Sy

\

reerrrer]

Efficient Utilization of Multicore
Processors

Costin lancu
LBNL

~

Research Agenda m

BERKELEY LaB

Provide support for runtime adaptation in the multicore era
Combination of language, compiler, runtime and OS research

Leverage infrastructure commonality for different domains
« HPC - dedicated, throughput, task scheduling
« Commercial - shared, interactive, I/0, real time

Goals:
« Runtime scalability on multicore and large scale systems
« Language constructs for adaptation
« Performance isolation (QoS, limited interference)
« Clean separation of mechanisms from policies
« Correctness and fault tolerance

~

\

Execution/Usage Models ’%

BERKELEY LaB

* Parallel scientific applications:
» Synchronize - as fast as the slowest task
» Need load balancing (irregular)
» Some still use static parallelism (regular & irregular)
» Hybrid execution models — MPI+OpenMP+UPC
» Will require library composability and concurrent execution - PARSEC, Intel TBB

* Asymmetry becoming prevalent:
» Accelerators (Cell, GPU, Larrabee)
 Intel Nehalem
o OS asymmetry — Cray, IBM BG/P, Corey, Tesselation

® Need support for mixed behavior workloads competing for resources:
cores, RAM, cache, I/0 bandwidth

\

Approach m

BERKELEY LaB

Application driven effort

« Top down - identify application requirements, modify existing software
« Bottom-up - novel design, independent subsystems

Posed as a resource management problem
« Mechanisms - direct access to hardware
« Policies - scheduling and QoS

Minimalist design - delegate to user level
Make sure we can run “legacy” applications/models

Case studies
« Task scheduling — HPC workloads, Cilk, PARSEC
« Synchronization operations — barriers, point to point
« Network bandwidth, access control

« Real Time constraints (processing and I/O) - music app, speech recognition y

Sy

/—\l A
[L’N

Resource Management

Space -Time resource partitioning eLayered software approach
* Bare-metal Hypervisor

. CPU

« RAM Upper layers: independent OSes

« Cache or runtimes

. /O bandwidth . Dlstrlbuteq system approach:
asymmetric design

Application Partitions OS Service Partitions

Appllcatlon
Real-time
Application Lar Persistent
ge T |
pplication bp le Systep

Secure Channels

| QoS Guarantees

|
Multicore Hardware

I I Disk | /Network
| Card

Courtesy of PARLAB OS

Questions m

BERKELEY LaB

Do we need work stealing runtimes for proper load balancing?

How should be tasks managed for hybrid programming models,
asymmetric environments, competitive environments?

Do we need to explicitly manage the affinity?

Do we really need to adjust the degree of concurrency?
How do we execute mixed programming models?

Do we need to partition the system?

Can we mix processes with Pthreads? How?

How should synchronization primitives look like/behave on
multicore processors?

Sy

\

reerrrer

||||

Load Balancing on Speed

Costin lancu, Steven Hofmeyr, Filip Blagojevic

Space Scheduling %

BERKELEY LAB

* Most programming models still use static parallelism (SPMD, 1 per core)

* But existing OS support inadequate for these programming models
* e.g. NAS benchmark SP can only be compiled with square number of threads

* Static parallelism leads to inefficient use of resources
* Dynamic parallelism hard to incorporate (feedback, SPMD), but required

a o

Speedup relative to one core

O = N W b

0] 2 4 6 8 10 12 14 16
Number of cores

Space Scheduling on Shared Resources

et

" A
Frrrrrer W

* Multicores will need to be shared between multiple applications
* Existing OS support often inadequate for shared parallel workloads

Speedup relative to one core

Need to support space scheduling with oversubscription:

* SPMD
 Intel TBB/libraries

16
14

12
10

8

6
4 L
2
0]

without sharing

with sharing

7

EP+hogoncore0

o]

2

4

6 8 10
Number of cores

 PBoost graph library (Andrew Lumsdaine)

* PARSEC benchmarks

* Sparse QR factorization (Tim Davis, U Florida)

