
Team Collectives and BG/P Results

Rajesh Nishtala, Yili Zheng and Paul Hargrove

Future Technologies Group

Lawrence Berkeley National Laboratory

University of California, Berkeley

Observations

Observations
• Performance gains delivered through increasing concurrency rather

than clock rates

• Application scalability is essential for future performance
improvements

• 100,000s of processors will be the norm in the very near future

• Maximize the use of available resources

• Leverage communication/communication and communication/
computation overlap

Observations
• Performance gains delivered through increasing concurrency rather

than clock rates

• Application scalability is essential for future performance
improvements

• 100,000s of processors will be the norm in the very near future

• Maximize the use of available resources

• Leverage communication/communication and communication/
computation overlap

• Systems will favor many slower power efficient processors to fewer
faster power inefficient one

• Light-weight communication and runtime system to minimize
software overhead

• Close semantic match to underlying hardware

Overview

Overview
• Discuss our new port of GASNet, the communication subsystem for

the the Berkeley UPC compiler, to the BlueGene/P

• Outline the key differences found between one and two sided
communication and their applicability to modern networks

Overview
• Discuss our new port of GASNet, the communication subsystem for

the the Berkeley UPC compiler, to the BlueGene/P

• Outline the key differences found between one and two sided
communication and their applicability to modern networks

• Show how the microbenchmark performance advantages can translate
to real applications

• Chose the communication bound NAS FT benchmark as the case
study

Overview
• Discuss our new port of GASNet, the communication subsystem for

the the Berkeley UPC compiler, to the BlueGene/P

• Outline the key differences found between one and two sided
communication and their applicability to modern networks

• Show how the microbenchmark performance advantages can translate
to real applications

• Chose the communication bound NAS FT benchmark as the case
study

• Thesis Statement:

• The one-sided communication model found in GASNet is a better
semantic fit to modern highly concurrent systems by better
leveraging features such as RDMA and thus allowing applications to
realize better scaling.

Chapter 1. Hardware overview 5

Figure 1-1 Blue Gene/P system overview from the microprocessor to the full system

1.1.1 System buildup

Similar to the Blue Gene/L system, the number of cores in a system can be computed as

follows:

Number o f cores = (number o f racks) x (number o f node cards per rack) x (number o f
comput e ca rds per node card) x (number o f cores per comput e card)

This equation corresponds to cores and memory. However, I/O is carried out through the I/O

Node that is connected externally via a 10 Gigabit Ethernet network. This network

corresponds to the functional network. I/O Nodes are not considered in the previous equation.

Finally, the Compute and I/O Nodes are connected externally (to the outside world) via the

following peripherals:

! One Service Node

! One or more Front End Nodes

! Global file system

1.1.2 Compute and I/O Nodes

Nodes are made of one quad-core with 2 GB of memory. These nodes do not have a local file

system. Therefore, they must route I/O operations to an external device. In order to reach this

external device (outside the environment), a Compute Node sends data to an I/O Node,

which in turn, carries out the I/O requests.

The hardware for both types of nodes is virtually identical. They only differ in the way that they

are used. For example, there might be also extra RAM on the I/O Nodes, and the physical

connectors are different. A Compute Node runs a light, UNIX®-like proprietary kernel,

!"#$%&
'('()*

!"#$%&

+,-."/01

'()*

2,-34&%-/".&1

+,-%./(0-

52,-/6781-9(9(,:
2,-/4;8<=%>-?@)-AB-/".&1

/,&12$%./(0-

)-/678>-9?
CDEF1

/341

9-8.4/%114.1

)2G*-HIJ1
'-FK-LCDEF

)2G*-HIJ1
,G?-HK-CCD

92M-HIJ1
*9-HK

)9-NIJ1
,-NO

)-PIJ1
)99-NK

BlueGene/P Overview

• Representative example for future highly
concurrent systems

• Compute node: 4 cores running at 850
MHz w/ 2GB of RAM and 13.6 GB/s
between main memory and the cores

• Total cores = (32 nodes / node card) x
(32 node cards / rack) x (upto 72 racks)

• Different networks for different tasks

• 3D Torus for general point-to-point
communication (5.1 GB/s per node)

• Global Interrupt network for Barriers
(1.3 us for 72 racks)

• Global Collective Network for One-
to-Many broadcast or Many-to-one
reductions (0.85 GB/s per link)

Figure and data from:
IBM System Blue Gene Solution: Blue Gene/P

Application Development
by Carlos Sosa and Brant Knudson

Published Dec. 2008 by IBM Redbooks
ISBN: 0738432113

One-Sided versus Two-Sided
Communication

data payloaddest addr

data payloadmsg id

host
cores

memory

NIC

one-sided put (i.e. GASNet)

two-sided send/recv (i.e. MPI)

• One-sided put/get is able to directly transfer data w/o interrupting host cores

• Message contains the information about the remote address to find out where to directly
put the data

• CPU need not be involved if NIC supports Remote Direct Memory Access (RDMA)

• Synchronization is decoupled from the data movement.

