
Energy Efficient Computing
Technology Exploration

John Shalf, Shoaib Kamil, David Donofrio

NSA UPC Review
July 23, 2009

Primary Design Constraint:
POWER

•  Transistors still getting smaller

– Moore’s Law: alive and well

•  Power efficiency and clock
rates no longer improving at
historical rates

• Demand for supercomputing
capability is accelerating

•  E3 report considered an Exaflop system for 2016
•  Power estimates for exascale systems based on extrapolation of current

design trends range up to 179MW
•  DOE E3 Report 2008
•  DARPA Exascale Report (in production)
•  LBNL IJHPCA Climate Simulator Study 2008 (Wehner, Oliker, Shalf)

Need fundamentally new approach to computing designs

HPC Power: It will only get worse

•  Recent Baltimore Sun Article on NSA system in Maryland
– Consuming 75MW and growing up to 15MW/year
– Not enough power left for city of Baltimore! (moving to Utah)

•  LBNL IJHPCA Study for ~1/5 Exaflop for Climate Science in 2008
– Extrapolation of Blue Gene and AMD design trends
– Estimate: 20 MW for BG and 179 MW for AMD

•  DOE E3 Report
– Extrapolation of existing design trends to exascale in 2016
– Estimate: 130 MW

•  DARPA Study
– More detailed assessment of component technologies
– Estimate: 20 MW just for memory alone, 60 MW aggregate extrapolated

from current design trends

 The current approach is not sustainable!

DARPA Exascale Study

• Commissioned by DARPA to explore the
challenges for Exaflop computing

• Two model for future performance growth
– Simplistic: ITRS roadmap; power for memory
grows linear with #of chips; power for
interconnect stays constant

– Fully scaled: same as simplistic, but memory
and router power grow with peak flops per chip

From Peter
Kogge, DARPA
Exascale Study

We won’t reach Exaflops with
this approach

… and the power costs will still
be staggering

From Peter Kogge,
DARPA Exascale Study

An Alternate “BG” Scenario With
Similar Assumptions

The Challenge
Where do we get a 1000x improvement in

performance with only a 10x increase in power?

How do you achieve this in 10 years with a
finite development budget?

8

Where do we get 1000x performance
improvement for 10x power?

1.  Processor: Green Flash
2.  Interconnect: HFAST and Photonic NoC’s
3.  Memory: Optical DRAM interface + ReRAM

technology

4.  Software tuning (auto-tuning): Sam/Shoaib/Kaushik

5.  Algorithms:

6.  Power/Cooling/facilities:

9

How Can We Achieve our Goals Cost
Effectively?

10

Learning From The Embedded Market

• Have all of the IP and experience with for low-power
technology

• Have sophisticated tools for rapid turn-around of
designs

• Vibrant commodity market in IP components

• Convergence with HPC requirements
– Need better computational efficiency and lower power
– Now we both must face parallelism

Processor Technology Trend

• 1990s - R&D computing hardware dominated by
desktop/COTS

– Had to learn how to use COTS technology for HPC

• 2010 - R&D investments moving rapidly to
consumer electronics/ embedded processing

– Must learn how to leverage embedded processor
technology for future HPC systems

Consumer Electronics has Replaced PCs as
the Dominant Market Force in CPU Design!!

Apple
Introduces

IPod

IPod+ITunes
exceeds 50% of

Appleʼs Net Profit

Apple Introduces
Cell Phone

(iPhone)

Netbooks based on Intel Atom
embedded processor is the
fastest growing portion of

“laptop” market
(Acer grew 74% in 1Q09)

Redefining “commodity”

• Must use “commodity” technology to build
cost-effective design

• The primary cost of a chip is development of
the intellectual property

– Mask and fab typically 10% of NRE
– Design and verification dominate costs
– Embedded computing has a vibrant market for IP/
circuit-design (pre-verified, place & route)

– Redefine your notion of “commodity”!

