
Advanced Communication Techniques for Gyrokinetic
Fusion Applications on Ultra-Scale Platforms

Robert Preissl John Shalf
Alice Koniges

Lawrence Berkeley
National Laboratory

{rpreissl,jshalf,aekoniges}@lbl.gov

Nathan Wichmann Bill Long
CRAY Inc.

{wichmann,longb}@cray.com

Stephane Ethier
Princeton Plasma

Physics Laboratory
ethier@pppl.gov

Abstract
In this paper we explore new parallel language constructs for the
communication kernel of a real world magnetic fusion simula-
tion code using the Partitioned Global Address Space (PGAS)
model. The studied kernel is the particle shift phase of a tokamak
simulation code in a toroidal geometry, which models the transit
of charged particles between neighboring toroidal computational
domains. We introduce Coarray implementations that send more
and smaller messages than the original MPI-1 based kernel, and
demonstrate that the more light-weight one-sided messaging algo-
rithms can provide a significant performance advantage for such
bandwidth-limited kernels.

Compact application versions of the new Coarray based particle
movement algorithms are extracted from the fusion application and
evaluated on the worlds largest HPC platform with PGAS enabled
hardware (Cray XE6) and on a Cray XT4 without hardware support
for one-sided messaging. Experimental evaluations show that our
best Coarray algorithm improves the best MPI-1 communication
kernel by 83% using 131K processors on the Cray XE6 system and
by 47% using 16K processors on the Cray XT4.

Keywords: GTS, Particle-In-Cell, Fortran 2008, PGAS, Hybrid
MPI & Coarray computing

1. Introduction
The path towards realizing next-generation petascale and exascale
computing is increasingly dependent on building supercomputers
with unprecedented numbers of processors. Applications and algo-
rithms will need to change and adapt as node architectures evolve
to overcome the daunting challenges posed by such massive paral-
lelism. To prevent the communication performance from dominat-
ing the overall cost of these ultra-scale systems, there is a critical
need to develop innovations in algorithms, parallel computing lan-
guages, and hardware support for advanced communication mech-
anisms. One such innovation in communication technology to sup-
port improved scalability is the development of one-sided messag-
ing methods and PGAS languages such as Unified Parallel C (UPC)
and Fortran 2008, which incorporates parallel features historically

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00

identified as Coarray Fortran (CAF). The biggest advantage is that
remote memory is referred to directly instead of having to call a
subroutine for loading and storing data. The one-sided messag-
ing abstractions of PGAS languages also open the possibility of
expressing new algorithms and communications approaches that
would otherwise be impossible, or unmaintainable using the two-
sided messaging semantics of communication libraries like MPI-1.
The expression of the one-sided messaging semantics as language
constructs (Coarrays in Fortran and shared arrays in UPC) improves
the legibility of the code and allows the compiler to apply com-
munication optimizations. Hardware support for PGAS constructs
and one-sided messaging, such as that provided by the recent Cray
XE6 Gemini interconnect, is essential to realize the maximal per-
formance potential of these new approaches. However, as it will be
demonstrated in this work, even without architectural support for
one-sided messaging good performance improvements over tuned
two-sided communication kernels can be achieved.

In certain instances one-sided communication may offer signifi-
cant advantages over traditional two-sided message passing. In this
paper we provide a counter-example to the common lore that per-
formance is optimized by sending fewer and larger messages to
asymptotically approach peak bandwidth. We exploit the one-sided
nature of the PGAS programming model and introduce novel algo-
rithms — that cannot be expressed in a two-sided message passing
scheme — using more, but smaller messages with lower startup
and completion costs. Building upon such light-weight one-sided
communication techniques we will show how to efficiently spread
out the communication over a longer period of time, resulting into
a reduction of bandwidth requirements and a more sustained com-
munication and computation overlap.

This work focuses on advanced communication optimizations
for the Gyrokinetic Tokamak Simulation (GTS) [19] code, which
is a global three-dimensional Particle-In-Cell (PIC) code to study
the microturbulence and associated transport in magnetically con-
fined fusion plasmas of tokamak toroidal devices. We have created
a skeleton application that represents the communication require-
ments for the GTS application so that we could rapidly prototype
and measure the performance of alternative communication strate-
gies. The best strategies could then be easily incorporated back into
the original GTS code, where we could evaluate its benefit to the
overall scalability and performance of the code. We focus on For-
tran’s Coarray facilities because Fortran is the language used to
implement the bulk of the GTS code base.

1.1 Related Work
A number of studies have investigated the simplicity and elegance
of expressing parallelism using the CAF model. Barrett [2] stud-

(a) XE6 compute node with AMD “Magny Cours” (b) 3D torus network connecting nodes in the XE6

Figure 1. The Cray XE6 incorporates AMD’s twelve-core “Magny Cours” processors and the Gemini interconnect in a three-dimensional
(3D) torus network

ied different Coarray Fortran implementations of Finite Differenc-
ing Methods and Numrich et al [16] developed a Coarray enabled
Multigrid solver focusing primarily on programmability aspects.
Bala et al [1] demonstrated performance improvements over MPI in
a molecular dynamics application on a legacy HPC platform (Cray
T3E). In addition, parallel linear algebra kernels for tensors (Num-
rich [15]) and matrices (Reid [17]) benefit from a Coarray based
one-sided communication model due to a raised level of abstrac-
tion with little or no loss of performance over MPI. Implementing
the NAS parallel benchmarks in UPC (El-Ghazawi et al [11] and
Cantonnet et al [7]) revealed optimization opportunities in UPC
and showed no particular performance improvements. Bell et al [3]
followed a similar approach to the one presented in this paper and
improved performance of the NAS FT benchmark by efficiently
distributing the communication operations throughout the applica-
tion using UPC.

Mellor-Crummey et al. [10, 14] have proposed an alternate de-
sign for CAF, which they call CAF 2.0, that adds some capabilities
not present in the standard Fortran version, but also removes some
capabilities. Their CAF 2.0 compiler uses a source to source trans-
lator to convert CAF 2.0 programs into Fortran 90 (F90) programs
with calls to the CAF 2.0 runtime system. The CAF 2.0 runtime
uses the GASNet library [4] for one-sided communication. Appli-
cations of Coarray Fortran to the NAS parallel benchmarks (Coarfa
et al. [8]) and to the Sweep3D neutron transport benchmark (Coarfa
et al. [9]) show nearly equal or slightly better performance than
their MPI counterparts.

Our work makes the following contributions. We use a “real
world application” to demonstrate the ability to incrementally
change the GTS application from MPI-11 to CAF. We created
a compact skeleton application that enables rapid comparison of
alternative communication representations. We present a novel
PGAS algorithm that fully exploits hardware supported proposed
CAF features to implement a new approach to communication that
would not otherwise be feasible with MPI two-sided communica-
tion. We demonstrate the scalability of our new approach using
up to 131K processors for the skeleton application. We also show
scalability using the new kernel in the full GTS code running ex-
periments on up to 32K processing cores. The full code result gives
a 83% performance improvement at the largest concurrency over
the existing MPI algorithm. Overall, our work is the first demon-
stration of sustainable performance improvements over MPI in a
real world application and constitutes the largest CAF simulation
conducted so far on a PGAS enabled hardware.

The idea is a smooth transition from MPI to Fortran 2008 (using
Coarrays), i.e., we replace the existing MPI communication kernel

1 For the rest of the paper we use the term MPI when MPI-1 is intended. If
we refer to the MPI one-sided extension, we use the term MPI-2 explicitly.

by a new algorithm using Coarrays and leave the rest of the physics
simulation code unchanged, which still has MPI function calls in it.
The coexistence of different programming models is typical of what
will likely be required as we move legacy codes to next-generation
HPC platforms.