• Two-sided send/recv requires rendez-vous with host cores to agree where the data needs to be
put before RDMA can be used

• Bounce buffers can also be used for small enough message but slow serial can make it
prohibitively expensive

• Most modern networks provide RDMA functionality, so why not just use it directly?

pre-posted
recv

GASNet Overview
• Portable and high performance runtime system for many different PGAS Languages

• Projects: Berkeley UPC, GCC-UPC, Titanium, Rice Co-Array Fortran, Cray Chapel,
Cray UPC & Co-Array Fortran and many other experimental projects

• To the best of our knowledge, first PGAS compiler on BlueGene/P!

• Supported Networks: BlueGene/P (DCMF), Infiniband (VAPI and IBV), Cray XT
(Portals), Quadrics (Elan), Myrinet (GM), IBM LAPI, SHMEM, SiCortex (soon to be
released), UDP, MPI

• 100% open source and under BSD license

• Features:

• Multithreaded (works on VN, Dual, or SMP modes)

• Provides efficient nonblocking puts and gets

• Often just a thin wrapper around hardware puts and gets

• Also support for Vector, Index, and Strided (VIS) operations

• Provides rich Active Messaging API

• Provides Nonblocking Collective Communication

• Collectives will soon be automatically tuned

GASNet Latency Performance
• GASNet implemented on top of Deep

Computing Messaging Framework
(DCMF)
• Lower level than MPI
• Provides Puts, Gets, AMSend, and

Collectives
• Point-to-point ping-ack latency

performance
• N-byte transfer w/ 0 byte

acknowledgement
• GASNet takes advantage of

DCMF remote completion
notification

• Minimum semantics needed to
implement the UPC memory model

• Almost a factor of two difference
until 32 bytes

• Indication of better semantic match
to underlying communication
system

1 2 4 8 16 32 64 128 256 512
0

1

2

3

4

5

6

7

8

9

Transfer Size (Bytes)

R
o
u
n
d
tr

ip
 L

a
te

n
c
y
 (

m
ic

ro
s
e
c
o
n
d
s
)

MPI Send/Recv

GASNet (Get + sync)

GASNet (Put + sync)

G
ood

GASNet Multilink Bandwidth

• Each node has six 850MB/s*
bidirectional link

• Vary number of links used from 1 to 6

• Initiate a series of nonblocking puts
on the links (round-robin)

• Communication/communication
overlap

• Both MPI and GASNet asymptote to
the same bandwidth

• GASNet outperforms MPI at
midrange message sizes

• Lower software overhead implies
more efficient message injection

• GASNet avoids rendezvous to
leverage RDMA

512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Transfer Size (Bytes)

F
lo

o
d
 B

a
n
d
w

id
th

 (
M

B
/s

 1
M

B
 =

 2
2
0
 B

y
te

s
)

Six Link Peak

GASNet (6 link)

MPI (6 link)

GASNet (4 link)

MPI (4 link)

GASNet (2 link)

MPI (2 link)

One Link Peak

GASNet (1 link)

MPI (1 link)

* Kumar et. al showed the
maximum achievable bandwidth for

DCMF transfers is 748 MB/s per
link so we use this as our peak

bandwidth
See “The deep computing messaging

framework: generalized scalable
message passing on the blue gene/P
supercomputer”, Kumar et al. ICS08

G
oo

d

!"#$%&''()#

*+#,-&.%/01#

23#
2!#

24#

25#

6782#

69#

6:82:#

67827#

4"#$%&''()#

*+;+#,-&.%/01#

69##

6:##

Case Study: NAS FT Benchmark

!"#$%&''()#

*+#,-&.%/01#

23#
2!#

24#

25#

6782#

69#

6:82:#

67827#

4"#$%&''()#

*+;+#,-&.%/01#

69##

6:##

Case Study: NAS FT Benchmark

• Perform a large 3D FFT
• Used in many ares of computational science

• Molecular dynamics, CFD, image processing, signal processing,
astrophysics, etc.

• Representative of a class of communication intensive algorithms
• Requires parallel many-to-many communication
• Stresses communication subsystem
• Limited by bandwidth (namely bisection bandwidth) of the network

!"#$%&''()#

*+#,-&.%/01#

23#
2!#

24#

25#

6782#

69#

6:82:#

67827#

4"#$%&''()#

*+;+#,-&.%/01#

69##

6:##

Case Study: NAS FT Benchmark

• Perform a large 3D FFT
• Used in many ares of computational science

• Molecular dynamics, CFD, image processing, signal processing,
astrophysics, etc.