The ‘chip’ is not the commodity…
 The stuff you put on the chip is the commodity

14

Processor
Generator
(Tensilica) Build with any

process in any fab Tailored SW Tools:
Compiler, debugger,
simulators, Linux,

other OS Ports
(Automatically

generated together
with the Core)

Application-
optimized processor

implementation
(RTL/Verilog)

Base CPU
Apps

Datapaths

OCD

Timer

FPU Extended Registers

Cache

Embedded Design Automation
(Example from Existing Tensilica Design Flow)

Processor configuration
1.  Select from menu
2.  Automatic instruction

discovery (XPRES Compiler)
3.  Explicit instruction

description (TIE)

Low-Power Design Principles

•  Cubic power improvement with
lower clock rate due to V2F

•  Slower clock rates enable use
of simpler cores

•  Simpler cores use less area
(lower leakage) and reduce
cost

•  Tailor design to application to
REDUCE WASTE

Intel Core2

Intel Atom

Tensilica XTensa

Power 5

This is how iPhones and MP3 players are designed to maximize battery life
and minimize cost

Low-Power Design Principles

•  Power5 (server)
–  120W@1900MHz
–  Baseline

•  Intel Core2 sc (laptop) :
–  15W@1000MHz
–  4x more FLOPs/watt than

baseline
•  Intel Atom (handhelds)

–  0.625W@800MHz
–  80x more

•  Tensilica XTensa DP (Moto Razor) :
–  0.09W@600MHz
–  400x more (80x-120x sustained)

Intel Core2

Intel Atom

Tensilica XTensa

Power 5

Low Power Design Principles

•  Power5 (server)
–  120W@1900MHz
–  Baseline

•  Intel Core2 sc (laptop) :
–  15W@1000MHz
–  4x more FLOPs/watt than

baseline

•  Intel Atom (handhelds)
–  0.625W@800MHz
–  80x more

•  Tensilica XTensa DP (Moto Razor) :
–  0.09W@600MHz
–  400x more (80x-100x sustained)

Intel Core2

Tensilica XTensa

Power 5

But now we have to figure out how to program them…

• Previous Decade
– Optimization target: minimize price to buy more hardware
– COTS: Redirect off-the-shelf components designed for mass market
– This leveraged “Moore’s Law” density improvements

• Next Decade
– Optimization target: minimize power consumed for work performed
– Specialize and integrate: Embedded + SoC is proven design point
– This leverages “Bells Law” cost efficiency: Commodity not COTS

Future HPC Technology Building Blocks

Future HPC Technology Building Blocks

• Previous Decade
– Optimization target: minimize price to buy more hardware
– COTS: Redirect off-the-shelf components designed for mass market
– This leveraged “Moore’s Law” density improvements

• Next Decade
– Optimization target: minimize power consumed for work performed
– Specialize and integrate: Embedded + SoC is proven design point
– This leverages “Bells Law” cost efficiency: Commodity not COTS

•  Interim solution: Accelerators
– Demonstrate huge efficiency potential of manycore
– Demonstrate we have failed to learn from CM5 (PCIe)
– Stepping stone to convergence (merge manycore with host memory)
– But also points to benefits of some specialization

Green Flash:
Ultra-Low-Power HPC Design Study

We’d better start NOW to understand how a
massively-parallel approach based on

embedded components might play out for HPC

Green Flash Overview

• Research effort: study feasibility of designing an application-
targeted supercomputer and share insight with community

•  Elements of the approach
– Choose the science target first (climate)
– Design systems for applications (rather than the reverse)
– Design hardware, software, scientific algorithms together using

hardware emulation and auto-tuning

Target: 100x better power efficiency than business as usual

What is NEW about this approach
(not just the usual “custom computer”)

–  Leverage commodity processes used to design power
efficient embedded devices
•  redirect the tools to benefit scientific computing!
•  Lower power
•  Lower design risk
•  Lower design cost

–  Auto-tuning to automate mapping of algorithm to complex
hardware

–  RAMP: Hardware-accelerated emulation of ASIC design
•  Prototype the design before it goes to fab
•  Less design risk
•  Faster iteration between software & hardware

Global Cloud System Resolving Models
are a Transformational Change

1km 
Cloud system resolving models 

25km 
Upper limit of climate models 
with cloud parameteriza=ons 

200km 
Typical resolu=on of 
IPCC AR4 models 

Requirements for 1km Climate Computer

Must maintain 1000x faster than real
time for practical climate simulation

• ~2 million horizontal subdomains
• 100 Terabytes of Memory

– 5MB memory per subdomain
• ~20 million total subdomains

– 20 PF sustained (200PF peak)
– Nearest-neighbor communication

• New discretization for climate model
– CSU Icosahedral Code

fvCAM

Icosahedral

Processor
Generator
(Tensilica) Build with any

process in any fab Tailored SW Tools:
Compiler, debugger,
simulators, Linux,

other OS Ports
(Automatically

generated together
with the Core)

Application-
optimized processor

implementation
(RTL/Verilog)