« Accelerators

12

14

16

Load Balancing N

BERKELEY LAB

®* OS support for space scheduling
* Explicit - user level assignment (pinning) of threads to cores/domains
* Implicit - e.g. Linux Load Balancing (LOAD)

* Linux (and others), load = number of tasks in cpu run queue
* Balance by pulling tasks from longest to shortest run queues
* Topology (cache, NUMA, etc.) affects balancing

® Initial task startup ignores global state

* FreeBSD, Distributed Weighted Round Robin (DWRR) try to move
tasks around more aggressively than Linux

® Most of current OS load balancing developed for commercial apps
10

et

Load Balancing on Speed %

BERKELEY LAB

All threads in a parallel app should be given a fair chance to
run on the fastest core available system-wide

* Balance speed not run queue length
* Approximate as execution time over real time

speed = (t_user +t_system) / t_real

* e.g. two threads sharing a core will both run at 1/2 speed

* Periodically migrate threads to maintain speed balance

® |deally measure speed as:

® Operations per second (TOT_CYC, L2_TCM)

* Energy/power T

—

Implementation ’%

BERKELEY LAB

® User level, one monitor thread per core
* Distributed scalable algorithm, no global sync

* Monitor wakes up at regular intervals (every 0.1s)

* For each thread on core, compute speed over the last interval
* Compute average speed of all threads on core
* Update average speed over all cores

* Try to balance if local core speed > average core speed
* Pick slowest available remote core
* Select another thread from remote core
* Pull selected thread to local core

®* The fastest cores do all the work
* Migration implemented using sched_setaffinity()

12

et

Experiments N

BERKELEY LAB

* Oversubscription, sharing and partitioning for UMA/NUMA
* SPMD apps (NPB UPC/MPI/OpenMP)
* Mixed workloads (interactive + HPC)

* Setup

16 core Intel Tigerton (UMA 4x4)

16 core AMD Barcelona (NUMA 4x4)

16 core Intel Nehalem (NUMA+HT 4x2x2)

Linux 2.6.28.2 (latest stable release, January 09)

* Pin all services to core 15 (asymmetric OS design)

®* Measure:
* Throughput
* Performance isolation

13

y

A
Frrererere ‘|

BERKELEY LaB ‘

Benchmark

RSS(GB)

Interbarrier

bt.A
cg.B

ep.C

ft.B

1s.C

Sp.A

0.4
0.6

0.0

5.6

3.1

5.6

0.1

Speedup Speedup Interbarrier

Tigerton ~ Barcelona (OpenMP)

4.6 10

4.2 9.2 4 ms
10200

15.6 15.9 2800 ms
9

5.3 10.5 73 ms
245

4.8 8.4 44 ms
66

5 8.8 16 ms
3072

7.2 12.4 2ms
8848

(UPC)

2ms
20102

15000 ms
2

206 ms
31

63 ms
88

39 ms
1172

All benchmarks scale, range [2s, 80s]

14

Results: Dedicated System

] A
FErerer ‘m

15

13

11

Speedup

o

-~

o ~ & o o
4 -4 4 -

| ==—FreeBSD

| ~®-PINNED

== One-per-core

UPC-Tigerton

o 7]

—#—DWRR

= B 10 11 12 13 14 15 16

1 2 34 Numbaero?Cores

[~#=0One-per-core
8 SPEED-SLEEP
;—-"—SPEED-YIELD _
== LOAD-SLEEP

UPC-Barcelona |,

[LOAD-YIELD

8 9 10 11 12 13 14 15 16

1 2 3 4 S5 6 7
Number of Cores

® Results are for 16 threads,
oversubscribed

* LOAD is highly variable
* SPEED varies little

* SPEED close to optimal efficiency at
all core counts

* DWRR and FreeBSD have scalability
problems

* Behavior determined by barrier
implementation

(sleep, sched yield)