• Representative of a class of communication intensive algorithms
• Requires parallel many-to-many communication
• Stresses communication subsystem
• Limited by bandwidth (namely bisection bandwidth) of the network

• Building on our previous work, we perform a 2D partition of the domain
• Requires two rounds of communication rather than one
• Each processor communicates in two rounds with O(!T) threads in each

Our Terminology

• Domain is NX columns by NY rows by NZ
planes

• We overlay a TY x TZ processor grid (i.e. X is
only contiguous dimension)

• Plane: An NX columns by NY rows that is
shared amongst a team of TY processors

• Slab: An NX columns by NY/TY rows of
elements that is entirely on one thread

• Each thread owns NZ/TZ slabs

• Packed Slab: An NX columns by NY/TY rows
by NZ/TZ rows

• All the data a particular thread owns

!"#$%&''()#

*+#,-&.%/01#

23#
2!#

24#

25#

6782#

69#

6:82:#

67827#

4"#$%&''()#

*+;+#,-&.%/01#

69##

6:##

C31
B31

D30
C30

B30
A30

3D-FFT Algorithm

D01 D02 D03

D11 D12 D13

D21 D22 D23

D31 D32 D33

Each processor owns a row of
4 squares

(16 processors in example)

C01 C02 C03

C11 C12 C13

C21 C22 C23

C32 C33

B01 B02 B03

B11 B12 B13

B21 B22 B23

B32 B33

A01 A02 A03

A11 A12 A13

A21 A22 A23

A31 A32 A33

D20
C20

B20
A20

D10
C10

B10
A10

D00
C00

B00
A00 P0

C31
B31

D30
C30

B30
A30

3D-FFT Algorithm
• Perform a 3D FFT (as part of NAS FT)

across a large rectangular prism

• Perform an FFT in each of the 3
Dimensions

• Need to Team-Exchange for other 2/3
dimensions for a 2-D processor layout

• Performance limited by bisection
bandwidth of the network

D01 D02 D03

D11 D12 D13

D21 D22 D23

D31 D32 D33

Each processor owns a row of
4 squares

(16 processors in example)

C01 C02 C03

C11 C12 C13

C21 C22 C23

C32 C33

B01 B02 B03

B11 B12 B13

B21 B22 B23

B32 B33

A01 A02 A03

A11 A12 A13

A21 A22 A23

A31 A32 A33

D20
C20

B20
A20

D10
C10

B10
A10

D00
C00

B00
A00 P0

C31
B31

D30
C30

B30
A30

3D-FFT Algorithm
• Perform a 3D FFT (as part of NAS FT)

across a large rectangular prism

• Perform an FFT in each of the 3
Dimensions

• Need to Team-Exchange for other 2/3
dimensions for a 2-D processor layout

• Performance limited by bisection
bandwidth of the network

• Algorithm:

• Perform FFT across the rows

D01 D02 D03

D11 D12 D13

D21 D22 D23

D31 D32 D33

Each processor owns a row of
4 squares

(16 processors in example)

C01 C02 C03

C11 C12 C13

C21 C22 C23

C32 C33

B01 B02 B03

B11 B12 B13

B21 B22 B23

B32 B33

A01 A02 A03

A11 A12 A13

A21 A22 A23

A31 A32 A33

D20
C20

B20
A20

D10
C10

B10
A10

D00
C00

B00
A00 P0

C31
B31

D30
C30

B30
A30

3D-FFT Algorithm
• Perform a 3D FFT (as part of NAS FT)

across a large rectangular prism

• Perform an FFT in each of the 3
Dimensions

• Need to Team-Exchange for other 2/3
dimensions for a 2-D processor layout

• Performance limited by bisection
bandwidth of the network

• Algorithm:

• Perform FFT across the rows

• Do an exchange within each plane

D01

D02

D03

D11

D12

D13

D21

D22

D23

D31

D32

D33

Each processor owns a row of
4 squares

(16 processors in example)

C01

C02

C03

C11

C12

C13

C21

C22

C23

C32

C33

B01

B02

B03

B11

B12

B13

B21

B22

B23

B32

B33

A01

A02

A03

A11

A12

A13

A21

A22

A23

A31

A32

A33

D20
C20

B20
A20

D10
C10

B10
A10

D00
C00

B00
A00 P0

C31
B31

D30
C30

B30
A30

3D-FFT Algorithm
• Perform a 3D FFT (as part of NAS FT)

across a large rectangular prism

• Perform an FFT in each of the 3
Dimensions

• Need to Team-Exchange for other 2/3
dimensions for a 2-D processor layout

• Performance limited by bisection
bandwidth of the network

• Algorithm:

• Perform FFT across the rows

• Do an exchange within each plane

• Perform FFT across the columns

D01

D02

D03

D11

D12

D13

D21

D22

D23

D31

D32

D33

Each processor owns a row of
4 squares

(16 processors in example)

C01

C02

C03

C11

C12

C13

C21

C22

C23

C32

C33

B01

B02

B03

B11

B12

B13

B21

B22

B23

B32

B33

A01

A02

A03

A11

A12

A13

A21

A22

A23

A31

A32

A33

D20
C20

B20
A20

D10
C10

B10
A10

D00
C00

B00
A00 P0

C31
B31

D30C30B30A30

3D-FFT Algorithm
• Perform a 3D FFT (as part of NAS FT)

across a large rectangular prism

• Perform an FFT in each of the 3
Dimensions

• Need to Team-Exchange for other 2/3
dimensions for a 2-D processor layout

• Performance limited by bisection
bandwidth of the network

• Algorithm:

• Perform FFT across the rows

• Do an exchange within each plane

• Perform FFT across the columns

• Do an exchange across planes

D01

D02

D03

D11

D12

D13

D21

D22

D23

D31

D32

D33

Each processor owns a row of
4 squares

(16 processors in example)

C01

C02

C03

C11

C12

C13

C21

C22

C23

C32

C33

B01

B02

B03

B11

B12

B13

B21

B22

B23

B32

B33

A01

A02

A03

A11

A12

A13

A21

A22

A23

A31

A32

A33

D20C20B20A20
D10C10B10A10

D00C00B00A00 P0

C31
B31

D30C30B30A30

3D-FFT Algorithm
• Perform a 3D FFT (as part of NAS FT)

across a large rectangular prism

• Perform an FFT in each of the 3
Dimensions

• Need to Team-Exchange for other 2/3
dimensions for a 2-D processor layout

• Performance limited by bisection
bandwidth of the network

• Algorithm:

• Perform FFT across the rows

• Do an exchange within each plane

• Perform FFT across the columns

• Do an exchange across planes

• Perform FFT across the last dimension

D01

D02

D03

D11

D12

D13

D21

D22

D23

D31

D32

D33

Each processor owns a row of
4 squares

(16 processors in example)

C01

C02

C03

C11

C12

C13

C21

C22

C23

C32

C33

B01

B02

B03

B11

B12

B13

B21

B22

B23

B32

B33

A01

A02

A03

A11

A12

A13

A21

A22

A23

A31

A32

A33

D20C20B20A20
D10C10B10A10

D00C00B00A00 P0

!"#$%&''()#

*+#,-&.%/01#

23#
2!#

24#

25#

6782#

69#

6:82:#

67827#

4"#$%&''()#

*+;+#,-&.%/01#

69##

6:##

3D FFT: Packed Slabs

!"#$%&''()#

*+#,-&.%/01#

23#
2!#

24#

25#

6782#

69#

6:82:#

67827#

4"#$%&''()#

*+;+#,-&.%/01#

69##

6:##

3D FFT: Packed Slabs
• Perform communication and computation in two distinct phases

• First perform the computation for all the rows in X-
dimension

• Communication system is idle during this time

• Perform a Transpose to relocalize the Y-dimension

• Requires Packing and Unpacking

• Performed across all the processors with the same color

• Perform the FFT for all the columns

• Perform a transpose to relocalize the Z-dimension

• Perform the final set of FFTs

Message Size
Round 1

Messages in
Round 1

Message Size
Round 2

Messages in
Round 2

(NZ/TZ) ! (NY/TY) ! (NX/TY)
elements

TY

(NZ/TZ) ! (NX/TY) ! (NY/TZ)
elements

TZ

!"#$%&''()#

*+#,-&.%/01#

23#
2!#

24#

25#

6782#

69#

6:82:#

67827#

4"#$%&''()#

*+;+#,-&.%/01#

69##

6:##

3D FFT: Packed Slabs
• Perform communication and computation in two distinct phases

• First perform the computation for all the rows in X-
dimension

• Communication system is idle during this time

• Perform a Transpose to relocalize the Y-dimension

• Requires Packing and Unpacking

• Performed across all the processors with the same color

• Perform the FFT for all the columns

• Perform a transpose to relocalize the Z-dimension

• Perform the final set of FFTs

• As per conventional wisdom, data is packed to increase message
size

• Only exploits communication/communication overlap during
the transpose

• MPI implements transpose as in memory data movement
plus one call to MPI_Alltoall() for each round

• Minimum number of calls to MPI

Message Size
Round 1

Messages in
Round 1

Message Size
Round 2

Messages in
Round 2

(NZ/TZ) ! (NY/TY) ! (NX/TY)
elements

TY

(NZ/TZ) ! (NX/TY) ! (NY/TZ)
elements

TZ

3D FFT: Slabs
• Observation:

• After one of the NZ/TZ planes of row FFTs is done we can
start transferring the data

• Allows communication/communication overlap and
communication/computation overlap

• Algorithm sketch:
1. for each of the NZ/TZ planes

1.1. perform all NY/TY row FFTs (len NX)
1.2. pack data for this plane
1.3. Initiate nonblocking all-to-all

2. wait for all all-to-alls to finish
3. unpack data
4. for each of the NZ/TZ planes

4.1. perform all NX/TY row FFTs (len NY)
4.2. pack data for this plane
4.3. Initiate nonblocking all-to-all

5. wait for all all-to-alls to finish
6. unpack data
7. perform last round of (NY/TZ) (NX/TY) FFTs (len NZ)

