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Berkeley UPC Team
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ÅA joint project of LBNL and UC Berkeley

2Workshop on Programming Environments for Emerging Parallel Systems6/22/2010



Motivation

ÅScalable systems have either distributed memory or 
shared memory without cache coherency
ïClusters: Ethernet, Infiniband, CRAY XT, IBM BlueGene

ïHybrid nodes: CPU + GPU or other kinds of accelerators

ïSoC: IBM Cell, Intel Single-chip Cloud Computer (SCC)

ÅChallenges of Message Passing programming models
ïDifficult data partitioning for irregular applications

ïMemory space starvation due to data replication

ïPerformance overheads from two-sided communication 
semantics 

6/22/2010 Workshop on Programming Environments for Emerging Parallel Systems 3



Partitioned Global Address Space

Thread 1 Thread 2 Thread 3 Thread 4

ÁGlobal data view abstraction for productivity
ÁVertical partitions among threads for locality control
ÁHorizontal partitions between shared and private 

segments  for data placement optimizations
ÁFriendly to non-cache-coherent architectures
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PGAS Example: Global Matrix 
Distribution

Global Matrix View Distributed Matrix Storage
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UPC Overview

ÅPGAS dialect of ISO C99

ÅDistributed shared arrays

ÅDynamic shared-memory allocation

ÅOne-sided shared-memory communication 

ÅSynchronization: barriers, locks, memory 
fences

ÅCollective communication library

ÅParallel I/O library
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Key Components for Scalability

ÅOne-sided communication and active 
messages

ÅEfficient resource sharing for multi-core 
systems

ÅNon-blocking collective communication
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Berkeley UPC Software Stack

UPC-to-C Translator

UPC Applications

UPC Runtime

GASNet Communication Library 

Network Driver and OS Libraries

Translated C code with Runtime Calls
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Berkeley UPC Features

ÅData transfer for complex data types (vector, 
indexed, stride)

ÅNon-blocking memory copy

ÅPoint-to-point synchronization

ÅRemote atomic operations

ÅActive Messages

ÅExtension to UPC collectives

ÅPortable timers

9Workshop on Programming Environments for Emerging Parallel Systems6/22/2010



One-Sided vs. Two-Sided Messaging

Å Two-sided messaging
ïMessage does not contain information about the final 

destination; need to look it up on the target node
ïPoint-to-point synchronization implied with all transfers

Å One-sided messaging
ïMessage contains information about the final destination
ïDecouple synchronization from data movement

dest. addr.

message id

data payload

data payload
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Active Messages

ÅActive messages = Data + Action

ÅKey enabling technology for both 
one-sided and two-sided 
communications
ïSoftware implementation of Put/Get

ïEager and Rendezvous protocols

ÅRemote Procedural Calls
ïCŀŎƛƭƛǘŀǘŜ άƻǿƴŜǊ-ŎƻƳǇǳǘŜǎέ

ïSpawn asynchronous tasks
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GASNet Bandwidth on BlueGene/P 

Å Torus network
ï Each node has six 850MB/s* 

bidirectional links

ï Vary number of links from 1 to 6

Å Consecutive non-blocking puts 
on the links (round-robin)

Å Similar bandwidth for large-size 
messages

Å GASNet outperforms MPI for 
mid-size messages
ï Lower software overhead

ïMore overlapping

* Kumar et. al showed the maximum 
achievable bandwidth for DCMF 
transfers is 748 MB/s per link so we 
use this as our peak bandwidth
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GASNet Bandwidth on Cray XT4 
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Slide source: Porting GASNet to Portals: Partitioned Global Address Space (PGAS) Language Support for the 
Cray XT, Dan Bonachea, Paul Hargrove,  Michael Welcome, Katherine Yelick, CUG 2009
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GASNet Latency on Cray XT4 
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Slide source: Porting GASNet to Portals: Partitioned Global Address Space (PGAS) Language Support for the 
Cray XT, Dan Bonachea, Paul Hargrove,  Michael Welcome, Katherine Yelick, CUG 2009
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Execution Models on Multi-core 
ςProcess vs. Thread

CPU CPU CPU CPU

Physical Shared-memory Virtual Address Space

Map UPC threads to Processes Map UPC threads to Pthreads
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Point-to-Point Performance
ςProcess vs. Thread
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Application Performance 
ςProcess vs. Thread
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NAS Parallel Benchmarks
ςProcess vs. Thread
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Collective Communication for PGAS

ÅCommunication patterns similar to MPI: 
broadcast, reduce, gather, scatter and alltoall

ÅGlobal address space enables one-sided 
collectives

ÅFlexible synchronization modes provide more 
communication and computation overlapping 
opportunities
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Collective Communication Topologies
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GASNet Module Organization

GASNet Collectives API

Portable 
Collectives

Point-to-point
Comm. Driver

Interconnect/Memory

Native Collectives

Collective
Comm. Driver

UPC Collectives Other PGAS Collectives

Auto-Tuner of Algorithms and Parameters

Shared-Memory 
Collectives
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Auto-tuning Collective Communication
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Offline tuning

ÁOptimize for platform 
common characteristics

ÁMinimize runtime 
tuning overhead

Online tuning

ÁOptimize for application 
runtime characteristics

ÁRefine offline tuning 
results

Performance
Influencing Factors

Performance
Tuning Space

Hardware
Á CPU
Á Memory system
Á Interconnect

Software
Á Application
Á System software

Execution 
Á Process/thread 

layout
Á Input data set
Á System workload

Algorithm selection
Á Eager vs. rendezvous
Á Put vs. get 
Á Collection of well-

known algorithms
Communication topology 
Á Tree type 
Á Tree fan-out

Implementation-specific 
parameters 
Á Pipelining depth
Á Dissemination radix
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Broadcast Performance

Cray XT4 Nonblocking Broadcast (1024 Cores)
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Matrix-Multiplication on Cray XT4
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Choleskey Factorization on Sun 
Constellation (Infiniband) 
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FFT Performance on Cray XT4

(1024 Cores)
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FFT Performance on BlueGene/P
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MPI FFT of HPC Challenge as of July 09 is ~4.5 Tflops on 128k Cores.
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Summary

ÅPGAS provides programming convenience similar to 
shared-memory models

ÅUPC has demonstrated good performance comparable 
to MPI at large scale.

ÅInteroperable with other programming models and 
languages including MPI, FORTRAN and C++

ÅGrowing UPC community with actively developed and 
maintained software implementations 
ïBerkeley UPC and GASNet: http://upc.lbl.gov

ïOther UPC compilers: Cray UPC, GNU UPC, HP UPC and 
IBM UPC

ïTools: TotalView and Parallel Performance Wizard (PPW)
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