Team Collectives and BG/P Results

Rajesh Nishtala, Yili Zheng and Paul Hargrove
Future Technologies Group
Lawrence Berkeley National Laboratory
University of California, Berkeley

Observations

Observations

® Performance gains delivered through increasing concurrency rather
than clock rates

® Application scalability is essential for future performance
Improvements

® |00,000s of processors will be the norm in the very near future

® Maximize the use of available resources

® [everage communication/communication and communication/
computation overlap

Observations

® Performance gains delivered through increasing concurrency rather
than clock rates

® Application scalability is essential for future performance
Improvements

® |00,000s of processors will be the norm in the very near future

® Maximize the use of available resources

® [everage communication/communication and communication/
computation overlap

e Systems will favor many slower power efficient processors to fewer
faster power inefficient one

® Light-weight communication and runtime system to minimize
software overhead

® Close semantic match to underlying hardware

Overview

Overview

® Discuss our new port of GASNet, the communication subsystem for
the the Berkeley UPC compiler, to the BlueGene/P

® Qutline the key differences found between one and two sided
communication and their applicability to modern networks

Overview

® Discuss our new port of GASNet, the communication subsystem for
the the Berkeley UPC compiler, to the BlueGene/P

® Qutline the key differences found between one and two sided
communication and their applicability to modern networks

® Show how the microbenchmark performance advantages can translate
to real applications

® (Chose the communication bound NAS FT benchmark as the case

study

Overview

Discuss our new port of GASNet, the communication subsystem for
the the Berkeley UPC compiler, to the BlueGene/P

® Qutline the key differences found between one and two sided
communication and their applicability to modern networks

Show how the microbenchmark performance advantages can translate
to real applications

® (Chose the communication bound NAS FT benchmark as the case
study

Thesis Statement:

® The one-sided communication model found in GASNet is a better
semantic fit to modern highly concurrent systems by better
leveraging features such as RDMA and thus allowing applications to
realize better scaling.

BlueGene/P Overview

Representative example for future highly
concurrent systems Rack

Compute node: 4 cores running at 850 o
MHz w/ 2GB of RAM and 13.6 GB/s
between main memory and the cores

R
A

il (REA e

v

s -

Errrrer

Node Card
(32 chips 4x4x2)

Total cores = (32 nodes / node card) x 52 compute 01 10 cards |

(32 node cards / rack) x (upto 72 racks) compeces
Different networks for different tasks .

DRAMs =

435 GF/s
Chip 64 GB
4 processors ' Figure and data from:

o 3 D TO rus fOI" genel”al P0|nt't0'P0|nt - 13.6 GF/s IBM System Blue Gene Solution: Blue Gene/P

. . 2.0 GB DDR Application Development
communication (5.1 GB/s per node) |, secms by Carlos Sosa and Brant Knudson
Published Dec. 2008 by IBM Redbooks
ISBN: 0738432113

Global Interrupt network for Barriers
(1.3 us for 72 racks)

Global Collective Network for One-
to-Many broadcast or Many-to-one
reductions (0.85 GB/s per link)

One-Sided versus Two-Sided
Communication

one-sided put (i.e. GASNet)

dest addr data payload

two-sided send/recv (i.e. MPI)
: pre-posted
msg id data payload ey memory

One-sided put/get is able to directly transfer data w/o interrupting host cores

® Message contains the information about the remote address to find out where to directly
put the data

® CPU need not be involved if NIC supports Remote Direct Memory Access (RDMA)
® Synchronization is decoupled from the data movement.

Two-sided send/recv requires rendez-vous with host cores to agree where the data needs to be
put before RDMA can be used

® Bounce buffers can also be used for small enough message but slow serial can make it
prohibitively expensive

® Most modern networks provide RDMA functionality, so why not just use it directly?

GASNet Overview

® Portable and high performance runtime system for many different PGAS Languages

® Projects: Berkeley UPC, GCC-UPC, Titanium, Rice Co-Array Fortran, Cray Chapel,
Cray UPC & Co-Array Fortran and many other experimental projects

® To the best of our knowledge, first PGAS compiler on BlueGene/P!