• Without nonblocking collectives in MPI we implement this
through point-to-point operations
• UPC and MPI versions have the same communication

schedules

!"#$%&''()#

*+#,-&.%/01#

23#
2!#

24#

25#

6782#

69#

6:82:#

67827#

4"#$%&''()#

*+;+#,-&.%/01#

69##

6:##

Message Size
Round 1

Messages
in Round 1

Message Size
Round 2

Messages
in Round 2

(NY/TY) ! (NX/TY)
elements

(NZ/TZ) ! TY

(NX/TY) ! (NY/TZ)
elements

(NZ/TZ) ! TZ

512 1k 2k 4k 8k 16k

0.8

1

1.2

1.4

1.6

1.8

2

2.2

P
e
rf

o
rm

a
n
c
e
 R

a
ti
o

UPC Slabs / MPI Slabs

UPC Slabs / MPI Packed Slabs512 1024 2048 4096 8192 16384

10
2

10
3

Core Count (Problem Size for All Core Counts: 2048 x 1024 x 1024)

G
F

lo
p

s

Upper Bound

UPC Slabs

MPI Packed Slabs

MPI Slabs

Strong Scaling

• Fix problem size at 2k x 1k x 1k and run in VN mode
• upto 4 racks of BG/P with 4 processes per node

• Analytic upper bound calculates megaflop rate based on time needed to transfer domain
across the bisection
• Kink at 2048 cores indicates where 3D Torus is completed

• MPI Packed Slabs scales better than MPI Slabs
• Benefit of comm/comp. overlap outweighed by extra messages

• UPC (i.e. GASNet) Slabs consistently outperforms MPI
• Lower software overhead enables better overlap
• Outperforms Slabs by mean of 63% and Packed Slabs by mean of 37%

Weak Scaling

• Scale problem size with the number of cores
• computation for FFT scales as O(N log N) so thus flops don’t scale linearly

• UPC Slabs scales better than strong scaling benchmark
• Message size gets too small at high concurrency for strong scaling and

becomes hard to utilize overlap
• MPI Packed Slabs outperforms MPI Slabs (most of the time)

• Again indicates that overlapping communication/computation is not a fruitful
optimization for MPI

• UPC achieves 1.93 Teraflops while best MPI achieves 1.37 Teraflops
• 40% improvement in performance at 16k cores.

256 512 1k 2k 4k 8k 16k

0.8

1

1.2

1.4

1.6

1.8

2

2.2

P
e
rf

o
rm

a
n
c
e
 R

a
ti
o

UPC Slabs / MPI Slabs

UPC Slabs / MPI Packed Slabs256 (D/8) 512(D/4) 1024 (D/2) 2048 (D) 4096 (2D) 8192 (4D) 16384 (8D)

10
2

10
3

Core Count (Problem Size) (D=2048x1024x1024)

G
F

lo
p

s

Upper Bound

UPC Slabs

MPI Packed Slabs

MPI Slabs

Performance Comparison

512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Transfer Size (Bytes)

F
lo

o
d

 B
a

n
d

w
id

th
 (

M
B

/s
 1

M
B

 =
 2

2
0
 B

y
te

s
)

Six Link Peak

GASNet (6 link)

MPI (6 link)

GASNet (4 link)

MPI (4 link)

GASNet (2 link)

MPI (2 link)

One Link Peak

GASNet (1 link)

MPI (1 link)

G
oo

d

For a 4k x 2k x 2k cube on
128 x 128 processor grid:

Packed Slabs Message
Size: 128kB

Slabs Message Size: 8kB

Performance Comparison

512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Transfer Size (Bytes)

F
lo

o
d

 B
a

n
d

w
id

th
 (

M
B

/s
 1

M
B

 =
 2

2
0
 B

y
te

s
)

Six Link Peak

GASNet (6 link)

MPI (6 link)

GASNet (4 link)

MPI (4 link)

GASNet (2 link)

MPI (2 link)

One Link Peak

GASNet (1 link)

MPI (1 link)

G
oo

d

For a 4k x 2k x 2k cube on
128 x 128 processor grid:

Packed Slabs Message
Size: 128kB

Slabs Message Size: 8kB

Both Asymptote to
the same bandwidth
for 128kB messages

Performance Comparison

512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Transfer Size (Bytes)

F
lo

o
d

 B
a

n
d

w
id

th
 (

M
B

/s
 1

M
B

 =
 2

2
0
 B

y
te

s
)

Six Link Peak

GASNet (6 link)

MPI (6 link)

GASNet (4 link)

MPI (4 link)

GASNet (2 link)

MPI (2 link)

One Link Peak

GASNet (1 link)

MPI (1 link)

G
oo

d

For a 4k x 2k x 2k cube on
128 x 128 processor grid:

Packed Slabs Message
Size: 128kB

Slabs Message Size: 8kB

GASNet gets 24% higher bandwidth for
two links and 39% higher for four links

(six link is not applicable because of
thread layout)

Both Asymptote to
the same bandwidth
for 128kB messages

0 10 20 30 40 50 60 70 80

UPC Slabs

MPI Slabs

MPI Packed Slabs

Time (seconds)

Local FFT (ESSL)

Synchronous Communication Time

NAS Other

Barrier

In Memory Data Transfer

Performance Breakdown

• Performance breakdown for weak scaling at 16k cores

• Major difference in performance is from synchronous communication time

• Lower bandwidth for smaller messages is offset by effectively overlapping
communication/computation