1.2 Hardware Platform
The primary platform chosen for this study is a Cray XE6 super-
computer capable of scaling to over 1 million processor cores, and
uses AMD’s “Magny Cours” Opteron processors and Cray’s pro-
prietary interconnect “Gemini”. The basic compute building block
of our XE6 system, shown in Figure 1(a), is a node with two AMD
“Magny Cours” sockets. Each socket has two die each with six
cores for a total of 24 cores on the compute node. Each die is di-
rectly attached to a low latency, high bandwidth memory such that
each of the six cores on that die have equal, or flat, access to the di-
rectly attached memory, making a die, with its six cores, a natural
compute unit for shared memory programming.

Figure 1(b) outlines how compute nodes on a Cray XE6 system
are connected to all other compute nodes using the Gemini router
via a 3D torus. Each Gemini connects to two compute nodes using
unique and independent Network Interface Controllers (NICs) via
HyperTransport 3 (HT3) connection. Advanced features include
support for one-sided communication primitives and support for
atomic memory operations. This allows any processing element
on a node to access any memory location in the system, through
appropriate programming models, without the “handshakes” nor-
mally required with most two-sided communication models.

The majority of experiments shown in this paper are conducted
on the Hopper Cray XE6 system installed at the National En-
ergy Research Scientific Computing Center (NERSC) comprising
6392 nodes with 153,408 processor cores with a system peak per-
formance of 1.288 Petaflops and a reported HPL performance of
1.05 Petaflops. In addition, experiments have been carried out at
NERSC’s Franklin system — a Cray XT4 supercomputer having
9572 compute nodes, connected via the “Seastar” interconnect,
with each node consists of a 2.3 GHz single socket quad-core AMD
Opteron processor (“Budapest”). Performance studies on Franklin
(XT4) are included to demonstrate that our best CAF algorithms
still outperform the best MPI algorithms even without having hard-
ware support for one-sided communication.

The Cray Compiler Environment (CCE) version 7.3.1 on Hop-
per (XE6) and CCE 7.3.3 on Franklin (XT4) was used to com-
pile all of the source code for this paper. On Hopper (XE6), CCE
7.3.1 fully supports Fortran 2008 translating all Coarray references
into instruction sequences that access hardware mechanisms. On
Franklin (XT4), PGAS communication such as CAF is build upon
the GASNet library [4] for one-sided communication.

2. The GTS fusion simulation code
GTS is a general geometry PIC code developed to study plasma
microturbulence in toroidal, magnetic confinement devices called
tokamaks [19]. Microturbulence is a complex, nonlinear phe-
nomenon that is believed to play a key role in the confinement
of energy and particles in fusion plasmas [12], so understanding
its characteristics is of utmost importance for the development
of practical fusion energy. In plasma physics, the PIC approach
amounts to following the trajectories of charged particles in both
self-consistent and externally-applied electromagnetic fields. First,
the charge density is computed at each point of a grid by accu-
mulating the charge of neighboring particles. This is called the
scatter phase. Prior to the calculation of the forces on each par-
ticle from the electric field (gather phase) — we solve Poisson’s
equation to determine the electrostatic potential everywhere on the
grid, which only requires a two-dimensional solve on each poloidal
plane (cross-section of the torus geometry) due to the quasi-two-
dimensional structure of the potential2. This information is then
used for moving the particles in time according to the equations
of motion (push phase), which denotes the fourth step of the algo-
rithm.

2.1 The GTS Parallel Model
The parallel model in GTS consists of three levels: (1) A one-
dimensional domain decomposition in the toroidal direction (the
long way around the torus). MPI is used for performing commu-
nication between the toroidal domains. Particles move from one
domain to another while they travel around the torus — which
adds another, a fifth, step to our PIC algorithm, the shift phase.
This phase is the focus of this work. It is worth mentioning that
the toroidal grid, and hence the decomposition, is limited to about
128 planes due to the long-wavelength physics being studied. A
higher toroidal resolution would only introduce waves of shorter
parallel wavelengths that are quickly damped by a collisionless
physical process known as Landau damping, leaving the results un-
changed [12]. (2) Within each toroidal domain we divide the parti-
cle work between several MPI processes. All the processes within
a common toroidal domain of the one-dimensional domain decom-
position are linked via an intradomain MPI communicator, while a
toroidal MPI communicator links the MPI processes with the same
intradomain rank in a ringlike fashion. (3) OpenMP compiler di-
rectives are added to most loop regions in the code for further ac-
celeration and for reducing the GTS memory footprint per compute
node.

Figure 2 shows the GTS grid, which follows the field lines of the
externally applied magnetic field as they twist around the torus3. In
the following we focus on the advantages of using CAF instead of
MPI in a communication intensive part of GTS, the shift algorithm,
and present two optimized MPI implementations as well as our new
CAF algorithms.

3. Particle shift algorithms in GTS
The shift phase is the most communication intensive step of a GTS
simulation. At each time step, about 10% of the particles inside of a
toroidal domain move out through the ”left” and ”right” boundaries
in approximately equal numbers. A 1-billion particle simulation

2 Fast particle motion along the magnetic field lines leads to a quasi-two-
dimensional structure in the electrostatic potential (see Figure 2).
3 The two cross sections demonstrate contour plots of potential fluctua-
tions driven by Ion Temperature Gradient-Driven Turbulence (ITGDT) [13],
which is believed to cause the experimentally observed anomalous loss of
particles and heat in the core of magnetic fusion devices such as tokamaks.

Figure 2. GTS field-line following grid & toroidal domain
decomposition. Colors represent isocontours of the quasi-two-
dimensional electrostatic potential

translates to about 100GB of data having to be communicated each
time shift is called.

In terms of wall clock time, the particle shift contributes to ap-
proximately 20% of the overall GTS runtime and is expected to
play an even more significant role at higher scales — as observed
in scaling experiments on Hopper (XE6). After the push phase, i.e.,
once the equations of motion for the charged particles are solved,
updated coordinates of a significant portion of particles are out-
side the local toroidal domain. Consequently affected particles have
to be sent to neighboring — or in rare cases to even further —
toroidal domains. The amount of shifted particles as well as the
number of traversed toroidal domains depend on the toroidal do-
main decomposition coarsening (mzetamax), the time step (tstep),
the background temperature profile influencing the particle’s initial
thermal velocity (umax) and the number of particles per cell (mi-
cell). The distance particles can travel along the toroidal direction
in each time-step is restricted by the spatial resolution of physical
dynamics in the parallel direction. For a valid simulation, particles
do not travel more than 4 ranks per time-step (realized by choosing
an appropriate step-size).

3.1 The MPI multi stage shifter (MPI-ms)
MPI-ms is an optimized version of the original MPI shift algorithm
in GTS and models the shift of particles to adjacent or further
toroidal domains of the tokamak in a ring-like fashion. It imple-
ments a nearest neighbor communication pattern, i.e., if particles
need to be shifted further an additional iteration is required to move
designated particles to their final destination4. The pseudo-code ex-
cerpt in Listing 1 highlights the major steps in the MPI-ms shifter
routine. The most important steps are iteratively applied for every
shift stage and correspond to the following:

(1) Each process iterates through its local particle array (tra-
verses the whole array at the first shift stage and for consecutive
stages only newly received particles are considered) and computes
which particles have to be shifted to the left and to the right, re-
spectively. This yields the number of right- (shift r) and left-shifted
(shift l) particles as well as arrays (holes r, holes l) containing the
indices of right- and left-shifted particles in p array. Note, that re-
maining and shifted particles in p array are randomly distributed
and a preceded sorting step would involve too much overhead. (2)
At every shifting stage the sum of shifted particles is communicated
to all processes within the same toroidal communicator (tor comm)
by an allreduce call of a limited sized communicator (≤ 128 pro-
cesses). This denotes the break condition of the shifter, i.e., to exit

4 Large scale experiments have shown that only a few particles with high
initial thermal velocities are affected, crossing more than one toroidal do-
main.