® Supported Networks: BlueGene/P (DCMF), Infiniband (VAPI and IBV), Cray XT
(Portals), Quadrics (Elan), Myrinet (GM), IBM LAPI, SHMEM, SiCortex (soon to be
released), UDP, MPI

® |00% open source and under BSD license

® Features:
® Multithreaded (works on VN, Dual, or SMP modes)
® Provides efficient nonblocking puts and gets
® Often just a thin wrapper around hardware puts and gets
® Also support for Vector, Index, and Strided (VIS) operations
® Provides rich Active Messaging API
® Provides Nonblocking Collective Communication

® Collectives will soon be automatically tuned

—_
(2]
o
<
e}
o
@
N
o
S
2
£
=
>
)
C
[}
e
«©
|
o
=
b=
S
C
>
o
o

oon)

<

GASNet Latency Performance

=

T T
MPI Send/Recv

GASNet (Get + sync) ‘
GASNet (Put + sync) 7

| |
16 32
Transfer Size (Bytes)

|
64

|
128

|
256

|
512

® GASNet implemented on top of Deep
Computing Messaging Framework
(DCMF)
® Lower level than MPI
® Provides Puts, Gets,AMSend, and

Collectives

|® Point-to-point ping-ack latency

performance
® N-byte transfer w/ 0 byte
acknowledgement
® GASNet takes advantage of
DCMF remote completion
notification
Minimum semantics needed to
implement the UPC memory model
Almost a factor of two difference
until 32 bytes
Indication of better semantic match
to underlying communication
system

220 Bytes)

m
=
=
£
o
<
=
S
=
S
o
<
m
e
o
9
T

GASNet Multilink Bandwidth

= = = Six Link Peak |
GASNEet (6 link) |

—=— MPI (6 link)

—¢— GASNet (4 link) |

| i MPI (4 link) -
GASNEet (2 link) |

—v— MPI (2 link)

One Link Peak |
GASNEet (1 link) ‘

MPI (1 link)

16k 32k 64k 128k 256k 512k
Transfer Size (Bytes)

* Kumar et. al showed the
maximum achievable bandwidth for
DCMF transfers is 748 MB/s per
link so we use this as our peak
bandwidth
See “The deep computing messaging
framework: generalized scalable
message passing on the blue gene/P
supercomputer”’, Kumar et al. ICS08

Each node has six 850MB/s*
bidirectional link

Vary number of links used from | to 6

Initiate a series of nonblocking puts
on the links (round-robin)

® Communication/communication
overlap

Both MPI and GASNet asymptote to
the same bandwidth

GASNet outperforms MPI at
midrange message sizes

® |ower software overhead implies
more efficient message injection

® GASNet avoids rendezvous to
leverage RDMA

Case Study: NAS FT Benchmark

1D Partition 2D Partition
(4 threads) (4x4 threads)

NZ/TZ

NZ/T 8
INY/TY

e

Case Study: NAS FT Benchmark

1D Partition 2D Partition
(4 threads) (4x4 threads)

NZ/T - — NZ/TZ

INY/TY

TO

® Perform a large 3D‘FFT W

® Used in many ares of computational science
® Molecular dynamics, CFD, image processing, signal processing,
astrophysics, etc.
® Representative of a class of communication intensive algorithms
® Requires parallel many-to-many communication
® Stresses communication subsystem
® [imited by bandwidth (namely bisection bandwidth) of the network

Case Study: NAS FT Benchmark

1D Partition 2D Partition
(4 threads) (4x4 threads)

NZ/TZ

NZ/T 8
INY/TY

TO

Perform a large 3D FFT ™
® Used in many ares of computational science
® Molecular dynamics, CFD, image processing, signal processing,
astrophysics, etc.
® Representative of a class of communication intensive algorithms
® Requires parallel many-to-many communication
® Stresses communication subsystem
® [imited by bandwidth (namely bisection bandwidth) of the network
Building on our previous work, we perform a 2D partition of the domain
® Requires two rounds of communication rather than one
® FEach processor communicates in two rounds with O(+/T) threads in each

Our Terminology

Domain is NX columns by NY rows by NZ

2D Partition
(4x4 threads) Planes

2o NE/TE ® We overlay aTY x TZ processor grid (i.e. X is
Invrry only contiguous dimension)