• Key performance tradeoff: Higher communication/computation overlap
potential for lower message bandwidth

• Until nonblocking collectives are found in MPI we also give up the
use of collective operations

• Results show cumulative effects of allowing communication/computation
overlap and one-sided communication through GASNet

Conclusions

• We have ported GASNet and Berkeley UPC to the BlueGene/P

• Uses native DCMF for communication

• Microbenchmarks show better performance than MPI for both latency
and bandwidth

• One-sided communication model is a better semantic fit to the network

• Use NAS FT benchmark as a case-study

• Represent a class of communication-bound problems

• Compare two algorithms:

• Packed Slabs (only comm./comm. overlap)

• Slabs (both comm./comp. overlap and comm./comm. overlap)

• UPC (GASNet) consistently outperforms MPI versions

• Best UPC benchmark achieves 1.93 Teraflops across 16k cores

• Best MPI achieves 1.37 Teraflops (a 40% improvement in
performance)

Collective Communication

• Commonly used communication patterns

• Improve productivity and optimize
performance

• Team -- group of participants

• Types

– Broadcast (one to many)

– Gather (many to one)

– Exchange (many to many)

Parallel Matrix Multiplication

11 1 11 1 11 1

1 1 1

n n n

m mn m mn m mn

c c a a b b

c c a a b b

     
     

 
     
     
     

C BA

1

3

9

11

2

4

10

12

5

7

13

15

6

8

14

16

1

3

9

11

2

4

10

12

5

7

13

15

6

8

14

16

1

3

9

11

2

4

10

12

5

7

13

15

6

8

14

16

Data Partitioning

Global Matrix View Distributed Matrix Storage

Computer I Computer II

Computer III Computer IV

1

3

2

4

9

11

10

12

5

7

6

8

13

15

14

16

1

9

5

13

3

11

7

15

4

12

8

16

2

10

6

14

Team Collective Communication

• Row team broadcast • Column team broadcast

1

3

9

11

2

4

10

12

5

7

13

15

6

8

14

16

1

3

9

11

2

4

10

12

5

7

13

15

6

8

14

16

Software Organization

GASNet Collective Communication API

Portable
Implementation

Point-to-point

Comm. driver

Network Hardware

Native
Implementation

Collective

Comm. driver

UPC Collective API
Other PGAS

Collective API

Barrier Performance on BG/P

• Use BG/P global barrier
hardware

• Speed:

GI > Torus > Binomial

• Applicability:

GI < Torus < Binomial

0

2

4

6

8

10

12

14

16

18

4 16 64 256

La
te

n
cy

 (
m

ic
ro

 s
e

c.
)

Number of nodes

Torus

Binomial

GI Barrier

Broadcast Performance on BG/P

• Use BG/P special
broadcast networks

• Speed:

Tree > Torus > Point2Point

• Applicability:

Tree < Torus < Point2Point

(256 cores / 64 nodes, virtual node mode)

1

10

100

1000

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

La
te

n
cy

 (
m

ic
ro

 s
e

c.
)

Message Size (Bytes per node)

Point-to-point

Torus Rectangle

Tree Broadcast

All-to-all Performance on BG/P

1

10

100

1000

10000

100000

1000000

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

La
te

n
cy

 (
m

ic
ro

 s
e

c.
)

Message Size (Bytes per node)

Torus

Point-to-point

(256 cores / 64 nodes, virtual node mode)

Dense Linear Algebra Performance on
BG/P

458

580
625

0

100

200

300

400

500

600

700

PBLAS (MPI) UPC hand-roll UPC collective

G
Fl

o
p

s

Parallel Matrix Multiplication
(256 core BlueGene/P)

202
212 220

0

50

100

150

200

250

ScaLapack (MPI) UPC hand-roll UPC collective

G
FL

o
p

s

Parallel Cholesky Factorization
(256 core BlueGene/P)

FFT Performance on BG/P (weak
scaling)

0

500

1000

1500

2000

2500

3000

3500

D/8 D/4 D/2 D D*2 D*4 D*8 D*16

256 512 1024 2048 4096 8192 16384 32768

64 128 256 512 1024 2048 4096 8192

G
Fl

o
p

s

Slabs

Slabs (Collective)

Packed Slabs (Collective)

MPI Packed Slabs

FFT Performance on BG/P (strong
scaling)

0

500

1000

1500

2000

2500

3000

D D D D D D D

512 1024 2048 4096 8192 16384 32768

128 256 512 1024 2048 4096 8192

G
Fl

o
p

s

Slabs

Slabs (Collective)

Packed Slabs (Collective)

MPI Packed Slabs

Summary

• High performance and enhanced productivity
• Beat standard numerical linear algebra package

– Parallel matrix multiplication: 36% faster (256 cores)
– Parallel Cholesky factorization: 9% faster (256 cores)

• Improved FFT performance
– Weak scaling: 38% over MPI (16K cores)
– Strong Scaling: 20% over MPI (16K cores)