15

UPC on Dedicated System

UPC-Barcelona |

) A
Frreeer |m

* LD_VARIATION

suolse

SB_VARIATION

*** $B_WORST/LD_WORST

JLB_AVG

= = *$B_AVG,

uoneLIeAY%
£ . 5 B8 §§
TR T T " el stves
- o | ards
% - m P ETY
" 0 CITves
o) Cevds
A ceob Tl LV
-.-. J M seneds ﬁi _ um.(.nr
..u D il S
[- T4 ds
._...m M ST
o ST o
..n M FITodw
> « | m.u.!
T s oo
.l ety SO
_.ﬂ wesd Mt gy
L I-?J '#MUU-?
.& s 5
“_.__ ...- m £1-0'%1
S d 1o
...s“ e 675k
...J = A./._ L)
el) XAl ! o5 L S
.:Hmu&.uw..._. £
. v —— TSI
..,__ Mnx ST9Y
. ! .
| A erey
- 4 ey
”.. ..J- M. . 649y
. ! R e LOY
sodl *%sdeis L5 e [S8Y
([
- et~ ROk,
o™ty cspr T L STY0R
I L ETde
CH oo nh.u... ’ L rrode
2 19 - -~
wnm.n..__..‘.J..vud-..i.i | MWH
| .~ |
SO | ~rly - §-yde
Y] i
| irgos 1o
¥ Pl | ostah
- ™ H
| sios - frah
m.. | ”.H...A\&.. L e
r l--"-i - [.”
b -__ . -‘--tolh . i Olﬂ.s
=3 | VY i T X5
x| T e M K
o
._.A Y Lo TR)
! | v B
y Y rael STV
g o F [evvp
vea | [N P STV
....!_._P el 1.“ . 6¥'WY
e T
] 4 - sv'y9
lt-l -ocl...y
J-H sl.a.l. CEV'W

5 0§ % % %

« SPEED better than LOAD 46%, PINNED 24%

e SPEED variation 5%

» LOAD variation is 86%

» LOAD can’t fix bad initial task distribution

16

A

OpenMP on Dedicated System Q

BERKELEY LaB

=& =SB_INF/LD_INF < - LB_DEF/LD_INF " SB_INF/LD_DEF o enMP—Ti erton |
e 2 p g
‘ " J‘ fhi *\
o Ayh i 5t Be oy
= ') 2 *y \ :
S 20x ¢ '-1 ’l‘t & ”. L & ol ‘
.g f | ,’V*\ ft 4) ’ '..- .y“?—r 1 : - -." \ ;'\ ” |
& o # N WA g L FAT K SVEi | h!.“.w«“g"“u““.,w’% Y T
R RS e b s R R s S T L Ea R i kL
2ox (2 UpB 2% g ey 8 222 R 449 €= = =5 R T N
- N ‘. n Cl " P -’i
. OV - # - " o
2ms/10000 73ms/245 44ms/66 16ms/3000 2ms/8000

® SPEED 11% overall speedup - best performance
* Polling barriers 7% faster, depends on benchmark (skewed by EP)
® Class S with polling barriers: 45% faster

®* Handling sleep? SB_DEF/LD DEF: -3%

® SPEED reduces implementation constraints for synchronization operations
17

- A
Results: Competitive System A\I "

HERKELEY LAB

20.00%

10.00%

0.00%

-10.00%

{ == DWRR_INF

| =4~ SPEED
| =8~ LOAD_DEF
| =~ DWRR_DEF

OMP-Tigerton

1 " LOAD-YIELD -
| —@—PINNED

-20.00% -

6 7 8
Number of Cores

NPB+NPB

SB VG/I.D AVG

LD_VARIATION

SB_VARIATION

10 11 12 13 14 15 16

* cg-B-ep-C
= ep-C-cg-B
* cg-B-mg-C
" mg-C-cg-B
" cg-B-ft-B
" ft-B-cg-B
" ep-C-mg-C
" mg-C-ep-C
' ft-B-ep-C

* Run “cpu-hog” on core 0 - spin loop

» Linux sheduler shares tasks, e,g, 2 tasks +
hog, each gets 1/3 core

* One per core bad, hog takes half a core

*SPEED provides best performance when
sharing:

*With cpu-hog

*With make —j 16

*With another NPB

18

SPEED Summary T%

BERKELEY LAB

® Generic user level solution, programming model agnostic

* Can decouple H/W level parallelism from S/W level parallelism
* Count cores, not threads

* Load balancing on speed

Faster than LOAD by 15 - 50% on avg., up to 78% best case

SPEED varies little (no more than 14%), LOAD varies a lot (up to 214%)
Performs better than DWRR (kernel level fair m-CPU scheduling)
Work-stealing/PARSEC oblivious in dedicated environments (Competitive?)