Plane: An NX columns by NY rows that is
shared amongst a team of TY processors

Slab: An NX columns by NY/TY rows of
elements that is entirely on one thread

® FEach thread owns NZ/TZ slabs

Packed Slab: An NX columns by NY/TY rows
by NZ/TZ rows

® All the data a particular thread owns

3D-FFT Algorithm

o o [T
¢
:

i Em
C
{{rw]oa]
C
D

Each processor owns a row of
4 squares
(16 processors in example)

3D-FFT Algorithm

® Perform a 3D FFT (as part of NAS FT)

N across a large rectangular prism

I g g P

C ® Perform an FFT in each of the 3
¢ I

: Dimensions
EE AD3 palier ® Need to Team-Exchange for other 2/3
:

E dimensions for a 2-D processor layout
E ® Performance limited by bisection

I bandwidth of the network
i

¢

Dmmm

Each processor owns a row of
4 squares
(16 processors in example)

3D-FFT Algorithm

® Perform a 3D FFT (as part of NAS FT)

N across a large rectangular prism

I g g P

C ® Perform an FFT in each of the 3
¢ I

: Dimensions
EE AD3 palier ® Need to Team-Exchange for other 2/3
:

I dimensions for a 2-D processor layout
E ® Performance limited by bisection
I bandwidth of the network
A20 | A2l | A22 | A23 .
¢ ® Algorithm:
I ® Perform FFT across the rows

Each processor owns a row of
4 squares
(16 processors in example)

3D-FFT Algorithm

® Perform a 3D FFT (as part of NAS FT)

across a larse rectangular prism
. 8 silarp
C R ® Perform an FFT in each of the 3
C -

: Dimensions
Ei A30 pulie ® Need to Team-Exchange for other 2/3
:

I dimensions for a 2-D processor layout
< ® Performance limited by bisection
I bandwidth of the network
A02 TAI21 A22 | A32 ,
¢ ® Algorithm:
I ® Perform FFT across the rows

® Do an exchange within each plane

Each processor owns a row of
4 squares
(16 processors in example)

3D-FFT Algorithm

® Perform a 3D FFT (as part of NAS FT)

across a larse rectangular prism
. 8 silarp
C R ® Perform an FFT in each of the 3
C -

: Dimensions
Ei A30 pulie ® Need to Team-Exchange for other 2/3
:

I dimensions for a 2-D processor layout
! ® Performance limited by bisection
I bandwidth of the network
A02 PAIZY A22 | A32 .
¢ ® Algorithm:
I ® Perform FFT across the rows

® Do an exchange within each plane

Each processor owns a row of ® Perform FFT across the columns
4 squares
(16 processors in example)

3D-FFT Algorithm

® Performa 3D FFT (as part of NAS FT)

Ir--- °
A
oo o

across a large rectangular prism

Perform an FFT in each of the 3
Dimensions

Need to Team-Exchange for other 2/3
dimensions for a 2-D processor layout

Performance limited by bisection
bandwidth of the network

Algorithm:

Each processor owns a row of o

4 squares
(16 processors in example)

Perform FFT across the rows
Do an exchange within each plane
Perform FFT across the columns

Do an exchange across planes

3D-FFT Algorithm

® Performa 3D FFT (as part of NAS FT)

T across a large rectangular prism
I‘I, 11 ® Perform an FFT in each of the 3

/ Dimensions
m(_ - ® Need to Team-Exchange for other 2/3

dimensions for a 2-D processor layout

® Performance limited by bisection
bandwidth of the network

Algorithm:
® Perform FFT across the rows

® Do an exchange within each plane

Each processor owns a row of ® Perform FFT across the columns
4 squares
(16 processors in example)

Do an exchange across planes

Perform FFT across the last dimension

3D FFT: Packed Slabs

2D Partition
(4x4 threads)

.« NZ/TZ

INY/TY

Message Size
Round |

Messages in
Round |

Message Size
Round 2

Messages in
Round 2

3D FFT: Packed Slabs

® Perform communication and computation in two distinct phases
2D Partition

(4x4 threads)
NZ/TZ

® First perform the computation for all the rows in X-
dimension

\A/
INY/TY

® Communication system is idle during this time
® Perform a Transpose to relocalize the Y-dimension

® Requires Packing and Unpacking

® Performed across all the processors with the same color
® Perform the FFT for all the columns

