
Yili Zheng

Lawrence Berkeley National Laboratory

Berkeley UPC Team

ÅProject Lead: Katherine Yelick

ÅTeam members: Filip Blagojevic, Dan
Bonachea, Paul Hargrove, Costin Iancu, Seung-
Jai Min, Yili Zheng

ÅFormer members: Christian Bell, Wei Chen,
Jason Duell, Parry Husbands, Rajesh Nishtala ,
Mike Welcome

ÅA joint project of LBNL and UC Berkeley

2Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

Motivation

ÅScalable systems have either distributed memory or
shared memory without cache coherency
ïClusters: Ethernet, Infiniband, CRAY XT, IBM BlueGene

ïHybrid nodes: CPU + GPU or other kinds of accelerators

ïSoC: IBM Cell, Intel Single-chip Cloud Computer (SCC)

ÅChallenges of Message Passing programming models
ïDifficult data partitioning for irregular applications

ïMemory space starvation due to data replication

ïPerformance overheads from two-sided communication
semantics

6/22/2010 Workshop on Programming Environments for Emerging Parallel Systems 3

Partitioned Global Address Space

Thread 1 Thread 2 Thread 3 Thread 4

ÁGlobal data view abstraction for productivity
ÁVertical partitions among threads for locality control
ÁHorizontal partitions between shared and private

segments for data placement optimizations
ÁFriendly to non-cache-coherent architectures

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

Private
Segment

Shared
Segment

4Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

PGAS Example: Global Matrix
Distribution

Global Matrix View Distributed Matrix Storage

1

3

2

4

9

11

10

12

5

7

6

8

13

15

14

16

1

9

5

13

3

11

7

15

2

10

6

14

4

12

8

16

5Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

UPC Overview

ÅPGAS dialect of ISO C99

ÅDistributed shared arrays

ÅDynamic shared-memory allocation

ÅOne-sided shared-memory communication

ÅSynchronization: barriers, locks, memory
fences

ÅCollective communication library

ÅParallel I/O library
6Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

Key Components for Scalability

ÅOne-sided communication and active
messages

ÅEfficient resource sharing for multi-core
systems

ÅNon-blocking collective communication

Workshop on Programming Environments for Emerging Parallel Systems 76/22/2010

Berkeley UPC Software Stack

UPC-to-C Translator

UPC Applications

UPC Runtime

GASNet Communication Library

Network Driver and OS Libraries

Translated C code with Runtime Calls

H
ar

d
w

ar
e

D
ep

e
n

d
an

t Lan
gu

age D
ep

e
n

d
an

t

8Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

Berkeley UPC Features

ÅData transfer for complex data types (vector,
indexed, stride)

ÅNon-blocking memory copy

ÅPoint-to-point synchronization

ÅRemote atomic operations

ÅActive Messages

ÅExtension to UPC collectives

ÅPortable timers

9Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

One-Sided vs. Two-Sided Messaging

Å Two-sided messaging
ïMessage does not contain information about the final

destination; need to look it up on the target node
ïPoint-to-point synchronization implied with all transfers

Å One-sided messaging
ïMessage contains information about the final destination
ïDecouple synchronization from data movement

dest. addr.

message id

data payload

data payload

one-sided put (e.g., UPC)

two-sided message (e.g., MPI)

network

interface

memory

host

CPU

10Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

Active Messages

ÅActive messages = Data + Action

ÅKey enabling technology for both
one-sided and two-sided
communications
ïSoftware implementation of Put/Get

ïEager and Rendezvous protocols

ÅRemote Procedural Calls
ïCŀŎƛƭƛǘŀǘŜ άƻǿƴŜǊ-ŎƻƳǇǳǘŜǎέ

ïSpawn asynchronous tasks

Request

Reply

A B

Request
handler

Reply
handler

11Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

GASNet Bandwidth on BlueGene/P

Å Torus network
ï Each node has six 850MB/s*

bidirectional links

ï Vary number of links from 1 to 6

Å Consecutive non-blocking puts
on the links (round-robin)

Å Similar bandwidth for large-size
messages

Å GASNet outperforms MPI for
mid-size messages
ï Lower software overhead

ïMore overlapping

* Kumar et. al showed the maximum
achievable bandwidth for DCMF
transfers is 748 MB/s per link so we
use this as our peak bandwidth
{ŜŜ ά¢ƘŜ ŘŜŜǇ ŎƻƳǇǳǘƛƴƎ ƳŜǎǎŀƎƛƴƎ
framework: generalized scalable
message passing on the blue gene/P
ǎǳǇŜǊŎƻƳǇǳǘŜǊέΣ YǳƳŀǊ Ŝǘ ŀƭΦ L/{лу

G
O
O
D

{ŜŜ ά{ŎŀƭƛƴƎ /ƻƳƳǳƴƛŎŀǘƛƻƴ LƴǘŜƴǎƛǾŜ !ǇǇƭƛŎŀǘƛƻƴǎ ƻƴ
BlueGene/P Using One-Sided Communication and
hǾŜǊƭŀǇέΣ wŀƧŜǎƘ bƛǎƘǘŀƭŀΣ tŀǳƭ IŀǊƎǊƻǾŜΣ 5ŀƴ Bonachea,
and Katherine Yelick, IPDPS 2009

12Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

GASNet Bandwidth on Cray XT4

0

200

400

600

800

1000

1200

1400

1600

1800

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Payload Size (bytes)

B
a

n
d

w
id

th
 o

f
N

o
n

-B
lo

c
k

in
g

 P
u

t
(M

B
/s

)

portals-conduit Put

OSU MPI BW test

mpi-conduit Put

(u
p

 is
 g

o
o

d
)