1 do s h i f t s t a g e s =1 ,N
! (1) compute r i g h t− & l e f t −s h i f t e d p a r t i c l e s

3 do i =m0 , me
d e s t = c o m p u t e d e s t i n a t i o n (p a r r a y (i))

5 i f (d e s t > l o c a l t o r d o m a i n) {
h o l e s r (s h i f t r ++)= i

7 } e l s e i f (d e s t < l o c a l t o r d o m a i n) {
h o l e s l (s h i f t l ++)= i }

9 enddo

11 ! (2) communicate amount o f s h i f t e d p a r t i c l e s
i f (s h i f t s t a g e s . ne . 1) {

13 MPI ALLREDUCE(s h i f t r + s h i f t l , a l l , tor comm)
i f (a l l . eq . 0) { re turn } }

15
! (3) P r e p o s t r e c e i v e r e q u e s t s

17 MPI IRECV (r e c v l e f t , l e f t r a n k , r e q s 1 (1) , . .)
MPI IRECV (r e c v r i g h t , r i g h t r a n k , r e q s 2 (1) , . .)

19
! (4) pack p a r t i c l e t o move r i g h t and l e f t

21 do m=1 , s h i f t r
s e n d r i g h t (m)= p a r r a y (h o l e s r (m))

23 enddo
do m=1 , s h i f t l

25 s e n d l e f t (m)= p a r r a y (h o l e s l (m))
enddo

27
! (5) r e o r d e r r e m a i n i n g p a r t i c l e s : f i l l h o l e s

29 f i l l h o l e s (p a r r a y , h o l e s r , h o l e s l)

31 ! (6) send p a r t i c l e s t o r i g h t and l e f t n e i g h b o r
MPI ISEND (s e n d r i g h t , r i g h t r a n k , r e q s 1 (2) , . .)

33 MPI ISEND (s e n d l e f t , l e f t r a n k , r e q s 2 (2) , . .)

35 ! (7) add r e c e i v e d p a r t i c l e s and r e s e t bounds
MPI WAITALL (2 , r e q s 1 , . .)

37 a d d p a r t i c l e s (p a r r a y , r e c v l e f t)
MPI WAITALL (2 , r e q s 2 , . .)

39 a d d p a r t i c l e s (p a r r a y , r e c v r i g h t)
enddo

Listing 1. Multi stage MPI shifter routine (MPI-ms)

the shifter if no particles from all processes within the toroidal com-
municator need to be shifted (all.eq.0). The first MPI Allreduce
call can be avoided since shifts of particles happen in every itera-
tion of GTS. (3) Preposte non-blocking receive calls for particles
from left and right neighbors to prevent unexpected message costs
and to maximize the potential for communication overlap. Usage of
pre-established receive buffers (recv left and recv right eliminates
additional MPI function calls to communicate the number of parti-
cles being sent, which is attached to the actual message. (4) Pack
particles, which have to be moved to their left- and right immediate
toroidal neighbor into send right and send left buffers. (5) Reorder
the particle array so that holes, which will be created due to the
shift of particles, are filled up by remaining particles. (6) Send the
packed shifting particles to the right and left neighboring toroidal
domain. And (7) Wait for the receive calls to complete and incor-
porate particles received from left and right neighbors to p array.

The shifter routine involves heavy communication due to the
MPI Allreduce call5 and especially because of the particle ex-
change implemented using a ring-like send & receive functionality.
In addition, intense computation is involved mostly because of the
particle reordering that occurs after particles have been shifted and
incorporated into the new toroidal domain respectively.

5 Note, that the Allreduce has limited impact on the performance due the
limited communicator size (128 MPI processes).

! (1) P r e p o s t r e c e i v e r e q u e s t s
2do i =1 , n r d e s t s

MPI IRECV (r e c v b u f (i) , i , r e q (i) , tor comm , . .)
4enddo

6! (2) compute s h i f t e d p a r t i c l e s and f i l l b u f f e r
do i =1 , p a r r a y s i z e

8d e s t = c o m p u t e d e s t i n a t i o n (p a r r a y (i))
i f (d e s t . ne . l o c a l t o r d o m a i n) {

10h o l e s (s h i f t ++)= i
s e n d b u f (d e s t , b u f c n t (d e s t)++)= p a r r a y (i) }

12enddo

14! (3) Send o f p a r t i c l e s t o d e s t i n a t i o n p r o c e s s
do j =1 , n r d e s t s

16MPI ISEND (s e n d b u f (j) , j , r e q (j + i) , tor comm , . .)
enddo

18MPI WAITALL(2∗ n r d e s t s , req , . .)

20! (4) f i l l h o l e s w i t h r e c e i v e d p a r t i c l e s
do m=1 , min (r e c v l e n g t h , s h i f t)

22p a r r a y (h o l e s (m)) = r e c v b u f (s r c , c n t)
i f (c n t . eq . r e c v b u f (s r c , 0)) { c n t =1; s r c ++}

24enddo

26! (5) append r e m a i n i n g p a r t i c l e s or f i l l h o l e s
i f (r e c v l e n g t h < s h i f t) {

28a p p e n d p a r t i c l e s (p a r r a y , r e c v b u f) }
e l s e { f i l l r e m a i n i n g h o l e s (p a r r a y , h o l e s) }

Listing 2. Single stage MPI shifter routine (MPI-ss)

3.2 The MPI single stage shifter (MPI-ss)
In contrast to the previous MPI algorithm, this implementation em-
ploys a single stage shifting strategy, i.e., particles with coordinates
outside of local toroidal domains are immediately sent to the pro-
cessor holding the destination domain, rather then shifting over sev-
eral stages. Consequently the allreduce call and, more importantly,
additional communication and memory copying related to parti-
cles, which cross more than one toroidal section, can be saved (in
MPI-ms, e.g., if a particle has to be moved to the second from right
domain it is first sent to the immediate right toroidal neighbor and
then sent from there to the final destination). The major steps in the
MPI-ss shifter, shown in Listing 2 in pseudo code form, are:

(1) Preposte receive requests for receiving particles from each
possible source process of the toroidal communicator. Since parti-
cles normally traverse no more than two entire toroidal domains
in one time step in typical simulations (in practice, particles do
not cross more than one toroidal section, but we allocate addi-
tional space for a few fast moving electrons), two-dimensional al-
locations of receive buffers for six (= nr dests) potential sources
{rank − 3, .., rank − 1, rank + 1, .., rank + 3} are performed
(send buffers are similarly allocated for six potential destinations).
(2) New coordinates of each particle in the local particle array are
computed. If a particle needs to be shifted it is copied into a two-
dimensional send buffer, which keeps records of shifted particles
for each possible destination. In (3) the shift of particles occurs,
where the number of shifted particles per send process is attached to
the message and denotes the first element in the send buffer. A wait
call ensures that newly received particles from the receive buffer
can be safely read. (4) and (5) All received particles (recv length
many) are added to the particle array. First, newly received parti-
cles are used to fill the positions of shifted particles in the particle
array. If there are more received particles than shifted particles we
append the rest to p array. Otherwise particle residing at the end of
p array are taken to fill remaining holes.

Additional MPI versions for the shift of particles were im-
plemented. We studied different algorithms, other MPI commu-
nication techniques (e.g., buffered send), the usage of MPI data
types (e.g., MPI Type create indexed block) to eliminate the par-
ticle packing overhead, etc.; with no — or even negative (in case
of using MPI data types) — performance impacts. MPI implemen-
tations of shift have been extensively researched in the past and
MPI-ms and MPI-ss represent, to the best of our knowledge, the
most efficient message passing algorithms.