® Perform a transpose to relocalize the Z-dimension
NX ® Perform the final set of FFTs

(NZ/TZ) x (NY/TY) x (NX/TY)
elements

TY

(NZ/TZ) x (NX/TY) x (NY/TZ)
elements

TZ

Message Size
Round |

Messages in
Round |

Message Size
Round 2

Messages in
Round 2

3D FFT: Packed Slabs

2D Partition
(4x4 threads)

\A/
INY/TY

NX

(NZ/TZ) x (NY/TY) x (NX/TY)
elements

TY

(NZ/TZ) x (NX/TY) x (NY/TZ)
elements

TZ

® Perform communication and computation in two distinct phases

® First perform the computation for all the rows in X-
dimension

NZ/TZ

® Communication system is idle during this time
® Perform a Transpose to relocalize the Y-dimension
® Requires Packing and Unpacking
® Performed across all the processors with the same color
® Perform the FFT for all the columns
® Perform a transpose to relocalize the Z-dimension
® Perform the final set of FFTs
® As per conventional wisdom, data is packed to increase message
size
® Only exploits communication/communication overlap during
the transpose

® MPIl implements transpose as in memory data movement
plus one call to MPI_Alltoall() for each round

® Minimum number of calls to MPI

Message Size
Round |

Messages
in Round |

Message Size
Round 2

Messages
in Round 2

3D FFT: Slabs

® Observation:
® After one of the NZ/TZ planes of row FFTs is done we can
start transferring the data
Allows communication/communication overlap and
communication/computation overlap
« ~— NZ/TZ Algorithm sketch:
INy/Ty |. for each of the NZ/TZ planes
|.1. perform all NY/TY row FFTs (len NX)
|.2. pack data for this plane
|.3. Initiate nonblocking all-to-all
2. wait for all all-to-alls to finish
3. unpack data

2D Partition °
(4x4 threads)

4. for each of the NZ/TZ planes
4.1. perform all NX/TY row FFTs (len NY)

NX

(NY/TY) x (NX/TY) 4.2. pack data for this plane
elements 4.3. Initiate nonblocking all-to-all

(NZ/TZ) x TY 5. wait for all all-to-alls to finish

(NX/TY) x (NY/TZ) 6. unpack data
elements /. perform last round of (NY/TZ) (NX/TY) FFTs (len NZ)

® Without nonblocking collectives in MPl we implement this

(NZ/TZ) x TZ : . :
through point-to-point operations

® UPC and MPI versions have the same communication
schedules

I I I
= = = Upper Bound

UPC Slabs

MPI Packed Slabs

MPI Slabs

Strong Scaling

—— UPC Slabs / MPI Slabs
—©— UPC Slabs / MPI Packed Slabs
T T

Core Count (Problem Size for All Core Counts: 2048 x 1024 x 1024) ok 4k

Fix problem size at 2k x Ik x Ik and run in VN mode
® upto 4 racks of BG/P with 4 processes per node

Analytic upper bound calculates megaflop rate based on time needed to transfer domain
across the bisection
® Kink at 2048 cores indicates where 3D Torus is completed

MPI Packed Slabs scales better than MPI Slabs
® Benefit of comm/comp. overlap outweighed by extra messages

UPC (i.e. GASNet) Slabs consistently outperforms MPI
® |ower software overhead enables better overlap
® OQOutperforms Slabs by mean of 63% and Packed Slabs by mean of 37%

Weak Scaling

| = = = Upper Bound : 2.2
UPC Slabs
MPI Packed Slabs } } . 3 >

MPI Slabs

—}— UPC Slabs / MPI Slabs

256 (D/8) 512(D/4) 1024 (D/2) 2048 (D) 4096 (2D) 8192 (4D) 16384 (8D) 8 —~©~ UPC Slabs / MPI Packed Slabs

Core Count (Problem Size) (D=2048x1024x1024) 256 51‘2 1k 2k 4k

Scale problem size with the number of cores
® computation for FFT scales as O(N log N) so thus flops don’t scale linearly
UPC Slabs scales better than strong scaling benchmark
® Message size gets too small at high concurrency for strong scaling and
becomes hard to utilize overlap
MPI Packed Slabs outperforms MPI Slabs (most of the time)
® Again indicates that overlapping communication/computation is not a fruitful
optimization for MPI
UPC achieves 1.93 Teraflops while best MPI achieves 1.37 Teraflops

® 40% improvement in performance at |6k cores.

