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Outline

• Background

• GASNet vapi-conduit / ibv-conduit

• RDMA Put/Get

• Active Messages (RPC)

• Asynchronous Progress Threads

• Memory Registration
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Background – PGAS & GASNet

• Partitioned Global Address Space (PGAS) 
Languages
• Examples

• Unified Parallel C (UPC), Titanium and Co-Array FORTAN

• Shared memory style programming

• “Global pointers” as a language concept

• Explicit memory affinity for global pointers

• Global Address Space Networking (GASNet)
• Language-independent library for PGAS network support

• Designed as a compilation target, not for end users

• Project of Lawrence Berkeley National Lab and the 
University of California Berkeley (P.I. Kathy Yelick)
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Background – GASNet API

• GASNet “Core” API

• Active Message (RPC) interface

• Minimum requirement for a new port –
“Reference Extended” implements Extended via Core

• GASNet “Extended” API

• Remote Put and Get operations

• Blocking and Non-blocking (multiple variants)
• Implicit (“region” based) or Explicit (“handle” based)

• Initiation of Puts with or without local completion
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GASNet – vapi- and ibv-conduits

• The network-specific code in GASNet is a 
“conduit”

• InfiniBand support began with Mellanox VAPI

• “vapi-conduit”

• Later Open Fabrics verbs “ibv” support added

• “ibv-conduit”

• Same source code supports both APIs via a thin 
layer of macros (and some #ifdef’s)

• Very little (if any) beyond VAPI 1.0 features 



6 Paul H. HargroveImplementing PGAS on InfiniBand

RDMA Put and Get

• Initiator provides everything needed to complete 
one-sided communication

• Local address and length; remote node and address

• GASNet needs just a thin layer over InfiniBand 
RDMA_WRITE and RDMA_READ

• Uses inline send when possible

• Uses wr_id to connect CQE to GASNet op for completion

• Uses semaphore (try_down/up) to control SQ/CQ depth

• TO DO: suppress CQEs when possible

• Wish List: verbs-level CQ depth management?
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Active Messages (RPC)

• RPC mechanism based on Berkeley AM
• Request with optional reply – no other comms

• Used by language runtimes (locks, memory alloc, etc.)

• Primary channel uses SEND_WITH_IMM
• Credit-based flow control (we never see RNR)

• TO DO: Utilize SRQ and revisit flow control

• Secondary channel uses RMDA_WRITE
• Based on success with similar optimization in MVAPICH

• No CQE – poll in memory (csum based, not “last byte”)

• For bounded number of “hot peers” only

• Wish list: SEND w/ lower latency
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Asynchronous Progress Threads

• Polling-base progress may not service AMs for 
long periods of time

• Bad for apps when memory allocation or locks involved

• Bad for memory registration rendezvous (next section)

• Initial design used EVAPI_set_comp_eventh()

• Never found “well behaved” app that benefited

• “Network attentive” apps saw performance decline

• TO DO: progress thread not implemented yet for ibv

• Wish List: ibv_req_notify_cq_timed()?

• Event when CQE remains unserviced “too long”
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Memory Registration – “FIREHOSE”

• An algorithm for distributed management of 
memory registration

• Exposes one-sided, zero-copy RDMA as common case

• Degrades gracefully to rendezvous as working set grows

• Used in gm, vapi/ibv, lapi and (soon) portals

• C. Bell and D. Bonachea. “A New DMA 
Registration Strategy for Pinning-Based High 
Performance Networks”. Workshop on 
Communication Architecture for Clusters 
(CAC'03), 2003.
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Memory Registration

• Registration is required (Protection)

• Need Protection = access/Rkey/Lkey

• As a ULP we don’t need “pinning” (Translation)

• Source of many woes

• Dynamic registration is costly

• Cost in time motivates aggressive caching/reuse

• Roughly as much code as for RDMA and AMs

• Wish List: non-pinning memory registration

• Associate access/Rkey/Lkey with address range

• Lazy translation – ideally w/ page allocation
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Summary

• PGAS Put/Get map well to RDMA Read/Write
• Queue the RDMAs, reap the completions

• The 64-bit wr_id links completions back to GASNet ops

• Need to manage CQ space

• AM/RPC support fits less well
• Like the MPI implementers, we work around the latency of CQE 

generation on receiver

• Async progress not yet seen to be helpful with the current notification 
facilities

• Memory registration
• Like the MPI implementers, we devote far too much code to this

• Must cache registrations to amortize their costs

• Wish registration didn’t imply pinning
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BACKUP SLIDES…
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Memory Registration Approaches
Description, Pros and ConsFull 

VM 
avail

One-
sided

Zero-
copy

Approach

Common case: All the benefits of hardware-based

Uncommon case: Messaging overhead 
(metadata & handshaking)

Firehose

Round-trip message to pin remote pages before each op

Registration costs paid on every operationRendezvous

Stream data through pre-pinned bufs on one/both sides

Mem copy costs (CPU consumption, cache pollution, 
prevents comm. & computation overlap) 

Messaging overhead (metadata & handshaking)

Bounce 
Buffers

Pin all pages at startup or when allocated (collectively)

Total usage limited to physical memory 
May require a custom allocator

Pin 
Everything

Hardware/firmware manage everything

No handshaking or bookkeeping in software

Hardware complexity and price, Kernel modifications

Hardware-
based 

(eg.Quadrics)

common

case

common 

case
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Firehose: Conceptual Diagram
• Basic Idea: Use AM to delegate control over registration to the RDMA 

initiators

firehose bucket

• A and C each control a share 
of pinnable memory on B

• A and C can freely "pour" data 
through their firehoses using 
RDMA to/from anywhere in the 
memory they map on B

• Use AM to reposition firehoses

• Refcounts used to track 
number of attached firehoses 
(or local pins)

• Support lazy deregistration for 
buckets w/ refcount = 0 to 
avoid re-pinning costs
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Summary of Firehose Results

• Firehose algorithm is an ideal registration 
strategy for GAS languages on pinning-based 
networks
• Performance of Pin-Everything (without the drawbacks) in 

the common case, degrades to Rendezvous-like behavior 
for the uncommon case

• Exposes one-sided, zero-copy RDMA as common case

• Amortizes cost of registration/synch over many ops, 
uses temporal/spatial locality to avoid cost of repinning 

• Cost of handshaking and registration negligible when 
working set fits in physical memory, degrades gracefully 
beyond
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Vapi-conduit Performance Nov. 2004
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Vapi-conduit Performance July 2005
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InfiniBand Multi-QP (puts)
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InfiniBand Multi-QP (gets)
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GASNet vs. MPI on InfiniBand (Jul ‘05)
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