
1

Efficient Utilization of Multicore
Processors

Costin Iancu
LBNL

2

Research Agenda

Provide support for runtime adaptation in the multicore era
Combination of language, compiler, runtime and OS research
Leverage infrastructure commonality for different domains

HPC – dedicated, throughput, task scheduling
Commercial – shared, interactive, I/O, real time

Goals:
Runtime scalability on multicore and large scale systems
Language constructs for adaptation
Performance isolation (QoS, limited interference)
Clean separation of mechanisms from policies
Correctness and fault tolerance

3

Execution/Usage Models
• Parallel scientific applications:

• Synchronize – as fast as the slowest task
• Need load balancing (irregular)
• Some still use static parallelism (regular & irregular)
• Hybrid execution models – MPI+OpenMP+UPC
• Will require library composability and concurrent execution - PARSEC, Intel TBB

• Asymmetry becoming prevalent:
• Accelerators (Cell, GPU, Larrabee)
• Intel Nehalem
• OS asymmetry – Cray, IBM BG/P, Corey, Tesselation

• Need support for mixed behavior workloads competing for resources:
cores, RAM, cache, I/O bandwidth

4

Approach
Application driven effort

Top down - identify application requirements, modify existing software
Bottom-up – novel design, independent subsystems

Posed as a resource management problem
Mechanisms – direct access to hardware
Policies – scheduling and QoS

Minimalist design – delegate to user level
Make sure we can run “legacy” applications/models

Case studies
Task scheduling – HPC workloads, Cilk, PARSEC
Synchronization operations – barriers, point to point
Network bandwidth, access control
Real Time constraints (processing and I/O) - music app, speech recognition

5

Resource Management

Space -Time resource partitioning
CPU
RAM
Cache
I/O bandwidth

•Layered software approach
• Bare-metal Hypervisor
• Upper layers: independent OSes
or runtimes

• Distributed system approach:
asymmetric design

Real-Time
Application

Large
Compute-Bound

Application

Multicore Hardware

Network
Service

Tasks Tasks Tasks Tasks

Application Partitions OS Service Partitions

Disk Network
Card

OS

Persistent
Storage &

File System

Secure Channels

QoS Guarantees

Real-time
Application

Large Compute-Bound
Application File

System

Network
Service

Courtesy of PARLAB OS

6

Questions

• Do we need work stealing runtimes for proper load balancing?

• How should be tasks managed for hybrid programming models,
asymmetric environments, competitive environments?
• Do we need to explicitly manage the affinity?
• Do we really need to adjust the degree of concurrency?
• How do we execute mixed programming models?
• Do we need to partition the system?
• Can we mix processes with Pthreads? How?

• How should synchronization primitives look like/behave on
multicore processors?

7

Load Balancing on Speed
Costin Iancu, Steven Hofmeyr, Filip Blagojevic

8

• Most programming models still use static parallelism (SPMD, 1 per core)

• But existing OS support inadequate for these programming models
• e.g. NAS benchmark SP can only be compiled with square number of threads

• Static parallelism leads to inefficient use of resources
• Dynamic parallelism hard to incorporate (feedback, SPMD), but required

Space Scheduling

9

• Multicores will need to be shared between multiple applications
• Existing OS support often inadequate for shared parallel workloads

Space Scheduling on Shared Resources

EP + hog on core 0

Need to support space scheduling with oversubscription:
• SPMD
• Intel TBB/libraries

• PBoost graph library (Andrew Lumsdaine)
• PARSEC benchmarks
• Sparse QR factorization (Tim Davis, U Florida)

• Accelerators

10

• OS support for space scheduling
• Explicit - user level assignment (pinning) of threads to cores/domains
• Implicit - e.g. Linux Load Balancing (LOAD)

• Linux (and others), load = number of tasks in cpu run queue
• Balance by pulling tasks from longest to shortest run queues
• Topology (cache, NUMA, etc.) affects balancing

• Initial task startup ignores global state

• FreeBSD, Distributed Weighted Round Robin (DWRR) try to move
tasks around more aggressively than Linux

• Most of current OS load balancing developed for commercial apps

Load Balancing

11

All threads in a parallel app should be given a fair chance to
run on the fastest core available system-wide