220 Bytes)

m
=
@
m
=3
=
5
S
©
-
©
m
©
o
e}
LL

w
()
o
o

Performance Comparlson

- - Slx Link Peak

—A— GASNet (6 link)

—f=— MPI (6 link)

—3¢— GASNet (4 link) |

MPI (4 link)

GASNet (2 link) |-

—V— MPI (2 link)

One Link Peak
GASNet (1 link) |-

MPI (1 link)

For a 4k x 2k x 2k cube on
128 x 128 processor grid:

Packed Slabs Message

Size: 128kB
Slabs Message Size: 8kB

16k 32k 64k 128k 256k 512k
Transfer Size (Bytes)

220 Bytes)

m
=
@
m
=3
=
5
S
©
-
©
m
©
o
e}
LL

w
()
o
o

Performance Comparlson

- - Slx Link Peak

—A—GASNet 6 link) |
—f=— MPI (6 link) E
—)(—GASNet (4 link) |
MPI (4 link) :
GASNet (2 link) |-
—7/— MPI (2 link) |
One Link Peak |
GASNet (1 link) |:

MPI (1 link) | | % For a 4k x 2k x 2k cube on
Y 36 128 x 128 processor grid:

Packed Slabs Message

Size: 128kB
Slabs Message Size: 8kB

16k 32k 64k 256k 512k 1M 2M

Transfer Size (Bytes) Both Asymptote to

the same bandwidth
for 128kB messages

= = =Six Link Peak |
—A— GASNet (6 link) |
—f=— MPI (6 link) §
—3&— GASNet (4 link) |-
MPI (4 link) :
GASNet (2 link) |-

—5/— MPI (2 link)

One Link Peak
GASNet (1 link) |:

Q- MPIink | | Fora4kx 2k x 2k cube on
S e —F 128 x 128 processor grid:
Packed Slabs Message
Size: 128kB
Slabs Message Size: 8kB

Performance Comparison

220 Bytes)
w
(0}
o
o

m
=
@
m
=3
=
5
S
©
-
©
m
©
o
e}
LL

16k 32k 64k 256k 512k 1M 2M

Transfer Size (Bytes)
GASNet gets 24% higher bandwidth for Both Asymptote to

two links and 39% higher for four links the same bandwidth
(six link is not applicable because of for 128kB messages
thread layout)

Performance Breakdown

MPI Packed Slabs

[TLocal FFT (ESSL)
B Synchronous Communication Time
UPC Slabs [__INAS Other
[|Barrier
B (n Memory Data Transfer
| | |

0 10 20 40 50 60 70
Time (seconds)

Performance breakdown for weak scaling at |16k cores

Major difference in performance is from synchronous communication time

Lower bandwidth for smaller messages is offset by effectively overlapping
communication/computation

® Key performance tradeoff: Higher communication/computation overlap
potential for lower message bandwidth

® Until nonblocking collectives are found in MPI we also give up the
use of collective operations

Results show cumulative effects of allowing communication/computation
overlap and one-sided communication through GASNet

Conclusions

® We have ported GASNet and Berkeley UPC to the BlueGene/P
® Uses native DCMF for communication

® Microbenchmarks show better performance than MPI for both latency
and bandwidth

® One-sided communication model is a better semantic fit to the network
® Use NAS FT benchmark as a case-study
® Represent a class of communication-bound problems
® Compare two algorithms:
® Packed Slabs (only comm./comm. overlap)
® Slabs (both comm./comp. overlap and comm./comm. overlap)
e UPC (GASNet) consistently outperforms MPI versions
® Best UPC benchmark achieves |.93 Teraflops across |6k cores

® Best MPl achieves |.37 Teraflops (a 40% improvement in
performance)