3.3 The CAF-lock shifter (CAF-lock)
The most significant difference of this (single stage) implementa-
tion to the MPI-ss algorithm from above is that it fully exploits
CAF’s one-sided messaging scheme. The novelty of this approach
lies in the fact that a two-dimensional send buffer is successively
filled as above, but messages (filling a one-dimensional receive
buffer of the destination toroidal domain) are sent once the amount
of particles for a specific destination image reaches a certain thresh-
old value. Once a buffer’s content has been sent, it can be reused
and filled with new shifted particles with the same destination. This
new algorithm sends more and smaller messages, which does not
particularly result in higher overheads due to the lower software
overhead of one-sided communication, whose semantics are fun-
damentally lighter-weight than message passing [3]. This imple-
mentation differs from the previous MPI approaches where a send
buffer is filled and sent once containing all particles to be moved.
This novel algorithm enables to overlap the particle work (com-
putation of the toroidal destination plus copying of particles into
send buffers) and particle communication (moving particles from
neighboring domains are written into receive buffers in any order)
and also results in less memory requirements for allocating send
buffers. In addition, the pipelining of smaller light-weight mes-
sages, which do not require synchronization or ordering on the re-
mote image, spreads out the communication over a longer period of
time and turns out to be very efficient for such bandwidth limited
problems.

Shifting particles from one source CAF image is implemented
as a put operation, which adds particles to a receiving queue —
implemented as a one-dimensional Coarray — on the destination
image. Since access conflicts to this globally addressable receiving
buffer might frequently arise (e.g., an image shifts particles to its
right toroidal neighbor while at the same time the latter image
also receives data from its right neighbor) we employ a locking
mechanism for the particle shift to the receiving queue Coarray.
That is, once the “queue-lock” on the destination image is acquired,
i.e., exclusive access to the destination’s image receiving queue is
given, particles are appended to the end of the queue. In order to
mitigate long stall cycles when waiting for an image to release
the “queue lock” we partition the send buffer in equally sized
chunks. Whenever a chunk is fully filled the image tries to acquire
the destination’s “queue-lock” to empty the whole send buffer or
immediately returns to its particle work in case the lock is held by
another image. However, if the last chunk in the send buffer is filled
the image has to wait until it acquires the lock.

Listing 3 highlights the major steps of this algorithm in pseudo
code form using CAF and F90 array notation:

(1) If a particle moves out of the current processor’s domain,
its location in (p array) is held in holes. Since the send buffer is
partitioned into several pieces of equal size, this moving particle
with destination dest will be placed into the following position
(lastp) of the send buffer (send buf):

“Number of already filled chunks” (chunkc(dest)) ∗ “chunk-
size” (sb size) + “the counter holding the number of stored par-
ticles (for the computed destination) in the latest non-empty chunk
of the send buffer” (buf cnt(dest)).

1! (1) compute s h i f t e d p a r t i c l e s and f i l l t h e
! r e c e i v i n g queues on d e s t i n a t i o n images

3do i =1 , p a r r a y s i z e
d e s t = c o m p u t e d e s t i n a t i o n (p a r r a y (i))

5i f (d e s t . ne . l o c a l t o r d o m a i n) {
h o l e s (s h i f t ++)= i ; b u f c n t (d e s t)++

7l a s t p = b u f c n t (d e s t)+ chunkc (d e s t)∗ s b s i z e
s e n d b u f (d e s t , l a s t p)= p a r r a y (i)

9i f (b u f c n t (d e s t) . eq . s b s i z e) {
do

11l o c k (q l o c k [d e s t] , a c q u i r e d l o c k =gotL)
i f (gotL) e x i t

13! o n l y i f s e n d b u f f e r i s n o t t o t a l l y f u l l
i f (chunkc (d e s t) . l t . (n r chunks −1)) {

15chunkc (d e s t) + + ; b u f c n t (d e s t)=0
goto Line3 }

17end do
d Qpos=Qpos [d e s t]

19recvQ (d Qpos : d Qpos+ l e n g t h −1)[d e s t]&
= s e n d b u f (d e s t , 1 : l a s t p)

21Qpos [d e s t]+= l a s t p
un lo ck (q l o c k [d e s t])

23chunkc (d e s t) = 0 ; b u f c n t (d e s t)=0 } }
enddo

25
! (2) s h i f t r e m a i n i n g p a r t i c l e s

27e m p t y s e n d b u f f e r s (s e n d b u f)
l e n g t h r e c v Q =Qpos−1

29
! (3) s ync w i t h images from same t o r o i d a l domain

31sync images ([m y s h i f t n e i g h b o r s])

33! (4) f i l l h o l e s w i t h r e c e i v e d p a r t i c l e s
do m=1 , min (l e n g t h r e c v Q , s h i f t)

35p a r r a y (h o l e s (m)) = recvQ (m)
enddo

37
! (5) append r e m a i n i n g p a r t i c l e s or f i l l h o l e s

39i f (l e n g t h r e c v Q−min (l e n g t h r e c v Q , s h i f t) . g t . 0) {
a p p e n d p a r t i c l e s (p a r r a y , recvQ) }

41e l s e { f i l l r e m a i n i n g h o l e s (p a r r a y , h o l e s) }
Listing 3. CAF-lock shifter routine

Whenever such a chunk of the send buffer for destination dest
is full (Line 9), the image tries to acquire the lock (q lock) to gain
exclusive access to the receiving queue (recvQ) of the destination
image. If the lock cannot be obtained and if there is at least one
empty chunk left to fill up in the send buffer, the image resets
the “last-chunk-particle-counter” (buf cnt) and increments the
“chunk-counter” (chunkc) before for returning to the particle work.
Otherwise, if the lock can be acquired (immediately or after spin-
ning in the lock-acquisition loop, from Line 10 to Line 17, in case
the image has no empty send buffer chunk left) the length of the re-
ceiving particle queue (d Qpos) hold by the destination image is de-
termined through a CAF get operation. Starting from this position
all particles available in the send buffer (ranging from position 1 to
lastp) will be added to recvQ on image dest by a CAF put opera-
tion (Lines 19 and 20). After the particle put the remote image’s re-
ceive queue is updated by adding the number of sent particles. Now
the lock can be released and both counters (“last-chunk-particle-
counter” buf cnt and “chunk-counter” chunkc) are reset. Figure 3
illustrates the send buffer on image 6 being able to hold nine parti-
cles for each possible send destination (images 3,4,5 to the left and
images 7,8,9 to the right). In this example, the send buffers’ entries
are split up in three chunks, for buffering three moving particles
per chunk (i.e., sb size=3) for each destination image. In Figure 3
we assume that the 6th particle for destination image 5 has been
the last inserted particle to the send buffer on image 6; Since the
2nd chunk for destination 5 is in use, we conclude that image 6

Figure 3. A two-dimensional send buffer in CAF-lock

could not acquire the q lock on image 5 for sending its first chunk
of particles and therefore chunkc(5)=1. After inserting the 6th par-
ticle designated for destination image 5 the 2nd chunk is fully filled
(buf cnt(5)=3) and image 6 tries again to acquire the q lock on im-
age 5. This time image 6 successfully obtains the lock and inserts
six particles to the receiving buffer on image 5 (in the example in
Figure 3, recvQ on image 5 was empty, i.e., Qpos[5]=1, before im-
age 6 sends its particles). Then image 6 updates the queue size on
image 5 (Qpos[5]=1+6), releases the q lock and resets chunkc(5)
and buf cnt(5) enabling to overwrite the send buffer for image 5.