Base CPU
Apps

Datapaths

OCD

Timer

FPU Extended Registers

Cache

Embedded Design Automation
(Example from Existing Tensilica Design Flow)

Processor configuration
1.  Select from menu
2.  Automatic instruction

discovery (XPRES Compiler)
3.  Explicit instruction

description (TIE)

Chris Rowen
Tensilica

Advanced Hardware Simulation (RAMP)
Enabling Hardware/Software/Science Co-Design

•  Research Accelerator for Multi-Processors
(RAMP)
–  Simulate hardware before it is built!
–  Break slow feedback loop for system designs
–  Enables tightly coupled hardware/software/science
 co-design (not possible using conventional approach)

Auto-tuning

•  Problem: want to compare best
potential performance of diverse
architectures, avoiding
–  Non-portable code
–  Labor-intensive user

optimizations for each specific
architecture

•  Our Solution: Auto-tuning
–  Automate search across a

complex optimization space
–  Achieve performance far

beyond current compilers
–  achieve performance

portability for diverse
architectures!

AMD Opteron

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 4 8 1 2 4 8

Cores (SP) # Cores (DP)

To
ta

l G
flo

p/
s

$ Bypass
SIMD
Prefetch
T/$ Block
Reorder
Padding
NUMA
Naïve

3.5x

7x

Traditional New Architecture
Hardware/Software Design

Cycle Time

4-6+ years

Design New System
(2 year concept phase)

Port Application

Build
Hardware
(2 years)

Tune
Software
(2 years)

AMD Opteron

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 4 8 1 2 4 8

Cores (SP) # Cores (DP)

T
o

ta
l

G
fl

o
p

/
s

$ Bypass
SIMD
Prefetch
T/$ Block
Reorder
Padding
NUMA
Naïve

How long does it
take for a full
scale application
to influence
architectures?

Proposed New Architecture
Hardware/Software Co-Design

Cycle Time

1-2 days

AMD Opteron

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 4 8 1 2 4 8

Cores (SP) # Cores (DP)

T
o

ta
l

G
fl

o
p

/
s

$ Bypass
SIMD
Prefetch
T/$ Block
Reorder
Padding
NUMA
Naïve

Synthesize SoC (hours)

Build application

Emulate
Hardware
(RAMP)
(hours)

Autotune
Software
(Hours)

How long does it
take for a full
scale application
to influence
architectures?

What we have learned from our more
detailed design study

Mark Horowitz 2007: “Years of research in low-
power embedded computing have shown only one
design technique to reduce power: reduce waste.”

Seymour Cray 1977: “Don’t put anything in to a
supercomputer that isn’t necessary.”

31

Design Elements
(lets design a processor)

•  Instruction Mix
– Remove or extend instruction set

• On-chip memory size and organization
– How much cache, line-size
– How much local store

• Memory bandwidth requirements per core
•  Interconnect Bandwidth/Latency Requirements
• Hardware/software co-design

– Optimize hardware and software iteratively
using RAMP + synthesis + auto-tuning

Instruction Sets

Configurable Processor Family

RTL

RTL

RTL

Peel Back the Historical Growth of
Instruction Sets (accretion of cruft)

Memory
Systems

Processor
Control

System
Interface

Computation
Instruction
Set

Gen 1

Interrupts

Debug

Memory
Protection

Timers

MMU Secure
Rings

Inst
Cache

Data
Cache

Write-back
Cache

Tightly
Coupled
Memories

Coherent
Caches

Bus
Bridges

Block
Data
Bus Slave DMA

Access

MP Split
Transaction Data

Streaming
Ports

Input/Output
Wires

16b GP DSP

24b Audio

Image
multimedia

Encryption

Superscalar

Packet
processing

Special-
Purpose
DSP Gen 2

Gen 3

Gen 4

Base

Area = silicon cost and power

Traditional Processor Family

Time per variant: years Time per variant: days

Memory
Systems

Processor
Control

System
Interface

Computation
Instruction
Set

Interrupts

Debug

Memory
Protection

Timers

MMU Secure
Rings

Inst
Cache

Data
Cache

Write-back
Cache

Tightly
Coupled
Memories

Coherent
Caches

Bus
Bridges

Block
Data
Bus Slave DMA

Access

MP Split
Transaction

Data
Streaming
Ports

Input/Output
Wires

16b GP DSP

24b Audio

Encryption

Superscalar

Packet
processing

Special-
Purpose
DSP

Image
multimedia

A Short List of x86 Opcodes that
Science Applications Don’t Need!

