
1Implementing PGAS on InfiniBand Paul H. Hargrove

Experiences Implementing
Partitioned Global Address Space
(PGAS) Languages on InfiniBand

Paul H. Hargrove (LBNL)

with Dan Bonachea and Christian Bell

http://gasnet.cs.berkeley.edu

This work was supported by the Director, Office of Science, of the U.S.

Department of Energy under Contract No. DE-AC02-05CH11231.

2 Paul H. HargroveImplementing PGAS on InfiniBand

Outline

• Background

• GASNet vapi-conduit / ibv-conduit

• RDMA Put/Get

• Active Messages (RPC)

• Asynchronous Progress Threads

• Memory Registration

3 Paul H. HargroveImplementing PGAS on InfiniBand

Background – PGAS & GASNet

• Partitioned Global Address Space (PGAS)
Languages
• Examples

• Unified Parallel C (UPC), Titanium and Co-Array FORTAN

• Shared memory style programming

• “Global pointers” as a language concept

• Explicit memory affinity for global pointers

• Global Address Space Networking (GASNet)
• Language-independent library for PGAS network support

• Designed as a compilation target, not for end users

• Project of Lawrence Berkeley National Lab and the
University of California Berkeley (P.I. Kathy Yelick)

4 Paul H. HargroveImplementing PGAS on InfiniBand

Background – GASNet API

• GASNet “Core” API

• Active Message (RPC) interface

• Minimum requirement for a new port –
“Reference Extended” implements Extended via Core

• GASNet “Extended” API

• Remote Put and Get operations

• Blocking and Non-blocking (multiple variants)
• Implicit (“region” based) or Explicit (“handle” based)

• Initiation of Puts with or without local completion

5 Paul H. HargroveImplementing PGAS on InfiniBand

GASNet – vapi- and ibv-conduits

• The network-specific code in GASNet is a
“conduit”

• InfiniBand support began with Mellanox VAPI

• “vapi-conduit”

• Later Open Fabrics verbs “ibv” support added

• “ibv-conduit”

• Same source code supports both APIs via a thin
layer of macros (and some #ifdef’s)

• Very little (if any) beyond VAPI 1.0 features

6 Paul H. HargroveImplementing PGAS on InfiniBand

RDMA Put and Get

• Initiator provides everything needed to complete
one-sided communication

• Local address and length; remote node and address

• GASNet needs just a thin layer over InfiniBand
RDMA_WRITE and RDMA_READ

• Uses inline send when possible

• Uses wr_id to connect CQE to GASNet op for completion

• Uses semaphore (try_down/up) to control SQ/CQ depth

• TO DO: suppress CQEs when possible

• Wish List: verbs-level CQ depth management?

7 Paul H. HargroveImplementing PGAS on InfiniBand

Active Messages (RPC)

• RPC mechanism based on Berkeley AM
• Request with optional reply – no other comms

• Used by language runtimes (locks, memory alloc, etc.)

• Primary channel uses SEND_WITH_IMM
• Credit-based flow control (we never see RNR)

• TO DO: Utilize SRQ and revisit flow control

• Secondary channel uses RMDA_WRITE
• Based on success with similar optimization in MVAPICH

• No CQE – poll in memory (csum based, not “last byte”)

• For bounded number of “hot peers” only

• Wish list: SEND w/ lower latency

8 Paul H. HargroveImplementing PGAS on InfiniBand

Asynchronous Progress Threads

• Polling-base progress may not service AMs for
long periods of time

• Bad for apps when memory allocation or locks involved

• Bad for memory registration rendezvous (next section)

• Initial design used EVAPI_set_comp_eventh()

• Never found “well behaved” app that benefited

• “Network attentive” apps saw performance decline

• TO DO: progress thread not implemented yet for ibv

• Wish List: ibv_req_notify_cq_timed()?

• Event when CQE remains unserviced “too long”

9 Paul H. HargroveImplementing PGAS on InfiniBand

Memory Registration – “FIREHOSE”

• An algorithm for distributed management of
memory registration

• Exposes one-sided, zero-copy RDMA as common case

• Degrades gracefully to rendezvous as working set grows

• Used in gm, vapi/ibv, lapi and (soon) portals

• C. Bell and D. Bonachea. “A New DMA
Registration Strategy for Pinning-Based High
Performance Networks”. Workshop on
Communication Architecture for Clusters
(CAC'03), 2003.