* Pinning services to one core did not affect performance
* Promising for asymmetric designs

* Process scheduling extensions needed
* Start-up
* Group management
* Gang scheduling

19

A
]

~
rerrrere

BERKELEY LaB

Oversubscription on Multicore Processors

Costin lancu, Steven Hofmeyr, Yili Zheng, Filip Blagojevic

20

\
I

Oversubscription /\%

BERKELEY LaB

* Work sharing and load balancing traditionally implemented
as “ad-hoc” solutions: cilk, AMPI, OpenMP, X10

* Benefits of oversubscription (#tasks > #cores)
« Shown to improve latency tolerance on distributed memory (graph algorithms!!)
e Improve load balancing
 Increase hardware utilization/efficiency
 Increase robustness/isolation when sharing nodes

 Eliminate the need for software control of parallelism (manage cores not
threads)

® OS awareness of proper parallel applications required (or
speed balancing)

21

Oversubscription/Dedicated

Sy

" A
Frerreere ‘|

BERKELEY LaB |

Performance relative to 1/core

N

-
o))

o
0

o

- UPC Tigerton

2% to -2%

CFS
PSX yield
PIN/SPEED

" - ;
A" Iy T
‘ N 1. .

248 248 248 24 248 248 248 248 248 4 4 4 248 248 248 24 248 248
A B C A B C A B C A B C A B C A B C
ep ft is sp mg cg

 Behavior determined by the underlying OS

OpenMP: -8% to -18%
MPI: -10% to -18%

* As expected Oversubscription decreases overall performance in dedicated environments
* Behavior is application dependent — domain decomposition, load balance, memory usage
* Behavior is programming model dependent — synchronization and threading

22

System Partitioning %

BERKELEY LAaB

—
N
o

—
o
o

20

Improvement over partitioning (%)

-20

o]
o
L]

-
N
o

S Shared!'partltlon ed. OMP .Ba r.celona. R

Improvement over partitioning (%)

|
N
o

124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124

cg ep ft mg cg ep ft mg cg ep ft mg cg ep ft mg
cg-B ep-C ft-B mg-C

20 b f i

lij 33%!

124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124

cg ep ft mg cg ep ft mg cg ep ft mg cg ep ft mg
cg-B ep-C ft-B mg-C

« System partitioning decreases throughput irrespective of the programming model
« Partitioning could provide performance isolation

 Oversubscription increases throughput irrespective of the programming model

23

Sharing vs Dedicated %

BERKELEY LAaB

20 f

0

; —

kS} 9% { 24% 20% [27%
©

g 40 f PTg)) U || W E—

£

]

>

=]

S

E

Improvement over dedicated

-20

-20

124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124

124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124
cg ep ft mg cg ep ft mg cg ep ft mg cg ep ft mg

_ _ _ _ cg ep ft mg cg ep ft mg cg ep ft mg cg ep ft mg
cg-B ep-C ft-B mg-C cg-B ep-C #-B mg-C

o Surpriiise!: Sharing the system between oversubscribed applications
provides best throughput

e Indicates that we already see resource bottlenecks at 16 cores

» However, 16 cores not enough to require partitioning
24

Memory Bandwidth

e Memory Bandwidth is not a smooth line as load increases.

e Modified version of the pChase (IBM/Doug Pace)
benchmark to examine system memory bandwidth as a
function of outstanding memory references

Slide from Allan Porterfield & Rob Fowler - RENCI 25

4 Socket AMD 2.2GHz Barcelona (667DDR2) %

BERKELEY LAaB

QB1: 1 socket active
[memory per ref.=128MB; page size=4KB; cacheline size=64bytes]

7000

6000 ‘;ggl_——-—l'—f . —— e — —— I

{} {} {1 { {1
5000 /./.——l-—l ¢ thread
4000 //
3000 ./// "”",——0—-0—0 - S S —ii—2 threads
2000