More Wasted Opcodes

• We only need 80 out of the nearly 300 ASM instructions in the x86
instruction set!

• Still have all of the 8087 and 8088 instructions!
• Wide SIMD Doesn’t Make Sense with Small Cores
• Neither does Cache Coherence
• Neither does HW Divide or Sqrt for loops

• Creates pipeline bubbles
• Better to unroll it across the loops (like IBM MASS libraries)

• Move TLB to memory interface because its still too huge (but still get
precise exceptions from segmented protection on each core)

Science-Optimized Processor Design

Intel
Core2
(Penryn)

Intel
Atom
core

Tensilica
core w/
64-bit FP

Die area
(mm2)

53.5 25 5.32

Process 45 nm 45 nm 65 nm

Power 18W 0.625W 0.091W

Freq 2930
MHz

800MHz 370MHz

Flops /
Watt

162 1280 4065

Example Uses of a Custom Instructions

• Need for Extended Precision
– Good for massively parallel global reductions
– For Uncertainty Quantificaton (better than using Interval Arithmetic)

•  Instruction Set Extensions for Extended Precision
– Mask off mantissa or exponent bits for add, shift or multiplies on

subset of bits
– Externalize carry bit instead of overflow
– Small change in logic with huge gains in efficiency of extended

precision software emulation

•  Extended accumulators (1024-bit accumulator)
• Change all type widths to match x86

– For easier application and library porting in cross-env.

• Compiler automatically extended w/new instructions

TIE Example

Memory Subsystem

Memory Subsystem

• Cache and Software Controlled
Memory (Local Store)

– L/S for performance
– Smaller cache for convenience

• Cache provides incremental
porting path

– Cell was all-or-nothing
– Can port incrementally

•  Integrated NVRAM controller
– Local checkpointing for fault

resilience
– Slower/higher-density tier of

memory

NVRAM
(FLASH) for

fault resilience

Memory: Perhaps we don’t need
1 Byte/FLOP (Scripted Memory Movement)

•  Trace analysis key to memory
requirements

– Actually running the code gives
realistic values for memory
footprint, temporal reuse, DRAM
bandwidth requirements

•  Memory footprint: unique
addresses accessed  size of
local store needed

•  Temporal reuse: maximum
number of addresses which will
be reused at any time  size of
cache needed

•  DRAM bandwidth
–  (instruction throughput) X (memory

footprint)/(instruction count)

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Memory footprint (KB)

0
100
200
300
400
500
600
700

Bandwidth Requirements (MB/s)
(Instructions/Cycle=1, 500 MHz)

Computing Interconnect Requirements

•  Presume 50GB/s memory subsystem
performance limit
–  Pack cores onto chip until 50GB/s ceiling
–  Measure message throughput requirements

•  Assuming (pessimistically) communication only
occurs during 10% of calculation (no-overlap)

Communication Requirements

0

100

200

300

400

500

600

700

50 25 13 6 3 2

Horizontal Scale (km)

R
e
q

u
ir

e
d

 R
a
te

Max Latency (usec)

Min Bandwidth (MB/s)

Analyzing the Instruction Mix

Auto-Tuning Can Change Hardware
Design Requirements

•  Memory footprint: 160 KB
•  Cache size requirement: 160 KB
•  < 50% instructions are floating-point

•  Huge overhead for address
generation

•  Although code streams through data,
loop ordering was bad  cachelines
reused although addresses were not

•  Memory footprint: 160 KB
•  Cache size requirement: 1 KB
•  > 85% instructions are floating-point

•  Good ordering  simpler addressing

160x reduction in cache size!
2x savings in execution time

HW/SW Co-Tuning for Energy Efficiency

The approach: Use
auto-tuned code
when evaluating
architecture design
points

Co-Tuning can improve power-
efficiency and area-efficiency by ~4x

Novel Inter-processor Communication

Direct support for high-level language constructs

Architectural Support for IPC
Make hardware easier to program!

• Logical topology is a full
crossbar

• Each local store mapped to
global address space

• To initiate a DMA transfer
between processors:

– Processors exchange starting
addresses through TIE Queue interface

•  Optimized for small transfers
– When ready, copy done directly from

LS to LS
– Copy will bypass cache hierarchy

NVRAM
(FLASH) for

fault resilience

Example Timing Diagram
For MPI-Like 2-sided Message

Send() iRecv()

Wait()

…Other work….

