
Berkeley UPC Compiler Status Report
and Future Plans

Costin Iancu
LBNL

• There were one…
• There is two now!
• Meet Seung-Jai Min….

• OpenMP, GPU, DSMs

Overview

• Now that you’ve met Seung-Jai…
• Compiler Status
• Future Plans

• Language evolution
• UPC for multicore
• Search based optimizations

Compiler Support for
Communication Optimizations

• Programs need to be efficient and have scalable performance:
performance portability – focused on latency hiding in clusters

• Manual optimizations for communication: hard

• Requirements for performance:
• Selection of best communication primitives
• Selection of best transformations for overlap

• Source level optimizations:
• Message Vectorization - selection of communication primitives
• Message Strip-Mining - decomposition and scheduling
• Data Redistributions – scatter/gather on multicore clusters

Challenges

• Performance depends on the application and system characteristics

• Need methodology for compile time and on-the-fly optimizations
• Robust in the presence of imprecision
• Lightweight
• And that works too!

• Adaptation (compiler/static optimizations are not sufficient)
• Program Description
• Parameter Estimation/Classification
• Feedback Loop
• Performance Models vs Autotuning

Guided vs Automatic
Instantaneous vs Asymptotic
Offline vs Online

BUPC Infrastructure
• Compile/runtime time analysis and transformations

• Determine program behavior (semantic, performance)
• Describe behavior to runtime (discrete, coarse grained approximations)
• Runtime analysis for adaptation, best implementation

• Summarize memory access pattern, lightweight (Paek - LMAD perfect nests)
• RT-LMAD similar to SSA- irregular loops
• Easily extended for symbolic analysis

• Multi-versioning: code templates, instantiated and selected at runtime
• Performance models, access control
• Decouple serial transformations from communication transformations

• Serial transformations - cache parameters (static/conservative)
• Communication transformations - network parameters (dynamic)

No performance loss when decoupling
(compute/comm intrinsic ratio + multithreading)

Compile Time Transformations Runtime Mechanisms

Communication Oblivious Loop
Transformations

Communication Aware
Loop Analysis

MessageVectorization
Message Strip-Mining
Data Redistribution

Estimation of
Loop Overhead Loop Nest Descriptor

+
Template Loop Code

Performance

Database

Performance
Models

Memory
Manager
(Cache)

Estimate Loop
Body Overhead

Analyze Comm
Requirements

Estimate Load

Instantiate Comm
Plan

Eliminate Redundant
Comm & Reshape

Overall Design

Example: Generated Code

ln = start_nest(key);
add_polytope_dim(ln, DEPTH, LB, UB, STRIDE);
br = new_base_ref(ln, ALIAS, element_size;
lmad = new_lmad(ln, br, base_ptr, READ);
add_sos_dim(ln, br, lmad, 0, stride, span);
refvect = analyze_transfers(ln);
if(refvect== 1) {

lbase = (double *) get_local_address(ln, br, lmad);
sd = get_strips(ln);
for(oidx = 0; oidx <= ((N-1 / sd) -1); oidx = oidx + 1) {

advance_dim(ln, DEPTH);
for(iidx = 0; iidx <= (sd -1); iidx = iidx + 1) {
i = iidx + oidx * sd;
sumv =lbase[i] + sumv;

//patch-up code
finalize_dim(ln, 0);

else {
//fallback code - shared memory version

end_nest(ln);

Describe communication requirements

Simplify, apply model, compute
schedule, instantiate communication

Memory management, data cache

Choose communication granularity

Start and retire communication ops

for(i=0;i<N;i++)
sumv += base[i];

Status
• Compiler released at SC’08

• Productized and released optimizations for fined-grained programs:
split-phase, access coalescing

• Beta release of “vectorization”
• Papers at ICS’08, PPoPP’08

• The performance model based approach works WELL, but:
• It requires Costin Iancu to tune it, it requires a PhD in CS to understand it
• Any change in the system software changes the outcomes

• It’s not like autotuning will automagically fix this problem
• We know how to autotune 1 thread per core in dedicated environments (see 2nd talk)
• Noise, flow control
• Cross-compilation

• Need automated parameter discovery, validation, feedback
mechanisms (applies both to performance models and autotuners)
• A lot of research and engineering work

Language Evolution

• We have non-blocking extensions, Vector/Index/Strided, non-blocking
collectives, team collectives – library extensions for now

• Language adoption will require compiler integration

• Data layout is static in current spec: programmability problems

• We want UPC to be one the languages for programming multicore
clusters (it is a very good research platform)

• Multi-level optimizations (distributed/shared memory/hybrid) : next

• Extensions required:
• Dynamic parallelism
• More powerful data distributions mechanisms (see UPC on GPUs talk, IBM)

UPC for Multicore

• Leverage existing research in shared memory programming
• Interoperate with other successful candidates
• Possible path: integrate with the OpenUH OpenMP compiler

• Open64 code base
• OpenMP widely used and supported by industry
• Will allow us to experiment with

o Interoperability with other runtimes
o Dynamic tasking
o SPMD + work stealing
o Hybrid programming models
o Propose UPC language extensions

• Approached UH – both very interested in collaboration

Search Based Optimizations
• Current big research and technology push for “smarter” search

based compilers
• DARPA $16M: PACE platform-aware compilation environment
• Milepost GCC: interactive machine-learning-enabled research tool suitable for

adaptive computing (EU effort)

• The focus of these efforts is multi-socket programming
• Our “mission” – large scale multicore clusters
• Challenges

• Cross compilation
• Noise, dynamic behavior (previous work gave us a lot of insight)

• Path forward:
• GCC-UPC and Milepost
• Talk to PACE folks, extend Open64 (btw very active community)

Infrastructure and Interoperability

• Pathscale just released their code base
• Integrate with new Open64 (OpenUH+ Pathscale + BUPC)
• Extend the existing optimization infrastructure to handle whole

program optimization (IPA)
• Extend analysis infrastructure to work with imperfect loop nests

and loops with conditionals
• Interoperability and optimizations

• Pboost library with C++?
• Scripting languages?

Thank You!

	Berkeley UPC Compiler Status Report and Future Plans
	Slide Number 2
	Overview
	Compiler Support for Communication Optimizations
	Challenges
	BUPC Infrastructure
	Slide Number 7
	Example: Generated Code
	Status
	Language Evolution
	UPC for Multicore
	Search Based Optimizations
	Infrastructure and Interoperability
	Slide Number 14