•Balance speed not run queue length
•Approximate as execution time over real time

speed = (t_user + t_system) / t_real

• e.g. two threads sharing a core will both run at 1/2 speed

•Periodically migrate threads to maintain speed balance
• Ideally measure speed as:

• Operations per second (TOT_CYC, L2_TCM)
• Energy/power

Load Balancing on Speed

12

• User level, one monitor thread per core
• Distributed scalable algorithm, no global sync

• Monitor wakes up at regular intervals (every 0.1s)
• For each thread on core, compute speed over the last interval
• Compute average speed of all threads on core
• Update average speed over all cores
• Try to balance if local core speed > average core speed

• Pick slowest available remote core
• Select another thread from remote core
• Pull selected thread to local core

• The fastest cores do all the work
• Migration implemented using sched_setaffinity()

Implementation

13

• Oversubscription, sharing and partitioning for UMA/NUMA
• SPMD apps (NPB UPC/MPI/OpenMP)
• Mixed workloads (interactive + HPC)

• Setup
• 16 core Intel Tigerton (UMA 4x4) • 16 core AMD Barcelona (NUMA 4x4)• 16 core Intel Nehalem (NUMA+HT 4x2x2)• Linux 2.6.28.2 (latest stable release, January 09)

• Pin all services to core 15 (asymmetric OS design)

• Measure:
• Throughput
• Performance isolation

Experiments

14

Benchmarks
Benchmark RSS(GB) Speedup

Tigerton
Speedup
Barcelona

Interbarrier
(OpenMP)

Interbarrier
(UPC)

bt.A 0.4 4.6 10
cg.B 0.6 4.2 9.2 4 ms

10200
2 ms
20102

ep.C 0.0 15.6 15.9 2800 ms
9

15000 ms
2

ft.B 5.6 5.3 10.5 73 ms
245

206 ms
31

is.C 3.1 4.8 8.4 44 ms
66

63 ms
88

mg.C 5.6 5 8.8 16 ms
3072

39 ms
1172

sp.A 0.1 7.2 12.4 2 ms
8848

All benchmarks scale, range [2s, 80s]

15

• Results are for 16 threads,
oversubscribed

• LOAD is highly variable
• SPEED varies little
• SPEED close to optimal efficiency at

all core counts
• DWRR and FreeBSD have scalability

problems
• Behavior determined by barrier

implementation
(sleep, sched_yield)

Results: Dedicated System

16

UPC on Dedicated System

• SPEED better than LOAD 46%, PINNED 24%
• SPEED variation 5%
• LOAD variation is 86%
• LOAD can’t fix bad initial task distribution

17

OpenMP on Dedicated System

• SPEED 11% overall speedup – best performance
• Polling barriers 7% faster, depends on benchmark (skewed by EP)
• Class S with polling barriers: 45% faster

• Handling sleep? SB_DEF/LD_DEF: -3%

• SPEED reduces implementation constraints for synchronization operations

2ms/10000 73ms/245 44ms/66 16ms/3000 2ms/8000

18

Results: Competitive System

• Run “cpu-hog” on core 0 – spin loop

• Linux sheduler shares tasks, e,g, 2 tasks +
hog, each gets 1/3 core

• One per core bad, hog takes half a core

•SPEED provides best performance when
sharing:

•With cpu-hog
•With make –j 16
•With another NPB

19

• Generic user level solution, programming model agnostic
• Can decouple H/W level parallelism from S/W level parallelism

• Count cores, not threads

• Load balancing on speed
• Faster than LOAD by 15 - 50% on avg., up to 78% best case
• SPEED varies little (no more than 14%), LOAD varies a lot (up to 214%)
• Performs better than DWRR (kernel level fair m-CPU scheduling)
• Work-stealing/PARSEC oblivious in dedicated environments (Competitive?)