Direct DMA
Transfer between LS

Request to send
With recv() addr.

DMA Complete

…continue…

blocked

blocked

…continue…

Green is TIE queue and red is Local Store DMA Engine

CMP Architecture - Physical View

• Concentrated torus
– Direct connect
between 4
processors on a tile

– Packet switched
network connecting
tiles

• Between 64 and 128
processors per die

• Silicon Photonics as
option for NoC

Novel Architecture Features
(Alternative Memory Protection Model)

• Move TLB to memory controller interface for simple cores
– TLB is huge compared to simple cores
– TLB coherence approaches are difficult to scale
– Consolidation makes one-sided messaging and DMA
easier (no pinning required)

– More energy efficient and lower complexity

• Problems with moving TLB
– No “precise exceptions” for page protection violations
– “worker” CPU’s can use segmented protection
– Subset of “OS” CPU’s can use TLBs

Architecture Features for
Fault Tolerance/Resilience

• Our Design does not expose unique risks
– Faults proportional to # sockets (not # cores) and silicon

surface area
– We expose less surface area and fewer sockets with our

approach

• Hard Errors
– Spare cores in design (Cisco Metro)
– SoC design (fewer components and fewer sockets)
– Use solder (not sockets)

• Soft Errors
– ECC for memory and caches
– On-board NVRAM controller for localized checkpoint
– Checkpoint to neighbor for rollback

52

Green Flash Hardware Demo

• Demonstrated during SC ‘08
• Proof of concept

– CSU atmospheric model ported to
Tensilica Architecture

– Single Tensilica processor running
atmospheric model at 50MHz

• Emulation performance
advantage

– Processor running at 50MHz vs.
Functional model at 100 kHz

– 500x Speedup

• Actual climate code - not
representative benchmark

Summary

• Power is leading design constraint for future HPC
– Future technology driven by handheld space
– Notion of “commodity” moving on-chip

• Approach for Power Efficient HPC
– Choose the science target first (climate in this case)
– Design systems for applications (rather than the reverse)
– Design hardware, software, scientific algorithms together
using hardware emulation and auto-tuning

– This is the right way to design efficient HPC systems!

What we would like to do in the future

• Consider broader range of applications
– Find out what the future vertically integrated
systems could look like

– Seismic modeling, Datacenters (Google)

• Develop Hardware elements to support high-level
language constructs

– PGAS support-on-a-chip
– Feed-forward pipelines / dataflow

• Turnkey automation of the hardware/software
codesign workflow

Interconnects

56

Interconnects: Leading Issues

• Cannot continue to scale fully-connected
interconnect topologies

• Cannot continue to scale bandwidth using
electrical networks

What technology be applied to address these constraints?

57

Interconnect Cost
(Scalable Topologies)

• Fully-connected networks scale superlinearly in cost,
but perform the best

• Limited-connectivity networks scale linearly in cost,
but introduce new problems

Interconnect Design Considerations
for Message Passing Applications

•  Application studies provide insight to
requirements for Interconnects (both
on-chip and off-chip)
–  On-chip interconnect is 2D planar

(crossbar won’t scale!)
–  Sparse connectivity for most

apps.; crossbar is overkill
–  No single best topology
–  Most point-to-point message

exhibit sparse topology + often
bandwidth bound

–  Collectives tiny and primarily
latency bound

•  Ultimately, need to be aware of the
on-chip interconnect topology in
addition to the off-chip topology

–  Adaptive topology interconnects (HFAST)
–  Intelligent task migration?

59

Processor Allocation

• Relocates communicating partners “closer” to one
another in the network

• Optimal remapping is NP-hard
• Can be cast as a graph partitioning problem

Network

System-Scale Switch Technology
Pure Photonic Solution is OCS

•  Packet Switch:
– Read each packet header and decide where it

should go fast!
– Decisions cannot be done all-optical (requires

OEO conversion + CMOS ASICS)
– OEO conversions for Optical Transceivers

•  Circuit Switch:
–  Establishes direct circuit from point-to-

point (telephone switchboard)
–  Commodity MEMS optical circuit switch

•  Common in telecomm industry
•  Scalable to large crossbars

–  Slow switching (~100microseconds)
–  Blind to message boundaries

Force10 E1200

1260 x 1GigE
56 x 10GigE

400x400λ

1-40GigE

Movaz iWSS

HFAST
Optimizing Use of Optical Circuit Switches

• Hybrid Flexibly-Assignable Switch Topology (HFAST)
– Use Layer-1 (circuit) switches to configure Layer-2 (packet) switches

at run-time (O(10-100ms) cost of reconfiguration)
– Hardware to do so exists (Telecom Industry)
– Layer-1 switches cheaper per port (no dynamic decisions, like

telephone switchboard) (only game in town for pure optical switches)