10 Paul H. HargroveImplementing PGAS on InfiniBand

Memory Registration

• Registration is required (Protection)

• Need Protection = access/Rkey/Lkey

• As a ULP we don’t need “pinning” (Translation)

• Source of many woes

• Dynamic registration is costly

• Cost in time motivates aggressive caching/reuse

• Roughly as much code as for RDMA and AMs

• Wish List: non-pinning memory registration

• Associate access/Rkey/Lkey with address range

• Lazy translation – ideally w/ page allocation

11 Paul H. HargroveImplementing PGAS on InfiniBand

Summary

• PGAS Put/Get map well to RDMA Read/Write
• Queue the RDMAs, reap the completions

• The 64-bit wr_id links completions back to GASNet ops

• Need to manage CQ space

• AM/RPC support fits less well
• Like the MPI implementers, we work around the latency of CQE

generation on receiver

• Async progress not yet seen to be helpful with the current notification
facilities

• Memory registration
• Like the MPI implementers, we devote far too much code to this

• Must cache registrations to amortize their costs

• Wish registration didn’t imply pinning

12 Paul H. HargroveImplementing PGAS on InfiniBand

BACKUP SLIDES…

13 Paul H. HargroveImplementing PGAS on InfiniBand

Memory Registration Approaches
Description, Pros and ConsFull

VM
avail

One-
sided

Zero-
copy

Approach

Common case: All the benefits of hardware-based

Uncommon case: Messaging overhead
(metadata & handshaking)

Firehose

Round-trip message to pin remote pages before each op

Registration costs paid on every operationRendezvous

Stream data through pre-pinned bufs on one/both sides

Mem copy costs (CPU consumption, cache pollution,
prevents comm. & computation overlap)

Messaging overhead (metadata & handshaking)

Bounce
Buffers

Pin all pages at startup or when allocated (collectively)

Total usage limited to physical memory
May require a custom allocator

Pin
Everything

Hardware/firmware manage everything

No handshaking or bookkeeping in software

Hardware complexity and price, Kernel modifications

Hardware-
based

(eg.Quadrics)

common

case

common

case

14 Paul H. HargroveImplementing PGAS on InfiniBand

Firehose: Conceptual Diagram
• Basic Idea: Use AM to delegate control over registration to the RDMA

initiators

firehose bucket

• A and C each control a share
of pinnable memory on B

• A and C can freely "pour" data
through their firehoses using
RDMA to/from anywhere in the
memory they map on B

• Use AM to reposition firehoses

• Refcounts used to track
number of attached firehoses
(or local pins)

• Support lazy deregistration for
buckets w/ refcount = 0 to
avoid re-pinning costs

15 Paul H. HargroveImplementing PGAS on InfiniBand

Summary of Firehose Results

• Firehose algorithm is an ideal registration
strategy for GAS languages on pinning-based
networks
• Performance of Pin-Everything (without the drawbacks) in

the common case, degrades to Rendezvous-like behavior
for the uncommon case

• Exposes one-sided, zero-copy RDMA as common case

• Amortizes cost of registration/synch over many ops,
uses temporal/spatial locality to avoid cost of repinning

• Cost of handshaking and registration negligible when
working set fits in physical memory, degrades gracefully
beyond

16 Paul H. HargroveImplementing PGAS on InfiniBand

Vapi-conduit Performance Nov. 2004

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

10 100 1,000 10,000 100,000 1,000,000 10,000,000

Size (bytes)

B
a
n
d
w

id
th

 (
K

B
/s

)

Titanium

UPC (shared source)

UPC (private source)

(u
p

 i
s
 g

o
o

d
)

17 Paul H. HargroveImplementing PGAS on InfiniBand

Vapi-conduit Performance July 2005

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

10 100 1,000 10,000 100,000 1,000,000 10,000,000

Size (bytes)

B
a
n
d
w

id
th

 (
K

B
/s

)

Titanium

UPC (shared source)

UPC (private source)

(u
p

 i
s
 g

o
o

d
)

18 Paul H. HargroveImplementing PGAS on InfiniBand

InfiniBand Multi-QP (puts)

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

10 100 1,000 10,000 100,000 1,000,000 10,000,000

Size (bytes)

B
a
n
d
w

id
th

 (
K

B
/s

)

put_nbi_bulk 1qp

put_nbi_bulk 2qp

(u
p

 i
s
 g

o
o

d
)

19 Paul H. HargroveImplementing PGAS on InfiniBand

InfiniBand Multi-QP (gets)

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

10 100 1,000 10,000 100,000 1,000,000 10,000,000

Size (bytes)

B
a
n
d
w

id
th

 (
K

B
/s

)

get_nbi_bulk 1qp

get_nbi_bulk 2qp

(u
p

 i
s
 g

o
o

d
)

20 Paul H. HargroveImplementing PGAS on InfiniBand

GASNet vs. MPI on InfiniBand (Jul ‘05)

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

10 100 1,000 10,000 100,000 1,000,000 10,000,000

Size (bytes)

B
a
n
d
w

id
th

 (
K

B
/s

)

gasnet_put_nbi_bulk

gasnet_put_bulk

MPI Flood

MPI Ping/Ack

Relative BW (put_nbi_bulk/MPI_Flood)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

10 1000 100000 10000000

Size (bytes)

(u
p

 i
s
 g

o
o

d
)