Collective Communication

e Commonly used communication patterns

* Improve productivity and optimize
performance

 Team -- group of participants

* Types
— Broadcast (one to many) - <
e - L
— Gather (many to one) 00 ©

- £

~
— Exchange (many to many) w -

Parallel Matrix Multiplication

SR
DE00
CEEE
S

-
< (o}
© - —
-
-
™M LN
LN ~ e <
<
T
o o
N — =
-
-
—
- ™M -
-

0800
oo lale

Q
0800
o808

Data Partitioning

Global Matrix View

= =

Distributed Matrix Storage

a

Computer |

a

Computer Il

Computer Il

a

Computer IV

Team Collective Communication

e Row team broadcast e Column team broadcast

L) (2] () (o)) :g

Software Organization

Other PGAS

UPC Collective API Collective API

GASNet Collective Communication API

Native
Implementation

-

Portable
Implementation

Point-to-point Collective

Comm. driver Comm. driver

{ Network Hardware]

= = = [
N » [e)] 00

=
o

Latency (micro sec.)

o N £y (o)} (o]

Barrier Performance on BG/P

e Use BG/P global barrier

R /X hardware
. / * Speed:

/;.// Gl > Torus > Binomial

pvd * Applicability:

/// Gl < Torus < Binomial

4 16 64 256

Number of nodes

Broadcast Performance on BG/P

1000
== Point-to-point

=&—Torus Rectangle

Tree Broadcast

[EEN
o
o

Latency (micro sec.)
[y
o

mmmmmmmmmm
mmmmm

Message Size (Bytes per node)

(256 cores / 64 nodes, virtual node mode)

* Use BG/P special
broadcast networks
e Speed:
Tree > Torus > Point2Point

* Applicability:

Tree < Torus < Point2Point

Latency (micro sec.)

All-to-all Performance on BG/P

1000000

=¢—Torus

100000
=f-Point-to-point

10000

1000

100

10

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

Message Size (Bytes per node)

(256 cores / 64 nodes, virtual node mode)

Dense Linear Algebra Performance on
BG/P

Parallel Matrix Multiplication Parallel Cholesky Factorization
(256 core BlueGene/P) (256 core BlueGene/P)
700 250
600
200
500
150
wn 400)
& g
6 300 (LB

100

200

50
100

PBLAS (MPI) UPC hand-roll UPC collective Scalapack (MPI) UPC hand-roll UPC collective

3500

3000

2500

2000

GFlops

1500

1000

500

FFT Performance on BG/P (weak

scaling)

—o—Slabs

—-Slabs (Collective)

~A—Packed Slabs (Collective)

=~ MPI| Packed Slabs

D/8
256

64

D/4
512

128

D/2
1024

256

2048

512

D*2

4096

1024

D*4

8192

2048

D*8

16384

4096

D*16

32768

8192

FFT Performance on BG/P (strong
scaling)

3000

—o—Slabs
-#-Slabs (Collective)
2500 :
—4—Packed Slabs (Collective)
=« MPI| Packed Slabs
2000
(72}
o
O 1500
Li.
O
1000
500
0
D D D D D D D
512 1024 2048 4096 8192 16384 32768
128 256 512 1024 2048 4096 8192

Summary

High performance and enhanced productivity

Beat standard numerical linear algebra package
— Parallel matrix multiplication: 36% faster (256 cores)
— Parallel Cholesky factorization: 9% faster (256 cores)

Improved FFT performance
— Weak scaling: 38% over MPI (16K cores)

— Strong Scaling: 20% over MPI (16K cores)

Native GASNet collective implementation for large
scale BlueGene systems

— Broadcast: 3-4 times speedup

— Exchange: 2-3 times speedup

Backup Slides

Comparison of Algorithms

Packed Slabs

S (NZ/TZ) x (NY/T
Message Size in)

Round | elements

(NY/TY)x(NX/TY)
elements

Messasges in
& TY

(NZ/TZ) xTY

Round |
S (NZ/TZ) x (NXITY)
Message Size in NYTZ)

Round 2 elements

(NX/TY)X(NY/TZ)
elements

Messages in

Round 2 12

(NZ/TZ)xTZ

Appendix (Packed Slabs

Algorithm 1 FFT Packed Slabs

1: Let myPlane = MYTHREAD / TY
2: Let myRow = MYTHREAD % TY
: Let teamY = all threads who have same value of
myPlane
. Let teamZ = all threads who have same value of myRow
: for plane = 0 to % do
for row =0 to 7+ do
do 1D FFT of length NX
end for