Collective communication uses a separate low-latency, low bandwidth tree
network (like IBM BlueGene)

Using Optical Circuit Switches to
Make Fat-Trees into Fit-Trees

• A Fit-tree uses OCS to prune unused (or
infrequently used) connections in a Fat-Tree

• Tailor the interconnect to match application
data flows

63

Datacenter Applications

• Current practice depends on large CLOS or
Fat-Tree networks of Ethernet switches

– Photonic links, but OEO conversion required for
packet switching

– Much of the power is in CMOS ASICs that make the
packet switching decisions

– All-photonic low-power solution is a circuit switch

• How can we exploit circuit switching for
datacenter applications?

– A Hybrid solution with both OCS and conventional
packet switches

64

TL Fit-trees for Datacenters

• Construct top-level determined fit-tree by setting # of
top-level switches in the fit-tree

• Uses same routing tables as fat-tree: no routing
discovery required

• Preserve any-to-any routing ability

Datacenter Application Traces

66

Optical Circuit Switches Reduce Packet
Switch Count (and hence power)

67

Map Reduce: Reduce switch count by 1
order of magnitude using Photonic/

OCS

68

Datacenter Summary

• Optical Circuit Switches (OCS) can be used to
optimize communication topology for
persistent high-bandwidth dataflows

• Can result in order of magnitude reduction in
packet switches

– That translates directly into power savings since
OCS is passive

• Reduced wiring complexity by packaging OCS
in top of each equipment rack

69

Research Agenda
(what we would like to do)

• Use Sandia scalable DES model to perform large-
scale modeling of OCS approach for datacenters

– Combine with more accurate power models and
cost models of OCS equipment

– Use full traces from large-scale datacenters

• Create demonstration platform for to demonstrate
hybrid OCS + Packet-Switched approach

• Further work on Fit-Tree algorithm for optimal
provisioning of circuits on hybrid interconnects

On-Chip Silicon Photonics for Multicore

Collaboration with
Keren Bergman at Columbia University

And internally funded Green Flash project

(Kamil, Mohiyuddin, Jain)

The problem with Wires: Energy to move
data proportional to distance

• Wire cost to move a bit:
– energy = bitrate * Length2 / cross-section area
– On-Chip (1cm): ~1pJ/bit, 100Tb/s
– On-Module (5cm): ~2-5pJ/bit, 10Tb/s
– On-Board (20cm): ~10pJ/bit, 1Tb/s
– Intra-rack (1m): ~10-15pJ/bit, 1Tb/s
– Inter-cabinet(2-50m): 15-30pJ/bit, 5-10Tb/s aggregate

• To move a bit with optics: target ~1-2pJ/bit
for all distance scales

Copper requires to signal amplification
even for on-chip connections

Photonics requires no redrive
and passive switch little power

Silicon Photonic Integration

Embedded Computing
Interconnects for massive manycore

•  188+4 Xtensa general purpose processor
cores per Silicon Packet Processor

•  Up to 400,000 processors per system
•  (this is not just about HPC!!!)

16 PPE

16 Clusters of
12 cores each
(192 cores!)

CRS-1 Router

Electronic Mesh Interconnect

photonic switching device:
2×2 switch composed of 2 
waveguides, 2 micro‐ring 
resonators, and a crossing 

photonic rou2ng subsystem:
integrated photonic and 

electronic devices providing 
mul=‐wavelength, non‐blocking, 
low‐power photonic rou=ng 

CMP system vision:
3DI stack with dedicated 
communica=ons plane 
(top layer) housing a 

photonic NoC 

On‐chip photonics enable ultrahigh‐bandwidth, low‐power communica=ons 
for both on‐ and off‐chip signaling, allowing the maximized performance for 

chip‐scale parallel processing systems 

Switches, Routers, and Networks-on-Chip

Keren Bergman

Silicon Photonics for Energy-
Efficient Communication

• Silicon photonics
enables optics to be
integrated with
conventional CMOS

• Enables up to 27x
improvement in
communication energy
efficiency!

Silicon Photonic
Ring Resonator

Collaboration with Keren Bergman