(2) Send remaining (≤ (sb size − 1)) particles from the send
buffer to their destination using again the CAF locking function-
ality for exclusive write access to the corresponding receive queue
(here, images wait until the lock can be acquired). The total num-
ber of received particles (length recvQ) is the local queue length
(note, Qpos.eq.Qpos[THIS IMAGE()]6), which has been succes-
sively updated by neighboring images.

(3) Besides the required locks preventing access conflicts no
synchronization between the images has been performed yet. Now
we need to synchronize between the local image and all other im-
ages, which can theoretically add particles to a local image’s re-
ceiving queue. This ensures that all images passing this synchro-
nization statements have finished their work from (1) and (2) and
all send buffers are flushed7. The array my shift neighbors stores
the global CAF indices of images within reach of the local images,
i.e., as discussed above it is an array with six entries. Adding re-
ceived particles to the local particle array happens in (4) and (5),
which is analogous to (4) and (5) in MPI-ss.

Despite a slightly better memory efficiency, the communication
and computation overlap and the more efficient network bandwidth
utilization the algorithm still exhibits too many idle cycles due to
the locking mechanism for preventing data races. The next pre-
sented algorithm aims to circumvent this problem by using remote
atomic memory operations instead of locks.

3.4 The CAF-atomic shifter (CAF-atom)
Analyzing the CAF-lock algorithm reveals that it is sufficient to
lock, or in other words, to atomically execute, the process of re-
serving an appropriate slot in the receive queue. Once such a slot
from position s + 1 to position s + size, where s denotes the
last inserted particle to the receiving queue by any image and size
stands for the number of particles to be sent to the receiving im-
age, is securely (i.e., avoiding data races) given, the sending im-
age can start and complete its particle shift at any time. Thus, no
locking of the receiving queue is required. Besides the negligible
overhead involved in the atomicity, required to safely reserve a slot
in the receive queue, this new CAF algorithm enables to fully un-
leash the CAF images until the particles in the receiving queue

6 The integer function THIS IMAGE() returns the image’s index between 1
and the number of images.
7 Calling “sync images” implies a call to the sync memory intrinsic subrou-
tine, which guarantees to other images that the image calling the function
has completed all preceding accesses to Coarray data.

1! (1) compute s h i f t e d p a r t i c l e s and f i l l t h e
! r e c e i v i n g queues on d e s t i n a t i o n images

3do i =1 , p a r r a y s i z e
d e s t = c o m p u t e d e s t i n a t i o n (p a r r a y (i))

5i f (d e s t . ne . l o c a l t o r d o m a i n) {
h o l e s (s h i f t ++)= i

7s e n d b u f (d e s t , b u f c n t (d e s t)++)= p a r r a y (i)
i f (b u f c n t (d e s t) . eq . s b s i z e) {

9d Qpos=Afadd (Qpos [d e s t] , s b s i z e)
recvQ (d Qpos : d Qpos+ s b s i z e −1)[d e s t]&

11= s e n d b u f (d e s t , 1 : s b s i z e)
b u f c n t (d e s t)=0 } }

13enddo

15! (2) s h i f t r e m a i n i n g p a r t i c l e s
e m p t y s e n d b u f f e r s (s e n d b u f)

17l e n g t h r e c v Q =Qpos−1

19! (3) s ync w i t h images from same t o r o i d a l domain
sync images ([m y s h i f t n e i g h b o r s])

21
! (4) f i l l h o l e s w i t h r e c e i v e d p a r t i c l e s

23do m=1 , min (l e n g t h r e c v Q , s h i f t)
p a r r a y (h o l e s (m)) = recvQ (m)

25enddo

27! (5) append r e m a i n i n g p a r t i c l e s or f i l l h o l e s
i f (l e n g t h r e c v Q−min (l e n g t h r e c v Q , s h i f t) . g t . 0) {

29a p p e n d p a r t i c l e s (p a r r a y , recvQ) }
e l s e { f i l l r e m a i n i n g h o l e s (p a r r a y , h o l e s) }

Listing 4. CAF-atom shifter routine

are added to the local particle array and completion of any com-
munication can be ensured. Due to the fast atomic memory opera-
tions two-dimensional receive buffers are not needed, which results
into a more efficient and safe memory management. The process
of claiming the required space in the receive queue on the remote
destination image is performed by global atomic memory opera-
tions, which, unlike other functions, cannot be interrupted by the
system and can allow multiple images or threads to safely modify
the same variable under certain conditions. Global Atomic Memory
Operations (global AMOs) are supported on Cray Compute Node
Linux (Cray CNL) compute nodes and use the network interface
to access variables in memory on Cray XE machines (when com-
piling with Cray CCE starting from version 7.3.0). Thus, hardware
support ensuring a fast and safe execution is given for those critical
operations. Listing 4 outlines the major steps of the revised CAF al-
gorithm from section 3.3 using global AMOs instead of CAF locks
in pseudo code form using CAF and F90 array notation:

(1) Similar to Listing 3, particles moving out of their toroidal
domain are detected and copied into a send buffer (send buf). The
position of those shifting particles will be held in holes. Since no
locking of the receiving queue is required in this algorithm, there
is no benefit in partitioning the send buffer into chunks of send
arrays for hiding lock acquisition costs. However, we maintain
the two dimensionality of the send buffer enabling a single stage
shift algorithm. Consequently we assign each moving particle to
its corresponding set of particles based on its destination. If an
image’s send buffer for a specific destination image is full (Line
8), a global AMO — in detail, a global atomic fetch and add
operation — is executed, which updates the remote queue size on
image dest (Qpos[dest]) by adding the number of moving particles
to the former queue size and returns this old value, held in d Qpos
(Line 9). The sending image then launches a CAF put operation to
transfer sb size particles to image’s dest receiving queue starting
from position d Qpos to position d Qpos+sb size-1. Due to the
one-sided nature of the put operation, the sending image does
not need to wait for any acknowledgement from the destination

image. As soon as the data is sent it resets the send buffer counter
(buf cnt) for the image dest and starts adding new moving particles
to the send buffer. No handshake for transmitting moving particles
between the source and destination image is necessary. (2) If there
are remaining particles in the send buffer for any destination image,
we reuse the global atomic fetch and add operation described in (1)
for safely inserting particles on a remote image’s receiving queue.
The following steps (3) to (5), to add particles from the local receive
queue to the local particle array, are similar to the steps (3) to
(5) in the CAF-lock algorithm shown in Listing 3. Note, unlike to
algorithm from Listing 3 no explicit synchronization until (3) is
required.

Experiments to determine optimal buffer size threshold values
for both CAF algorithms carried out for several problem sizes
(varying the number of particles per CAF image) suggest 500 <
sb size < 1000. A too small setting of sb size causes extra atomic
or locking operations and other communication overhead (setting
up the transfer, etc.) that would be difficult to amortize. For a very
large buffer size threshold value, respectively, we would concen-
trate shifting particles into fewer, more intensive messages rather
than spreading them out.

For simplicity Coarrays in Listings 3 and 4 have been accessed
by a one-dimensional value (dest). In practice, a codimension of 2
is required to represent a poloidal and a toroidal component serving
as an analogon to the poloidal and toroidal MPI communicators.

The CAF algorithm using locks described in section 3.3 and
especially the CAF algorithm using global AMOs from section 3.4
fully exploit the one-sided messaging nature of CAF. That is,
launching an a priori unknown number of send operations as im-
plemented in both CAF algorithms (it is not known in advance how
many particles will be moving) is beyond MPI’s philosophy, which
employs a two-sided messaging scheme. On the contrary, less syn-
chronization implies a significantly higher risk for dead locks, race
conditions or other similar non deterministic events as experienced
in the development of our CAF algorithms. As for implementing
an MPI-2 algorithm similar to the CAF versions, the complex-
ity required to implement remote atomicity (enables the messages
pipelining of the CAF algorithms) in MPI-2 one-sided, in addition
to several other semantic limitations [5], is prohibitive. Further,
recently conducted large scale simulations by the Cray Center of
Excellence on a Cray XE6 supercomputer using a numerical fluid
dynamics code showed poor performance of MPI one-sided com-
munication compared to MPI two-sided communication [6].