Slide source: Porting GASNet to Portals: Partitioned Global Address Space (PGAS) Language Support for the
Cray XT, Dan Bonachea, Paul Hargrove, Michael Welcome, Katherine Yelick, CUG 2009

13Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

GASNet Latency on Cray XT4

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256 512 1024

Payload Size (bytes)

L
a
te

n
c
y
 o

f
B

lo
c
k
in

g
 P

u
t

(µ
s
)

mpi-conduit Put

MPI Ping-Ack

portals-conduit Put

(d
o

w
n

 is
 g

o
o

d
)

Slide source: Porting GASNet to Portals: Partitioned Global Address Space (PGAS) Language Support for the
Cray XT, Dan Bonachea, Paul Hargrove, Michael Welcome, Katherine Yelick, CUG 2009

14Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

Execution Models on Multi-core
ςProcess vs. Thread

CPU CPU CPU CPU

Physical Shared-memory Virtual Address Space

Map UPC threads to Processes Map UPC threads to Pthreads

15Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

Point-to-Point Performance
ςProcess vs. Thread

Workshop on Programming Environments for Emerging Parallel Systems 16

0

1000

2000

3000

4000

5000

6000

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K

B
a

n
d

w
id

th
 (

M
B

/s
)

Size (Bytes)

InfiniBand Bandwidth

1T-16P 2T-8P 4T-4P 8T-2P 16T-1P MPI

6/22/2010

Application Performance
ςProcess vs. Thread

Workshop on Programming Environments for Emerging Parallel Systems 17

0

0.2

0.4

0.6

0.8

1

1.2

GUPS MCOP SOBEL

Fine Grained Comm.

1T-16P 2T-8P 4T-4P 8T-2P 1T-16P

6/22/2010

16T-1P

NAS Parallel Benchmarks
ςProcess vs. Thread

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

EP CG IS MG FT LU BT-256 SP-256

NPB - Class C
Comm

Fence

Critical Section

Comp

18Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

Collective Communication for PGAS

ÅCommunication patterns similar to MPI:
broadcast, reduce, gather, scatter and alltoall

ÅGlobal address space enables one-sided
collectives

ÅFlexible synchronization modes provide more
communication and computation overlapping
opportunities

6/22/2010 Workshop on Programming Environments for Emerging Parallel Systems 19

Collective Communication Topologies

0

8 2

312 10

4

6

1

11

9

7

5

14 13

15 binomial tree

0

1

2

3

125

8

9

4 6 7 10 11 13 14

0

1

2

3

12

5

8

9

4

6

7

10

11

13

14

15

Binary Tree

Fork Tree

0

2

34

6

17

5

Radix 2 Dissemination

20Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

GASNet Module Organization

GASNet Collectives API

Portable
Collectives

Point-to-point
Comm. Driver

Interconnect/Memory

Native Collectives

Collective
Comm. Driver

UPC Collectives Other PGAS Collectives

Auto-Tuner of Algorithms and Parameters

Shared-Memory
Collectives

21Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

Auto-tuning Collective Communication

Workshop on Programming Environments for Emerging Parallel Systems 22

Offline tuning

ÁOptimize for platform
common characteristics

ÁMinimize runtime
tuning overhead

Online tuning

ÁOptimize for application
runtime characteristics

ÁRefine offline tuning
results

Performance
Influencing Factors

Performance
Tuning Space

Hardware
Á CPU
Á Memory system
Á Interconnect

Software
Á Application
Á System software

Execution
Á Process/thread

layout
Á Input data set
Á System workload

Algorithm selection
Á Eager vs. rendezvous
Á Put vs. get
Á Collection of well-

known algorithms
Communication topology
Á Tree type
Á Tree fan-out

Implementation-specific
parameters
Á Pipelining depth
Á Dissemination radix

6/22/2010

Broadcast Performance

Cray XT4 Nonblocking Broadcast (1024 Cores)

23Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

Matrix-Multiplication on Cray XT4

Workshop on Programming Environments for Emerging Parallel Systems 24

0

1000

2000

3000

4000

0 50 100 150 200 250 300 350 400

G
F

lo
p
s

Cores

DGEMM Peak

UPC (nonblocking collectives)

UPC (flat point-to-point)

UPC (blocking collectivs)

MPI / PBLAS

Matrix size: (8K X 8K doubles) per node

6/22/2010

Choleskey Factorization on Sun
Constellation (Infiniband)

3118

3757

4097

0 1000 2000 3000 4000 5000

Naïve UPC
(get-based)

Hand-coded
UPC

UPC team
collectives

GFlops

2048 cores on Ranger
Matrix size: 240K

25Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

FFT Performance on Cray XT4

(1024 Cores)

26Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

FFT Performance on BlueGene/P

6/22/2010 Workshop on Programming Environments for Emerging Parallel Systems 27

MPI FFT of HPC Challenge as of July 09 is ~4.5 Tflops on 128k Cores.

0

500

1000

1500

2000

2500

3000

3500

256 512 1024 2048 4096 8192 16384 32768

G
F

lo
p
s

Num. of Cores

Slabs
Slabs (Collective)
Packed Slabs (Collective)
MPI Packed Slabs

Summary

ÅPGAS provides programming convenience similar to
shared-memory models

ÅUPC has demonstrated good performance comparable
to MPI at large scale.

ÅInteroperable with other programming models and
languages including MPI, FORTRAN and C++

ÅGrowing UPC community with actively developed and
maintained software implementations
ïBerkeley UPC and GASNet: http://upc.lbl.gov

ïOther UPC compilers: Cray UPC, GNU UPC, HP UPC and
IBM UPC

ïTools: TotalView and Parallel Performance Wizard (PPW)

28Workshop on Programming Environments for Emerging Parallel Systems6/22/2010