• Native GASNet collective implementation for large
scale BlueGene systems
– Broadcast: 3-4 times speedup
– Exchange: 2-3 times speedup

Backup Slides

Comparison of Algorithms

Packed Slabs Slabs

Message Size in
Round 1

Messages in
Round 1

Message Size in
Round 2

Messages in
Round 2

(NZ/TZ) ! (NY/TY) !
(NX/TY)
elements

(NY/TY)!(NX/TY)
elements

TY (NZ/TZ) x TY

(NZ/TZ) ! (NX/TY) !
(NY/TZ)
elements

(NX/TY)!(NY/TZ)
elements

TZ (NZ/TZ)!TZ

Appendix (Packed Slabs)

[10] S. Kumar, G. Dozsa, G. Almasi, P. Heidelberger, D. Chen,
M. E. Giampapa, M. Blocksome, A. Faraj, J. Parker, J. Rat-
terman, B. Smith, and C. J. Archer, “The Deep Computing
Messaging Framework: Generalized scalable message passing
on the BlueGene/P supercomputer,” in ICS ’08: Proceedings
of the 22nd annual international conference on Supercomput-
ing. New York, NY, USA: ACM, 2008, pp. 94–103.

[11] “MPICH2 web site,” http://www.mcs.anl.gov/research/
projects/mpich2.

[12] “ESSL User Guide,” http://www-03.ibm.com/systems/p/
software/essl.html.

[13] M. Frigo and S. G. Johnson, “The design and implementa-
tion of FFTW3,” Proceedings of the IEEE, vol. 93, no. 2,
pp. 216–231, 2005, special issue on “Program Generation,
Optimization, and Platform Adaptation”.

[14] D. Bonachea, “Proposal for extending the UPC memory copy
library functions and supporting extensions to GASNet, v1.0,”
Lawrence Berkeley National Laboratory, Tech. Rep. LBNL-
56495, October 2004.

[15] C. Y. Chu, “Comparison of two-dimensional FFT methods
on the hypercube,” in Proceedings of the third conference
on Hypercube concurrent computers and applications. New
York, NY, USA: ACM Press, 1988, pp. 1430–1437.

[16] L. Dı́az, M. Valero-Garcı́a, and A. González, “A method
for exploiting communication/computation overlap in hyper-
cubes,” Parallel Computing, vol. 24, no. 2, pp. 221–245, 1998.

[17] P. N. Swartztrauber and S. W. Hammond, “A comparison
of optimal FFTs on torus and hypercube multicomputers,”
Parallel Computing, vol. 27, no. 6, pp. 847–859, 2001.

[18] A. Danalis, K.-Y. Kim, L. Pollock, and M. Swany, “Trans-
formations to parallel codes for communication-computation
overlap,” in Supercomputing 2005, November 2005.

[19] “UPC consortium home page,” http://upc.gwu.edu/.

[20] T. El-Ghazawi and F. Cantonnet, “UPC performance and po-
tential: A NPB experimental study,” in Supercomputing2002
(SC2002), November 2002.

[21] F. Cantonnet, Y. Yao, M. Zahran, and T. El-Ghazawi, “Pro-
ductivity Analysis of the UPC Language,” in International
Parallel and Distributed Processing Symposium (IPDPS),
2004.

[22] “HPC challenge benchmark results,” http://icl.cs.utk.edu/
hpcc/hpcc results.cgi.

[23] C. Barton, C. Casçaval, G. Almási, Y. Zheng, M. Farreras,
S. Chatterje, and J. N. Amaral, “Shared memory programming
for large scale machines,” SIGPLAN Not., vol. 41, no. 6, pp.
108–117, 2006.

[24] R. Nishtala, G. Almasi, and C. Cascaval, “Performance with-
out pain = productivity: data layout and collective communi-
cation in UPC,” in PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel
programming. New York, NY, USA: ACM, 2008, pp. 99–
110.

Appendix

Node Count Core Count X Y Z T TY × TZ
64 256 4 4 4 4 16 × 16

128 512 4 4 8 4 16 × 32
256 1024 8 4 8 4 32 × 32
512 2048 8 8 8 4 64 × 32

1024 4096 8 8 16 4 64 × 64
2048 8192 8 8 32 4 64 × 128
4096 16,384 8 16 32 4 128 × 128

Table 2: BlueGene/P Run Configurations

Algorithm 1 FFT Packed Slabs
1: Let myPlane = MYTHREAD / TY
2: Let myRow = MYTHREAD % TY
3: Let teamY = all threads who have same value of

myPlane
4: Let teamZ = all threads who have same value of myRow
5: for plane = 0 to NZ

TZ do
6: for row = 0 to NY

TY do
7: do 1D FFT of length NX
8: end for
9: end for

10: Pack the slabs together
11: Do Alltoall on teamY
12: Unpack the slabs to make Y dimension contiguous
13: for plane = 0 to NZ

TZ do
14: for row = 0 to NX

TY do
15: do 1D FFT of length NY
16: end for
17: end for
18: Pack the slabs together
19: Do Alltoall on teamZ
20: Unpack the slabs to make the Z dimension contiguous
21: for plane = 0 to NY

TZ do
22: for row = 0 to NX

TY do
23: do 1D FFT of length NZ
24: end for
25: end for

Most FFT libraries such as ESSL [12] and FFTW [13]
provide the ability to perform multiple strided FFTs with
one call to the library. This enables memory hierarchy
optimizations to be performed across multiple FFTs rather
than just one. For example lines 5-9 in Algorithm 1 and
lines 6-9 in Algorithm 2 can be realized as one call to the
underlying serial FFT library.