3.5 Other CAF particle shift algorithms
We explored additional algorithms that extend the set of CAF
particle shifters, but do not include them in the final analysis due
to suboptimal performance. We briefly touch on them because we
learned as much from these negative results as we did from the
successful implementations.

First, in order to compare the performance of CAF and MPI
communication for the specific communication requirements in
GTS, we implemented a CAF shifter following exactly the MPI-ms
algorithm but having CAF put operations instead of MPI function
calls. In experiments using more than 4K processors we observed
that the manually implemented CAF analogue to MPI Allreduce
did not perform as well as the MPI implementation. This clearly
motivates the inclusion of optimized collective intrinsic subroutines
to Fortran 2008, which are currently under development. Aside
from those missing collective communication intrinsics we found
that the CAF one-sided messaging performance was nearly indis-
tinguishable from the MPI-ms implementation, which makes this
approach not beneficial for the usage in GTS.

We also explored an alternative implementation that introduces
a spatial sort of the particles using a fast incremental sorting tech-
nique to reduce the memory footprint and improve the spatial lo-
cality of the particle list to improve performance. In this approach
we sorted the particle array in a) particles staying within the lo-
cal toroidal domain followed by b) particles leaving the domain
to the left and by c) particles, which will move to the right — no
matter how far they have to drift. The fast particle sorting mecha-
nism was based on the quicksort algorithm, which converges faster
than a full qsort(), because the particle array only needs to be par-
tially ordered. Thus, this algorithm implements a multi stage shift-
ing strategy and breaks until the particle array only contains “non
moving” particles. The remaining steps are similar to the MPI-ms
algorithm (except for the MPI communication replaced by CAF
put operations). By using the F90 array access notation the por-
tion of particles moving to the left and to the right respectively can
be directly accessed in the particle array — thus no send buffers
are required, which reduces the memory footprint. Unfortunately
this implementation exhibited poor performance due to the sorting
preprocessing step, and because CAF put operations of the form
receive(1 : size)[dest] = p array(start : end) could not be
properly vectorized for message aggregation by the current com-
piler implementation, which is currently being fixed. The inability
of the compiler to vectorize this put operation made the perfor-
mance of this approach impractically slow for integration to the
GTS application.

In addition, we investigated a double send buffering strategy for
the CAF implementations to allow larger overlap of particle work
and communication; i.e., if a send buffer is fully filled, we started
filling a second buffer while the first one being sent. This approach
did not speed-up the performance at any scale and problem size.

All particle shift algorithms are part of a stand alone benchmark
suite simulating different particle shift strategies based on an artifi-
cial particle array with similar properties as the one in GTS. Having
this compact application enables us to run straightforward scaling
test in terms of machine and problem size on any available HPC
platform.

4. Analysis
We evaluated the performance of our two advanced CAF particle
shifters and compare them to the best available MPI shift algo-
rithms on the Cray XE6 system at NERSC. Further, experiments
are conducted on the Cray XT4 supercomputer for performance
comparisons when no hardware support for CAF is given. First, we
executed the standalone communication benchmark that we created
to rapidly evaluate different implementations, and then we compare
performance with the new communication method incorporated
back into the GTS code to verify that the performance observed
in the standalone benchmark will benefit the full application. The
data was collected using GTS production run settings at increasing
processor scales based on a weak scaling strategy, (i.e., keeping the
number of particles constant at each processor as we scale up the
parallelism). Each experiment in this section is based on a (64/x)
domain decomposition, i.e., using 64 toroidal domains, each hav-
ing x = N/64 poloidal domains, where N denotes the number of
processors in the actual run. It is worth mentioning that at each shift
stage each processor sends data to a processor at least x ranks away
due due to the toroidal communicator setup in the GTS initializa-
tion phase, which initializes MPI processes with successive ranks
if they have equal toroidal communicator identifiers. A change of
the instance’s rank order would have a positive effect on the per-
formance of the particle shift phase, but would cause a too high
overhead for other PIC steps in GTS, which mainly operate on the
poloidal communicator.

(a) Benchmark: 750K particles per processor (b) Benchmark: 1500K particles per processor

Figure 4. Evaluation of two MPI shifter (MPI-ms, MPI-ss) and two CAF shifter (CAF-atom, CAF-lock) implementations with constant
particle array sizes per processor (weak scaling) for each experiment (750K and 1500K particles) using the shifter benchmark suite

Figure 5. Execution of MPI-ms, MPI-ss and CAF-atom, CAF-lock
with 1500K particles per processor in the shifter benchmark suite
on up to 16K processor cores on Franklin (XT4)

The standalone communication benchmark simulates the parti-
cle shift phase using the same domain topology, same number of
particles per processor and shift load size (that is, the number of
particles being moved per shift iteration) observed in runs of the
original GTS application. The shifter benchmark is implemented
using data structures and interfaces that are identical to the full
GTS code, to ensure the testing conditions (i.e., MPI process / CAF
image placement and network load characteristics) are consistent
across different implementations. This enables clean and consis-
tent comparisons to be made between the presented algorithms that
are also very easy to incorporate back into the original code.

Figure 4 presents the wallclock runtime on Hopper (XE6) of
the MPI shift algorithms introduced in sections 3.1 and 3.2 and
of the two CAF shifters (dashed lines) described in sections 3.3
and 3.4. Data was collected for concurrencies ranging from 1600
up to 131072 processor cores. Figure 4(a) shows the time measured
for moving particles when each processors’ particle array stores
750K particles from which 10% are moved to immediate neighbors
(5% to each of the two adjacent neighbors) and 1% to the next
but one direct toroidal neighbor domain. The artificially generated
data accurately simulates the typical fraction and range of moving
particles as occurring in GTS runs. Runtime numbers presented in
Figure 4(b) are based on the same configuration, but correspond to
a larger particle array containing 1500K elements. All three shift
routines were executed 100 times in this experiment and simulate a
constant “micell per processor” ratio8, thus keeping the size of the
particle array constant in each experiment with varying processor
counts.

8 In GTS micell denotes the number of particles per cell and needs to be
increased for varying processor scales to insure weak scaling experiments.

Both CAF implementations substantially outperform the best
MPI implementations, despite the years of work in profiling and op-
timization of the communication layer of the GTS MPI code. At the
largest scale (131K processors) and 750K particles per process, the
CAF implementations of 100 shift iterations take 112.0 seconds for
CAF-lock and 119.7 seconds for CAF-atom compared to 205.2 sec-
onds for MPI-ms and 236.3 seconds for MPI-ss. In the second case,
1500K particles per process, 100 particle shift iteration with the
CAF algorithms take 231.5 seconds (CAF-lock) and 233.7 seconds
(CAF-atom) as opposed to 380.2 seconds for 100 calls to MPI-ms
and 482.9 seconds when MPI-ss is used on largest scale with 131K
processors. For both problem sizes (750K and 1500K particles per
process), we see slightly better CAF performance for low concur-
rencies (≤ 23K processors), but the differences become much more
apparent at higher concurrencies. A portion of the benefit comes
from the lower overhead of Global Address Space communication
since the initiator image always provides complete information de-
scribing the data transfer to be performed as opposed to transfers
using MPI [3]. In addition, by exploiting the opportunities that a
one-sided communication models offers, we can decouple synchro-
nization from data transfers, and by building upon the previous ob-
servation of a more light-weight communication model, we prove
that sending more frequent smaller messages enables the CAF ap-
proach to outperform the message passing implementations due to
the enhanced communication and computation overlap as well as
the better network bandwidth utilization.

