Experiences Implementing Partitioned Global Address Space (PGAS) Languages on InfiniBand

Paul H. Hargrove (LBNL) with Dan Bonachea and Christian Bell

http://gasnet.cs.berkeley.edu

This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Outline

- Background
- GASNet vapi-conduit / ibv-conduit
- RDMA Put/Get
- Active Messages (RPC)
- Asynchronous Progress Threads
- Memory Registration

Background – PGAS & GASNet

- Partitioned Global Address Space (PGAS) Languages
 - Examples
 - Unified Parallel C (UPC), Titanium and Co-Array FORTAN
 - Shared memory style programming
 - "Global pointers" as a language concept
 - Explicit memory affinity for global pointers

• Global Address Space Networking (GASNet)

- Language-independent library for PGAS network support
- Designed as a compilation target, not for end users
- Project of Lawrence Berkeley National Lab and the University of California Berkeley (P.I. Kathy Yelick)

Background – GASNet API

GASNet "Core" API

- Active Message (RPC) interface
- Minimum requirement for a new port "Reference Extended" implements Extended via Core

GASNet "Extended" API

- Remote Put and Get operations
- Blocking and Non-blocking (multiple variants)
 - Implicit ("region" based) or Explicit ("handle" based)
 - Initiation of Puts with or without local completion

GASNet – vapi- and ibv-conduits

- The network-specific code in GASNet is a "conduit"
- InfiniBand support began with Mellanox VAPI
 - "vapi-conduit"
- Later Open Fabrics verbs "ibv" support added
 - "ibv-conduit"
- Same source code supports both APIs via a thin layer of macros (and some #ifdef's)
- Very little (if any) beyond VAPI 1.0 features

RDMA Put and Get

- Initiator provides everything needed to complete one-sided communication
 - Local address and length; remote node and address
- GASNet needs just a thin layer over InfiniBand RDMA_WRITE and RDMA_READ
 - Uses inline send when possible
 - Uses wr_id to connect CQE to GASNet op for completion
 - Uses semaphore (try_down/up) to control SQ/CQ depth
 - TO DO: suppress CQEs when possible
- Wish List: verbs-level CQ depth management?

Active Messages (RPC)

RPC mechanism based on Berkeley AM

- Request with optional reply no other comms
- Used by language runtimes (locks, memory alloc, etc.)

Primary channel uses SEND_WITH_IMM

- Credit-based flow control (we never see RNR)
- TO DO: Utilize SRQ and revisit flow control

Secondary channel uses RMDA_WRITE

- Based on success with similar optimization in MVAPICH
- No CQE poll in memory (csum based, not "last byte")
- For bounded number of "hot peers" only
- Wish list: SEND w/ lower latency

Asynchronous Progress Threads

- Polling-base progress may not service AMs for long periods of time
 - Bad for apps when memory allocation or locks involved
 - Bad for memory registration rendezvous (next section)
- Initial design used EVAPI_set_comp_eventh()
 - Never found "well behaved" app that benefited
 - "Network attentive" apps saw performance decline
 - TO DO: progress thread not implemented yet for ibv
- Wish List: ibv_req_notify_cq_timed()?
 - Event when CQE remains unserviced "too long"

Memory Registration – "FIREHOSE"

- An algorithm for distributed management of memory registration
 - Exposes one-sided, zero-copy RDMA as common case
 - Degrades gracefully to rendezvous as working set grows
- Used in gm, vapi/ibv, lapi and (soon) portals
- C. Bell and D. Bonachea. "A New DMA Registration Strategy for Pinning-Based High Performance Networks". Workshop on Communication Architecture for Clusters (CAC'03), 2003.

Memory Registration

- Registration is required (Protection)
 - Need Protection = access/Rkey/Lkey
- As a ULP we don't need "pinning" (Translation)
 - Source of many woes
- Dynamic registration is costly
 - Cost in time motivates aggressive caching/reuse
 - Roughly as much code as for RDMA and AMs
- Wish List: non-pinning memory registration
 - Associate access/Rkey/Lkey with address range
 - Lazy translation ideally w/ page allocation

Summary

PGAS Put/Get map well to RDMA Read/Write

- Queue the RDMAs, reap the completions
- The 64-bit wr_id links completions back to GASNet ops
- Need to manage CQ space

AM/RPC support fits less well

- Like the MPI implementers, we work around the latency of CQE generation on receiver
- Async progress not yet seen to be helpful with the current notification facilities

Memory registration

- Like the MPI implementers, we devote far too much code to this
- Must cache registrations to amortize their costs
- Wish registration didn't imply pinning

BACKUP SLIDES...

Memory Registration Approaches

Approach	Zero- copy	One- sided	Full VM avail	Description, Pros and Cons
Hardware- based (eg.Quadrics)	\checkmark	<	>	Hardware/firmware manage everything No handshaking or bookkeeping in software Hardware complexity and price, Kernel modifications
Pin Everything	\checkmark	<	X	Pin all pages at startup or when allocated (collectively) Total usage limited to physical memory May require a custom allocator
Bounce Buffers	X	X		Stream data through pre-pinned bufs on one/both sides Mem copy costs (CPU consumption, cache pollution, prevents comm. & computation overlap) Messaging overhead (metadata & handshaking)
Rendezvous	\checkmark	×	<	Round-trip message to pin remote pages before each op Registration costs paid on every operation
Firehose	common case	common case		Common case: All the benefits of hardware-based Uncommon case: Messaging overhead (metadata & handshaking)

Firehose: Conceptual Diagram

- Basic Idea: Use AM to delegate control over registration to the RDMA ۲ initiators
- A and C each control a share ٠ of pinnable memory on B
- A and C can freely "pour" data through their firehoses using RDMA to/from anywhere in the memory they map on B
- Use AM to reposition firehoses ۲
- Refcounts used to track number of attached firehoses (or local pins)
- Support lazy deregistration for ٠ buckets w/ refcount = 0 to avoid re-pinning costs

Summary of Firehose Results

- Firehose algorithm is an ideal registration strategy for GAS languages on pinning-based networks
 - Performance of Pin-Everything (without the drawbacks) in the common case, degrades to Rendezvous-like behavior for the uncommon case
 - Exposes one-sided, zero-copy RDMA as common case
 - Amortizes cost of registration/synch over many ops, uses temporal/spatial locality to avoid cost of repinning
 - Cost of handshaking and registration negligible when working set fits in physical memory, degrades gracefully beyond

InfiniBand Multi-QP (puts)

InfiniBand Multi-QP (gets)