—4—3 threads
1000 -

0 T T T T T T T T T T T T T T 1 =l—4 threads
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Memory Bandwidth (MB/s)

Concurrent misses / thread

Slide from Allan Porterfield & Rob Fowler - RENCI 26

Sy

4 Socket AMD 2.2GHz Barcelona (667DDR?) %

BERKELEY LaB

QB1: 2 sockets active
[memory per ref.=128MB; page size=4KB; cacheline size=64bytes]

14000
19000 R —— X

10000 - ﬁ' —s—=—= 858 ——2 threads
8000

—t > ——-4 threads

6000 /:,.-v—-‘* ————————
4000 6 threads
2000 -

1 2 3 4 5 6 7

| | | | | | | 1 —m—8 threads
8 9 10 11 12 13 14 15

Concurrent misses / thread

Memory Bandwidth (MB/s)

Slide from Allan Porterfield & Rob Fowler - RENCI 2!

4 Socket AMD 2.2GHz Barcelona (667DDR?2)

) A
Frrrrere ‘m

Memory Bandwidth (MB/s)

QB1: 4 sockets active
[memory per ref.=128MB; page size=4KB; cacheline size=64bytes]

20000

18000 -
16000
14000 ////
12000 ————b
10000 -
8000 —
6000
4000 _/
2000 -
0 .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Concurrent misses / thread

—4— 4 threads

—— 8 threads

——12 threads

—i— 16 threads

Slide from Allan Porterfield & Rob Fowler - RENCI

28

~
A
I

Oversubscription Lessons -

Global barriers are not necessarily bad ...
Balance trumps locality — migrate regardless of cache affinity

Oversubscription:
 Eliminates bottlenecks (memory)

* Improves utilization
Oversubscription dedicated: -2%, -8% performance loss
Oversubscription sharing: 27%, 24% performance gain

Why?

Self-similarity seems to be problem: my next project is break it

* Try introduce random “delays” in code and mix memory intensive with CPU
Intensive

29

T
A
[l

Some Answers "

Do we need to explicitly manage the thread affinity? - NO

Do we really need to adjust the degree of concurrency? - NO
threads, YES cores

Do we need to partition the system? — NOT YET

How do we execute mixed programming models? — Sharing and
oversubscribed

Can we mix processes with Pthreads? How?

30

Discussion ’%

BERKELEY LaB

Competitive/dedicated = commercial/scientific

Implementation decisions permeate into the scientific domain
e sleep/sched yield, sched compat yield
* QoS, partitioning, asymmetric OS designs

Work with them or around them?

Synchronization - fast is good, but does it play nicely with others?
» Cooperative scheduling primitives and “collective” implementations

Will autotuning automagically change things?
« Maximize application performance in static env (local view)
* Need adaptation mechanisms that operate on global system state

—

\

Current and Future Work f

Speedbalancing user level spawner: Linux (TC)
» Port to other Oses? Kernel?
» Port and release a generic user level library?

Hybrid programming: interfaces, languages, execution model
(Lauren)

Fairness/QoS vs custom techniques (TC)

Access control for communication operations/overlap (TC)
Language extensions for resource control (Lauren)

Fall release of the BUPC suite (it’s time for that raise)

32

Thank You!

33

	Efficient Utilization of Multicore Processors�
	Research Agenda
	Execution/Usage Models
	Approach
	 Resource Management
	Questions
	Load Balancing on Speed�Costin Iancu, Steven Hofmeyr, Filip Blagojevic
	Space Scheduling
	Space Scheduling on Shared Resources
	Load Balancing
	Load Balancing on Speed
	Implementation
	Experiments
	Benchmarks
	Results: Dedicated System
	UPC on Dedicated System
	OpenMP on Dedicated System
	Results: Competitive System
	SPEED Summary
	Slide Number 20
	Oversubscription
	Oversubscription/Dedicated
	System Partitioning
	Sharing vs Dedicated
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Oversubscription Lessons
	Some Answers
	Discussion
	Current and Future Work
	Slide Number 33