- end for

. Pack the slabs together

: Do Alltoall on teamY
: Unpack the slabs to make Y dimension contiguous
: for plane = 0 to % do
for row =0 to % do
do 1D FFT of length NY
end for
. end for
. Pack the slabs together
: Do Alltoall on teamZ
: Unpack the slabs to make the Z dimension contiguous
: for plane = 0 to % do
for row =0 to T—if do
do 1D FFT of length NZ
end for

- end for

Appendix (Slabs)

Algorithm 2 FFT Slabs

1: Let myPlane = MYTHREAD / TY
2: Let myRow = MYTHREAD % TY
3: For MPI Prepost all recvs for First Communication
Round
: BARRIER
. for plane = 0 to % do
for row =0 to 75~ do
do 1D FFT of length NX
end for
Pack the data for this plane
fort=1t<TY;t=t+1do
initiate communication to thread myPlane X T'Y +
(t + myRow)%NTY
end for
: end for
: Wait for all communication to finish
: Unpack all the data to make Y dimension contiguous
: For MPI Prepost all recvs for Second Communication
Round
: BARRIER

for row =0 to T do

do 1D FFT of length NY
end for

Pack the data for this plane
fort=1,t<TZ;t=t+1do
initiate communication to thread
((t + myPlane)%TZ) x TY + myRow
end for
: end for
: Wait for all communication to finish
: Unpack all the data to make Z dimension contiguous
. for plane =0 to ¥ do
for row =0 to % do
do 1D FFT of length NZ
end for

. end for

Node Configurations

16 x 16
16 x 32
32 x 32
64 x 32
64 x 64
64 x 128
128 x 128

UPC Semaphore (P2P sync

#include <upc.h>

void upc_sem_post(upc_sem_t *s);
void upc_sem_postN(upc_sem_t *s, size_t n); /* only valid for INTEGER sems */

void upc_sem_wait(upc_sem_t *s);
void upc_sem_waitN(upc_sem_t *s, size_t n); /* only valid for INTEGER sems */

int upc_sem_try(upc_sem_t *s);
int upc_sem_tryN(upc_sem_t *s, size_t n); /* only valid for INTEGER sems */

Description:
upc_sem_post(N): atomically increment the logical value of semaphore s by 1 (N)

upc_sem_wait(N): suspend the calling thread until the logical value of semaphore s is ;= 1 (N), then
atomically decrement the value by that amount and return. If multiple threads are simultaneously blocked

inside wait, (only valid for UPC_SEM _MCONSUM ER) then it is undefined the order in which they will
be serviced (no fairness guarantees)

upc_sem_try(IN): A non-blocking variant of upc_sem_wait(IN). Attempt to perform a upc_sem_wait(N) on
s. If the operation can succeed immediately, perform it and return non-zero to indicate success. Otherwise,
return zero to indicate failure.

upc_sem_post(N) implies a upc_fence operation upon entry to the function, upc_sem_wait(NN) implies a
upc_fence operation immediately before exiting, and upc_sem_try(IN) implies a upc_fence operation imme-
diately before a successful completion.

UPC Semaphore (Memput)

#include <upc.h>

volid upc_memput_signal (shared void *dst, const void *src, size_t nbytes,
upc_sem_t *s, size_t n);

void upc_memput_signal_async(shared void *dst, const void *src, size_t nbytes,
upc_sem_t *s, size_t n);

Description:

Perform a memput with the same data movement semantics as upc_memput, and increment s by n when

the transfer is complete. Requires upc_threadof(s) == upc_threadof(dst).

Both functions MAY return on the initiator before the transfer is complete at the target — the semaphore
on the target will be atomically incremented by n when the transfer is globally complete.

No explicit notifications or guarantees are provided to the initiator regarding the completion of the transfer
at the target (remote completion).

bupc_memput_signal returns as soon as the source memory is safe to overwrite (ie it blocks for local com-
pletion of the transfer), whereas bupc_memput_signal_async MAY return earlier, while the source memory
is still in use (and therefore not safe to overwrite). Callers of bupc_memput_signal_async are responsible for
enforcing their own synchronization from the target thread to the initiatior thread, in order to decide when
the source memory is safe to overwrite.

	team_collectives_bgp.pdf
	bgp-fft2 (2)