In all performance optimization work, it is important to de-
termine how much room there is for additional performance im-
provement. We conducted additional experiments using the shifter
benchmark suite to measure the data transfer rate per compute node
on Hopper (XE6)9 to determine how close our implementation is to
the interconnect bandwidth limit to see if there is any further op-
portunity for performance improvement. This brings the necessity
to differentiate between three different factors that are limiting the
performance of communication intense applications: a) Injection
bandwidth reflects the rate at which data can be pushed into the
network fabric, which is logically related to b) the speed of links
between two Gemini ASICs. On the Cray XE6 the injection band-
width is slower than the rate at which data can be exchanged us-
ing the links in X and Z dimensions between two Gemini ASICs,
but higher than the bandwidth in Y direction between two Gemini
ASICs. Note, one Gemini ASIC connects to its six nearest neigh-
bor Gemini ASICs in X,Y and Z direction, where the links in X
and Z direction are twice the width of the links in the Y direction.

9 Data transfer rates per Gemini cannot be easily computed since it is not
guaranteed that MPI processes with consecutive global MPI ranks residing
on two different compute nodes are connected to the same Gemini.

Consequently, the Cray XE6 network is asymmetric where differ-
ent links run at different speeds depending on the positions inside
the network. c) In addition, the farther different messages travel
on the network, the greater is the chance of resource sharing be-
tween messages. Thus, more than one message must traverse the
same link reducing the available bandwidth along that link for each
message, which leads to the phenomenon of network contention.
Due to the long distances between a sending and receiving MPI
process (because of the toroidal communicator setup as mentioned
in the beginning of this section), especially for large scale simu-
lations, we expect this problem to be limited by the speed of the
slowest link in the network and by network contention and, only in
rare cases, limited by the injection rate to push data on the Gemini
ASIC. We assume the slowest link (in Y direction of the 3D torus
network) runs at about 3.5 Gbytes/second under payload — this
number agrees with a point-to-point bandwidth test on a Cray XE6
conducted by Vaughan et al [18]. In addition, there will likely occur
contention for that slowest links due to communication from other
compute nodes.

Computing the data transfer rate per node for a run with 8192
processing cores for the MPI-ms algorithm (replaced non-blocking
MPI calls by blocking MPI functions to measure the communica-
tion time) using the shifter benchmark suite with 1500K particles
per MPI process results in a data transfer rate per node ranging
between 0.7 Gbytes/second and 2.5 Gbytes/second. This range of
data transfer rates per node (note, two compute nodes are connected
to one Gemini ASIC) agrees very well with the bandwidth of the
weakest link in the torus as stated above; i.e., indicating that the
communication in MPI-ms (and, hence from MPI-ss since roughly
the same amount of data is being sent per MPI function call) is
getting close to the network bandwidth limit. Raising the number
of particles per MPI process to 3000K, and hence doubling the
size of the MPI messages, yields the same number for data trans-
fer rates per compute node, which leads to the conclusion that in
both scenarios (1500K and 3000K particles per MPI process) the
limits of the network bandwidth are roughly reached. In addition,
if the number of used processing cores in a simulation run is in-
creased (i.e., the difference between a sending and receiving MPI
rank increases) we expect a decrease in the data transfer rate per
node since as the job size increases, the average distance a mes-
sage must travel on the network increases and thus the probabil-
ity of network contention increases. This assumption is confirmed
by simulations conducted with 3000K particles per MPI process
using 16384 processor cores and using 32768 processors respec-
tively. The data transfer rate per node for the 16384 processor cores
experiment lies between 0.5 Gbytes/second and 1.9 Gbytes/second;
and for the 32768 cores simulation the data transfer rate per node
ranges from 0.4 Gbytes/second to 1.5 Gbytes/second.

Figure 5 shows the runtime of MPI-ms, MPI-ss and CAF-lock,
CAF-atom executed 100 times with each processor holding 1500K
particles on Franklin (XT4) for concurrencies ranging from 2048
up to 16384 processor cores. Both CAF implementations out-
perform the best available MPI implementations on both Hopper
(XE6) and on Franklin (XT4), demonstrating that our implemen-
tation delivers a performance advantage across two very different
Cray interconnect implementations. At the largest scale (16K pro-
cessors) 100 particle shift iterations take 67.2 seconds for CAF-lock
and 55.1 seconds for CAF-atom compared to 87.6 seconds for MPI-
ms and 81.1 seconds for MPI-ss, which results in a 47.2% speed-up
of the best CAF implementation over the best MPI particle shift
implementation. The performance portability of our CAF imple-
mentations demonstrates the improved communication efficiency
and network utilization that results from our algorithmic innova-
tions and the benefits of one-sided communication models such as
higher data transfer rates and better communication and computa-

Figure 6. Weak scaling GTS experiments on Hopper (XE6) with
CAF-atom & MPI-ss on up to 32K processors

tion overlap. We also observe a slightly better performance for each
of the four algorithms executed on Franklin (XT4) compared to the
execution on Hopper (XE6). This is related to the fact that the shift
of particles in the GTS fusion application is a network bandwidth
limited problem — each compute core on Franklin (XT4) has, on
average, more network bandwidth available than a compute core
on Hopper (XE6).

Figure 4, reflecting runs on Hopper (XE6) and also Figure 5 for
experiments conducted on Franklin (XT4), demonstrate that CAF-
atom is the most efficient CAF algorithm. The performance differ-
ence is due to the longer stall cycles in CAF-lock, when using locks
for access restrictions to the buffer receiving moving particles. Nev-
ertheless, costs for lock acquisition or for the remote atomics are
less pronounced because both implementations are equally efficient
at avoiding long stall cycles by keeping as many processors as pos-
sible active filling send buffers and communicating simultaneously.
The reduction of idle time enables the sustained speed-up shown in
Figure 4 and Figure 5. However, it has to be taken into account that
remote atomics are Cray intrinsic operations, but this work should
make the case to include them into the Fortran standard. The “lock”
and “unlock” statements and the associated lock type in the CAF-
lock algorithm are part of the base Fortran 2008 standard and ensure
a portable implementation.

We then took the best-performing one- and two-sided particle
shift algorithm and re-integrated it with the full GTS application
code. The shifter benchmark suite suggests MPI-ss as best MPI
shift implementation and CAF-atom as the most efficient particle
shifter implementation representing the one-sided CAF program-
ming model. Figure 6 highlights the performance improvements to
the shifter PIC phase when running GTS with the new CAF-atom
shifter in comparison to using MPI-ss as MPI implementation for a
range of problem sizes. Timings from Figure 6 are for weak scaling
experiments on Hopper (XE6) that use a constant particle array size
of 750K per processor, which corresponds to a “micell per proces-
sor” ratio in GTS of 0.0781. Such a ratio is typical of most GTS
production simulations. Various fusion device sizes are studied by
varying the number of processes in a weak scaling fashion. A 32K
processor simulation with this particle array size would allow the
simulation of a large tokamak. Figure 6 shows the duration of the
shift PIC step in four different runs of GTS with 100 time steps (i.e.,
100 shifter function calls) as the number of processors per poloidal
plane is varied. The number of toroidal domains is constant and set
to 64, as is the case for all evaluated problem configurations. Each
GTS experiment, using a total number of {5440, 10880, 21760,
32768} processors has been executed twice — using the CAF-atom
shifter and the MPI-ss shift algorithm, respectively.