• Pinning services to one core did not affect performance
• Promising for asymmetric designs

• Process scheduling extensions needed
• Start-up
• Group management
• Gang scheduling

SPEED Summary

20

Oversubscription on Multicore Processors
Costin Iancu, Steven Hofmeyr, Yili Zheng, Filip Blagojevic

21

Oversubscription

• Work sharing and load balancing traditionally implemented
as “ad-hoc” solutions: Cilk, AMPI, OpenMP, X10

• Benefits of oversubscription (#tasks > #cores)
• Shown to improve latency tolerance on distributed memory (graph algorithms!!)
• Improve load balancing
• Increase hardware utilization/efficiency
• Increase robustness/isolation when sharing nodes
• Eliminate the need for software control of parallelism (manage cores not

threads)

• OS awareness of proper parallel applications required (or
speed balancing)

22

Oversubscription/Dedicated

2% to -2%

MPI: -10% to -18%
OpenMP: -8% to -18%

• As expected Oversubscription decreases overall performance in dedicated environments
• Behavior is application dependent – domain decomposition, load balance, memory usage
• Behavior is programming model dependent – synchronization and threading
• Behavior determined by the underlying OS

23

System Partitioning

• System partitioning decreases throughput irrespective of the programming model
• Partitioning could provide performance isolation

• Oversubscription increases throughput irrespective of the programming model

33% / 38% / 45%23% / 46% / 28%

24

Sharing vs Dedicated

9% / 24% 20% / 27%

• Surpriiise!: Sharing the system between oversubscribed applications
provides best throughput
• Indicates that we already see resource bottlenecks at 16 cores
• However, 16 cores not enough to require partitioning

25

Memory Bandwidth

• Memory Bandwidth is not a smooth line as load increases.

• Modified version of the pChase (IBM/Doug Pace)
benchmark to examine system memory bandwidth as a
function of outstanding memory references

Slide from Allan Porterfield & Rob Fowler - RENCI

26

4 Socket AMD 2.2GHz Barcelona (667DDR2)

Slide from Allan Porterfield & Rob Fowler - RENCI

27Slide from Allan Porterfield & Rob Fowler - RENCI

4 Socket AMD 2.2GHz Barcelona (667DDR2)

28

4 Socket AMD 2.2GHz Barcelona (667DDR2)

Slide from Allan Porterfield & Rob Fowler - RENCI

29

Oversubscription Lessons

• Global barriers are not necessarily bad …
• Balance trumps locality – migrate regardless of cache affinity
• Oversubscription:

• Eliminates bottlenecks (memory)
• Improves utilization

• Oversubscription dedicated: -2%, -8% performance loss
• Oversubscription sharing: 27%, 24% performance gain

• Self-similarity seems to be problem: my next project is break it
• Try introduce random “delays” in code and mix memory intensive with CPU

intensive

Why?

30

Some Answers

• Do we need to explicitly manage the thread affinity? - NO

• Do we really need to adjust the degree of concurrency? - NO
threads, YES cores

• Do we need to partition the system? – NOT YET

• How do we execute mixed programming models? – Sharing and
oversubscribed

• Can we mix processes with Pthreads? How?

31

Discussion

• Competitive/dedicated = commercial/scientific
• Implementation decisions permeate into the scientific domain

• sleep/sched_yield, sched_compat_yield

• QoS, partitioning, asymmetric OS designs
• Work with them or around them?

• Synchronization – fast is good, but does it play nicely with others?
• Cooperative scheduling primitives and “collective” implementations

• Will autotuning automagically change things?
• Maximize application performance in static env (local view)
• Need adaptation mechanisms that operate on global system state

32

Current and Future Work

• Speedbalancing user level spawner: Linux (TC)
• Port to other Oses? Kernel?
• Port and release a generic user level library?

• Hybrid programming: interfaces, languages, execution model
(Lauren)

• Fairness/QoS vs custom techniques (TC)
• Access control for communication operations/overlap (TC)
• Language extensions for resource control (Lauren)
• Fall release of the BUPC suite (it’s time for that raise)

33

Thank You!

	Efficient Utilization of Multicore Processors�
	Research Agenda
	Execution/Usage Models
	Approach
	 Resource Management
	Questions
	Load Balancing on Speed�Costin Iancu, Steven Hofmeyr, Filip Blagojevic
	Space Scheduling
	Space Scheduling on Shared Resources
	Load Balancing
	Load Balancing on Speed
	Implementation
	Experiments
	Benchmarks
	Results: Dedicated System
	UPC on Dedicated System
	OpenMP on Dedicated System
	Results: Competitive System
	SPEED Summary
	Slide Number 20
	Oversubscription
	Oversubscription/Dedicated
	System Partitioning
	Sharing vs Dedicated
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Oversubscription Lessons
	Some Answers
	Discussion
	Current and Future Work
	Slide Number 33

