques. We categorize these tools separately from the pro-
filing and tracing tools above because their online analysis
techniques result in vastly different usage. We also present
brief descriptions of other online analysis tools in Section
0.0.2

3.3.1 Paradyn4.1.1

Paradyn [20] is an online performance analysis tool de-
veloped by the University of Wisconsin-Madison. Paradyn
runs on most current platforms, including Solaris 8 and 9
(SPARC), Linux (x86), Windows 2000 and Windows XP
(x86), AIX (PowerPC), IRIX 6.5 (MIPS) and Tru64 (Al-
phaServer). Paradyn supports both threaded C code, in
addition to C and Fortran MPI programs, and has been in
existence for several years.

Paradyn’s authors noted the problems associated with
storing and analyzing large amounts of trace data, and came
up with a solution that tries to avoid these problems. In-
stead of recording a complete trace of all application behav-
ior, Paradyn relies on online performance analysis. Paradyn
performs instrumentation of binaries at runtime as needed,
trying to keep instrumentation overhead minimal. Instru-
mentation code can be inserted or removed at will by users
at runtime. Additionally, since users cannot hope to keep
up with the flow of incoming performance information in
large-scale systems, Paradyn also provides an automated
performance bottleneck search routine named the Perfor-
mance Consultant.

Paradyn is composed of several complementary pieces of
software, all attached to a graphical user interface (GUI).
When users launch their program using the main GUI, Para-
dyn also launches several monitoring daemon processes on
each node. When users select a visualization or perform an-
other action that requires performance data, the GUI com-
municates with each daemon and requests instrumentation
code to be inserted in the running program. Each daemon
performs the instrumentation, begins recording data, and
periodically sends back data samples to the main GUI. In
this manner, Paradyn can be thought of as a dynamic sam-
pling tool. The sampled performance data is stored in a
round-robin database, which is then presented to the user
graphically through one of Paradyn’s visualizations. Para-
dyn has several visualizations that are geared towards dis-
playing sampled data, including two- and three-dimensional
bar charts, histograms, and tables.

When the Performance Consultant is used, a similar se-
quence of actions occur, except they are controlled by the
Performance Consultant’s search routine instead of by the
user. The bottleneck search uses the W23 model to guide the
bottleneck search over a set of candidate bottlenecks. The
W3 model attempts to answer why, where, and when the
application is performing poorly by correlating performance
bottlenecks to specific classes of bottlenecks, nodes of a ma-
chine and functions in source code, and phases of a user’s
program (which the user has to manually specify based on
time intervals).

Dynamic binary instrumentation avoids many of the prob-
lems associated with other forms of instrumentation (such
as interference with compiler optimizations and amount of
work that must be done by a user), but is a technically chal-



lenging problem. Thankfully, the dynamic instrumentation
performed by Paradyn is exposed to other tools through the
DynlInst library.

The Performance Consultant performed well on our bot-
tleneck suite. The Performance Consultant was especially
good at identifying computational and synchronization bot-
tlenecks in the CAMEL and LU benchmarks. However, it
did not perform as well with communication problems in the
PPerfMark suite that could not be described using simple
threshold values for metrics, such as the wrong-way bench-
mark. In many cases it was able to point us in the general
direction of the problem, but could not provide enough in-
formation on what was causing the bottleneck (e.g., mes-
sages being sent in backwards order). And while the over-
head experienced with Paradyn was almost unnoticeable in
most cases, allowing the Performance Consultant to per-
form searches on code with lightweight functions generally
resulted in several orders of magnitude of overhead.

We appreciate the technical challenges that Paradyn has
set out to solve, but do have a few comments based on our
experiences with the tool. While the Performance Consul-
tant can be especially valuable for inexperienced users (and
useful for experienced users as a “first pass” for identify-
ing potential problem spots), it tends to be easily confused
on applications with complex performance problems such as
the LU benchmark. It would also be nice to have a notion
of severity for each benchmark, instead of a simple cutoff
scheme as currently used. Also, during normal use, the
user interface tends to get cluttered with lots of different
open windows. The interface could also benefit from the
use of a more modern widget set. While binaries are pro-
vided for almost all supported platforms, it would be ben-
eficial to have an easier process for users wishing to build
from source, as building Paradyn and DynlInst from source
is very error-prone. And while we appreciated the ability
to attach Paradyn to existing long-running processes, the
version we tested had no way to detach from a monitored
process. We also would like to see support for other popular
high-performance computing platforms, such as the Cray
X1E and Opteron-based platforms. Finally, we feel Para-
dyn would benefit from an “unsupervised” mode that could
make it usable in batch systems, as it currently cannot be
used in non-interactive environments.

In general, Paradyn is a useful research vehicle to test
out online performance analysis ideas and is also useful for
researchers wishing to interact with an application while it
is running. Since no recompilation is required to use the
tool, it seems well-suited for troubleshooting performance
problems in “production” applications.

3.3.2 Other Online Analysis Tools

DynaProf [26] merges the DynlInst library with PAPI, en-
abling users to dynamically instrument and run executables
using a gdb-like interface. It works especially well with se-
quential and threaded programs, but can be difficult to use
with MPI programs since the spawned MPI processes have
to be overseen by DynPprof.

DynTG [30] is another performance tool that marries two
separate performance tool frameworks: DPCL [4] and Tool
Gear [7]. The Tool Gear component provides a source-level
browser where users can instrument their program during
runtime by clicking on source code lines in the browser. In
effect, DynTG is similar to SvPablo, except that the in-

strumentation and measurement changes occur at runtime
and do not require a recompilation. DynTG is currently
not available, but according to the developers, a release is
planned soon.

4. CONCLUSIONS

In this paper, we presented the findings of our tool evalu-
ation study. We have reviewed many different types of per-
formance tools, and have given recommendations on when
it is appropriate to use each tool.

Based on our experiences with the tool evaluations, we
have learned that the most effective performance tools can
display data to the user at both high levels (profiled data)
and low levels (traced data and hardware counters). Profile
data can provide a top-down view of time spent in an ap-
plication, which a user can interpret to focus their tuning
efforts. On the other hand, trace data can better illustrate
the temporal relationships and data dependencies of appli-
cation behavior, albeit at a very low level. Additionally, we
found that relating performance information back to actual
lines in users’ source code is critical for them to determine
how to fix performance bottlenecks in their code.

Hardware counters are also useful for finding out how well
an application is running on a given hardware platform,
as they can be used to directly compare metrics such as
FLOPS with the theoretical peak numbers for a given plat-
form. Matching these metrics with other data such as data
cache misses can also give provide more insight into where
performance is being lost in an application.

One other observation we have made with performance
tools is that most tended to be difficult to install and hard
to learn. While performance tools have made several strides
with regards to usability, most tools could benefit from
clearer documentation and “quickstart” guides that allow
users to reduce the time needed to become productive with
a tool. Additionally, performance tools should follow estab-
lished guides for user interface design whenever possible,
and most tools would greatly benefit from usability studies.
Tool developers should strive to minimize the amount of
effort a user has to exert in order to use their tool. In
general, the more work a user has to do in order to use the
tool, the less likely they are to actually use it.
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