Appendix (Slabs)
Algorithm 2 FFT Slabs

1: Let myPlane = MYTHREAD / TY
2: Let myRow = MYTHREAD % TY
3: For MPI Prepost all recvs for First Communication

Round
4: BARRIER
5: for plane = 0 to NZ

TZ do
6: for row = 0 to NY

TY do
7: do 1D FFT of length NX
8: end for
9: Pack the data for this plane

10: for t = 1; t ≤ TY ; t = t + 1 do
11: initiate communication to thread myPlane×TY +

(t + myRow)%TY
12: end for
13: end for
14: Wait for all communication to finish
15: Unpack all the data to make Y dimension contiguous
16: For MPI Prepost all recvs for Second Communication

Round
17: BARRIER
18: for plane = 0 to NZ

TZ do
19: for row = 0 to NX

TY do
20: do 1D FFT of length NY
21: end for
22: Pack the data for this plane
23: for t = 1; t ≤ TZ; t = t + 1 do
24: initiate communication to thread

((t + myPlane)%TZ)× TY + myRow
25: end for
26: end for
27: Wait for all communication to finish
28: Unpack all the data to make Z dimension contiguous
29: for plane = 0 to NY

TZ do
30: for row = 0 to NX

TY do
31: do 1D FFT of length NZ
32: end for
33: end for

Node Configurations
Node
Count

Core
Count X Y Z T TY x TZ

64 256 4 4 4 4 16 x 16

128 512 4 4 8 4 16 x 32

256 1024 8 4 8 4 32 x 32

512 2048 8 8 8 4 64 x 32

1024 4096 8 8 16 4 64 x 64

2048 8192 8 8 32 4 64 x 128

4096 16384 8 16 32 4 128 x 128

UPC Semaphore (P2P sync)
2.4 Point-to-Point Synchronization Operations

Synopsis:

#include <upc.h>

void upc_sem_post(upc_sem_t *s);
void upc_sem_postN(upc_sem_t *s, size_t n); /* only valid for INTEGER sems */

void upc_sem_wait(upc_sem_t *s);
void upc_sem_waitN(upc_sem_t *s, size_t n); /* only valid for INTEGER sems */

int upc_sem_try(upc_sem_t *s);
int upc_sem_tryN(upc_sem_t *s, size_t n); /* only valid for INTEGER sems */

Description:

upc sem post(N): atomically increment the logical value of semaphore s by 1 (N)

upc sem wait(N): suspend the calling thread until the logical value of semaphore s is ¿= 1 (N), then
atomically decrement the value by that amount and return. If multiple threads are simultaneously blocked
inside wait, (only valid for UPC SEM MCONSUMER) then it is undefined the order in which they will
be serviced (no fairness guarantees)

upc sem try(N): A non-blocking variant of upc sem wait(N). Attempt to perform a upc sem wait(N) on
s. If the operation can succeed immediately, perform it and return non-zero to indicate success. Otherwise,
return zero to indicate failure.

upc sem post(N) implies a upc fence operation upon entry to the function, upc sem wait(N) implies a
upc fence operation immediately before exiting, and upc sem try(N) implies a upc fence operation imme-
diately before a successful completion.

4

UPC Semaphore (Memput)

3 Signalling Data Movement Operations

High-level description...

3.1 Signalling upc memput

Synopsis:

#include <upc.h>

void upc_memput_signal (shared void *dst, const void *src, size_t nbytes,
upc_sem_t *s, size_t n);

void upc_memput_signal_async(shared void *dst, const void *src, size_t nbytes,
upc_sem_t *s, size_t n);

Description:

Perform a memput with the same data movement semantics as upc memput, and increment s by n when
the transfer is complete. Requires upc threadof(s) == upc threadof(dst).

Both functions MAY return on the initiator before the transfer is complete at the target – the semaphore
on the target will be atomically incremented by n when the transfer is globally complete.

No explicit notifications or guarantees are provided to the initiator regarding the completion of the transfer
at the target (remote completion).

bupc memput signal returns as soon as the source memory is safe to overwrite (ie it blocks for local com-
pletion of the transfer), whereas bupc memput signal async MAY return earlier, while the source memory
is still in use (and therefore not safe to overwrite). Callers of bupc memput signal async are responsible for
enforcing their own synchronization from the target thread to the initiatior thread, in order to decide when
the source memory is safe to overwrite.

6

	team_collectives_bgp.pdf
	bgp-fft2 (2)