Figure 6 demonstrates that for the production mode of GTS us-
ing 32,768 processors the best CAF algorithm (CAF-atom) clearly
outperforms the best MPI shifter implementation (MPI-ss), where
100 executions of the CAF-atom shifter take 110.6 seconds com-

pared to 198.3 seconds when using MPI-ss – resulting in a 79%
speed-up. The difference between runtime numbers of the shift
phase from GTS and from the benchmark suite arise from addi-
tional computational costs to determine the toroidal position in the
tokamak (function “compute destination”), which is more compu-
tationally intense in the real application. Figure 6 confirms that the
standalone shifter communication benchmark correctly predicts the
performance benefits of the particle shift phase for the full applica-
tion code. It remains to be seen whether other forms of communi-
cation in the GTS run (e.g., collective communication calls during
the grid work in the scatter PIC phase; or MPI calls in PETSc) have
an impact on the interconnect and shifter performance.

5. Conclusions
This work has demonstrated the performance potential of using a
one-sided model for the communication intensive particle shift rou-
tine of the GTS magnetic fusion simulation code. The transition of
charged particles between adjacent toroidal computational domains
was originally implemented in MPI, and has been intensely stud-
ied and optimized over a number of years. Here, we develop novel
communication algorithms using a one-sided messaging paradigm
based on Coarrays, which are evaluated in a benchmark suite mod-
eling the shift PIC phase between neighboring toroidal domains in
the gyrokinetic simulation. The best performing Coarray algorithm
is integrated into the GTS fusion simulation code, leaving the other
PIC steps in GTS with MPI calls unchanged. The performance of
the new Coarray implementations, which use more frequent smaller
messages, is compared to the best MPI communication algorithms,
which implement large bulk transfers to exchange moving parti-
cles. Benchmark runs on up to 131K processors and experiments
with the “real world” physics application using up to 32K proces-
sors (scaling currently limited due to the PETSc numerical library
in the initialization phase of the application, which is part of future
research) on a Cray XE platform show that the performance of the
particle shift phase can be improved by up to 83% on 131K pro-
cessors in our benchmarking experiments and by up to 79% using
32K processors in the fusion application.

In future work we will discuss performance studies of multi-
threaded Coarray particle shift algorithms that support the hybrid
MPI and OpenMP model of the fusion application. Further, we plan
a full transition from MPI to Fortran 2008 for the entire application
following the stepwise approach undertaken so far.

Acknowledgments
A majority of the work in this paper was supported by the Petas-
cale Initiative in Computational Science at NERSC. Some addi-
tional research on this paper was supported by the Cray Center of
Excellence at NERSC. Additionally, we are grateful for interac-
tions with Nicholas Wright (NERSC) and for the extended com-
puter time as well as the valuable support from NERSC. This work
was supported by the Director, Office of Science, Advanced Scien-
tific Computing Research, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

References
[1] Piotr Bala, Terry Clark, and Scott L. Ridgway. Application of Pfor-

tran and Co-Array Fortran in the parallelization of the GROMOS96
molecular dynamics module. Scientific Programming, 9:61–68, Jan-
uary 2001.

[2] Richard Barrett. Co-Array Fortran Experiences with Finite Differenc-
ing Methods, 2006. 48th Cray User Group meeting, Lugano, Italy,
May 2006.

[3] Christian Bell, Dan Bonachea, Rajesh Nishtala, and Katherine Yelick.
Optimizing bandwidth limited problems using one-sided communica-

tion and overlap. In Proceedings of the 20th International Conference
on Parallel and Distributed Processing, IPDPS’06, page 84, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[4] Dan Bonachea. GASNet Specification, v1.1. Technical Report
UCB/CSD-02-1207, University of California at Berkeley, Berkeley,
CA, USA, 2002.

[5] Dan Bonachea and Jason Duell. Problems with using MPI 1.1 and
2.0 as compilation targets for parallel language implementations. In-
ternational Journal of High Performance Computing and Networking,
1:91–99, August 2004.

[6] K. A. Brucker, T. T. O’Shea, D. G. Dommermuth, J. Levesque, K. D.
George, R. I. Walters, and M. M. Stephens. Numerical Flow Analysis.
In DoD High Performance Computing Modernization Program, 21st
User Group Conference, HPCMP, 2011.

[7] François Cantonnet, Yiyi Yao, Mohamed M. Zahran, and Tarek A. El-
Ghazawi. Productivity Analysis of the UPC Language. In Proceedings
of the 18th International Conference on Parallel and Distributed Pro-
cessing, IPDPS’04, page 254, 2004.

[8] Cristian Coarfa, Yuri Dotsenko, Jason Eckhardt, and John Mellor-
Crummey. Co-array Fortran performance and potential: An NPB
experimental study. In 16th International Workshop on Languages
and Compilers for Parallel Computing, LCPC, pages 2–4. Springer-
Verlag, Oct 2003.

[9] Cristian Coarfa, Yuri Dotsenko, and John Mellor-Crummey. Experi-
ences with Sweep3D implementations in Co-array Fortran. The Jour-
nal of Supercomputing, 36:101–121, May 2006.

[10] Yuri Dotsenko, Cristian Coarfa, and John Mellor-Crummey. A Multi-
Platform Co-Array Fortran Compiler. In Proceedings of the 13th
International Conference on Parallel Architectures and Compilation
Techniques, PACT ’04, pages 29–40, Washington, DC, USA, 2004.
IEEE Computer Society.

[11] Tarek El-Ghazawi and Francois Cantonnet. UPC performance and
potential: a NPB experimental study. In Proceedings of the 2002
ACM/IEEE conference on Supercomputing, SC’02, pages 1–26, Los
Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[12] S. Ethier, W. M. Tang, R. Walkup, and L. Oliker. Large-scale gy-
rokinetic particle simulation of microturbulence in magnetically con-
fined fusion plasmas. IBM Journal of Research and Development,
52(1/2):105–115, 2008.

[13] J. N. Leboeuf, V. E. Lynch, B. A. Carreras, J. D. Alvarez, and
L. Garcia. Full torus Landau fluid calculations of ion temperature
gradient-driven turbulence in cylindrical geometry. Physics of Plas-
mas, 7(12):5013–5022, 2000.

[14] John Mellor-Crummey, Laksono Adhianto, William N. Scherer III,
and Guohua Jin. A new vision for Coarray Fortran. In Proceedings of
the 3rd Conference on Partitioned Global Address Space Programing
Models, PGAS ’09, pages 5:1–5:9, New York, NY, USA, 2009. ACM.

[15] Robert W. Numrich. Parallel numerical algorithms based on tensor
notation and Co-Array Fortran syntax. Parallel Computing, 31:588–
607, June 2005.

[16] Robert W. Numrich, John Reid, and Kim Kieun. Writing a Multigrid
Solver Using Co-array Fortran. In Proceedings of the 4th International
Workshop on Applied Parallel Computing, Large Scale Scientific and
Industrial Problems, PARA ’98, pages 390–399, London, UK, 1998.
Springer-Verlag.

[17] John Reid. Co-array Fortran for Full and Sparse Matrices. In Proceed-
ings of the 6th International Conference on Applied Parallel Comput-
ing Advanced Scientific Computing, PARA ’02, pages 61–, London,
UK, 2002. Springer-Verlag.

[18] C.T. Vaughan, M. Rajan, D.W. Doerfler, R.F. Barrett, and K.T. Pe-
dretti. Investigating the Impact of the Cielo Cray XE6 Architecture
on Scientific Application Codes. In International Workshop on Large-
Scale Parallel Processing, IPDPS, 2011.

[19] W. X. Wang, Z. Lin, W. M. Tang, W. W. Lee, S. Ethier, J. L. V.
Lewandowski, G. Rewoldt, T. S. Hahm, and J. Manickam. Gyroki-
netic Simulation of Global Turbulent Transport Properties in Tokamak
Experiments. Physics of Plasmas, 13, 2006.

