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Primary Design Constraint: 
POWER 

•  Transistors still getting smaller 

– Moore’s Law: alive and well 

•  Power efficiency and clock 
rates no longer improving at 
historical rates 

• Demand for supercomputing 
capability is accelerating 

•  E3 report considered an Exaflop system for 2016 
•  Power estimates for exascale systems based on extrapolation of current 

design trends range up to 179MW 
•  DOE E3 Report 2008 
•  DARPA Exascale Report (in production) 
•  LBNL IJHPCA Climate Simulator Study 2008 (Wehner, Oliker, Shalf) 

Need fundamentally new approach to computing designs 



HPC Power: It will only get worse 

•  Recent Baltimore Sun Article on NSA system in Maryland 
– Consuming 75MW and growing up to 15MW/year 
– Not enough power left for city of Baltimore!  (moving to Utah) 

•  LBNL IJHPCA Study for ~1/5 Exaflop for Climate Science in 2008 
– Extrapolation of Blue Gene and AMD design trends 
– Estimate: 20 MW for BG and 179 MW for AMD 

•  DOE E3 Report 
– Extrapolation of existing design trends to exascale in 2016 
– Estimate: 130 MW 

•  DARPA Study 
– More detailed assessment of component technologies 
– Estimate: 20 MW just for memory alone, 60 MW aggregate extrapolated 

from current design trends 

                  The current approach is not sustainable! 



DARPA Exascale Study 

• Commissioned by DARPA to explore the 
challenges for Exaflop computing 

• Two model for future performance growth 
– Simplistic: ITRS roadmap; power for memory 
grows linear with #of chips; power for 
interconnect stays constant 

– Fully scaled: same as simplistic, but memory 
and router power grow with peak flops per chip 



From Peter 
Kogge, DARPA 
Exascale Study 

We won’t reach Exaflops with 
this approach 



… and the power costs will still 
be staggering 

From Peter Kogge, 
DARPA Exascale Study 



An Alternate “BG” Scenario With 
Similar Assumptions 



The Challenge 
Where do we get a 1000x improvement in 

performance with only a 10x increase in power? 

How do you achieve this in 10 years with a 
finite development budget? 
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Where do we get 1000x performance 
improvement for 10x power? 

1.  Processor: Green Flash 
2.  Interconnect: HFAST and Photonic NoC’s 
3.  Memory: Optical DRAM interface + ReRAM 

technology 

4.  Software tuning (auto-tuning): Sam/Shoaib/Kaushik 

5.  Algorithms: 

6.  Power/Cooling/facilities: 
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How Can We Achieve our Goals Cost 
Effectively? 
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Learning From The Embedded Market 

• Have all of the IP and experience with for low-power 
technology 

• Have sophisticated tools for rapid turn-around of 
designs 

• Vibrant commodity market in IP components 

• Convergence with HPC requirements 
– Need better computational efficiency and lower power 
– Now we both must face parallelism 



Processor Technology Trend  

• 1990s - R&D computing hardware dominated by 
desktop/COTS 

– Had to learn how to use COTS technology for HPC 

• 2010 - R&D investments moving rapidly to 
consumer electronics/ embedded processing 

– Must learn how to leverage embedded processor 
technology for future HPC systems 



Consumer Electronics has Replaced PCs as 
the Dominant Market Force in CPU Design!! 

Apple 
Introduces 

IPod


IPod+ITunes 
exceeds 50% of 

Appleʼs Net Profit


Apple Introduces 
Cell Phone 

(iPhone)


Netbooks based on Intel Atom 
embedded processor is the 
fastest growing portion of 

“laptop” market 
(Acer grew 74% in 1Q09) 



Redefining “commodity” 

• Must use “commodity” technology to build 
cost-effective design 

• The primary cost of a chip is development of 
the intellectual property 

– Mask and fab typically 10% of NRE 
– Design and verification dominate costs 
– Embedded computing has a vibrant market for IP/
circuit-design (pre-verified, place & route) 

– Redefine your notion of “commodity”! 

The ‘chip’ is not the commodity… 
 The stuff you put on the chip is the commodity 
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Processor 
Generator 
(Tensilica) Build with any 

process in any fab Tailored SW Tools: 
Compiler, debugger, 
simulators, Linux, 

other OS Ports 
(Automatically 

generated together 
with the Core) 

Application-
optimized processor 

implementation 
(RTL/Verilog) 

Base CPU 
Apps 

Datapaths 

OCD 

Timer 

FPU Extended Registers 

Cache 

Embedded Design Automation 
(Example from Existing Tensilica Design Flow) 

Processor configuration 
1.  Select from menu 
2.  Automatic instruction 

discovery (XPRES Compiler) 
3.  Explicit instruction 

description (TIE) 



Low-Power Design Principles 

•  Cubic power improvement with 
lower clock rate due to V2F 

•  Slower clock rates enable use 
of simpler cores 

•  Simpler cores use less area 
(lower leakage) and reduce 
cost 

•  Tailor design to application to 
REDUCE WASTE 

Intel Core2


Intel Atom

Tensilica XTensa


Power 5


This is how iPhones and MP3 players are designed to maximize battery life  
and minimize cost 



Low-Power Design Principles 

•  Power5 (server)  
–  120W@1900MHz 
–  Baseline 

•  Intel Core2 sc (laptop) : 
–  15W@1000MHz 
–  4x more FLOPs/watt than 

baseline  
•  Intel Atom (handhelds) 

–  0.625W@800MHz 
–  80x more 

•  Tensilica XTensa DP (Moto Razor) :  
–  0.09W@600MHz 
–  400x more (80x-120x sustained) 

Intel Core2


Intel Atom

Tensilica XTensa


Power 5




Low Power Design Principles 

•  Power5 (server)  
–  120W@1900MHz 
–  Baseline 

•  Intel Core2 sc (laptop) : 
–  15W@1000MHz 
–  4x more FLOPs/watt than 

baseline 

•  Intel Atom (handhelds) 
–  0.625W@800MHz 
–  80x more 

•  Tensilica XTensa DP (Moto Razor) :  
–  0.09W@600MHz 
–  400x more (80x-100x sustained) 

Intel Core2


Tensilica XTensa


Power 5


But now we have to figure out how to program them… 



• Previous Decade 
– Optimization target: minimize price to buy more hardware 
– COTS: Redirect off-the-shelf components designed for mass market 
– This leveraged “Moore’s Law” density improvements 

• Next Decade 
– Optimization target: minimize power consumed for work performed 
– Specialize and integrate: Embedded + SoC is proven design point 
– This leverages “Bells Law” cost efficiency:  Commodity not COTS 

Future HPC Technology Building Blocks 



Future HPC Technology Building Blocks 

• Previous Decade 
– Optimization target: minimize price to buy more hardware 
– COTS: Redirect off-the-shelf components designed for mass market 
– This leveraged “Moore’s Law” density improvements 

• Next Decade 
– Optimization target: minimize power consumed for work performed 
– Specialize and integrate: Embedded + SoC is proven design point 
– This leverages “Bells Law” cost efficiency:  Commodity not COTS 

•  Interim solution: Accelerators 
– Demonstrate huge efficiency potential of manycore 
– Demonstrate we have failed to learn from CM5 (PCIe) 
– Stepping stone to convergence (merge manycore with host memory) 
– But also points to benefits of some specialization 



Green Flash:  
Ultra-Low-Power HPC Design Study 

We’d better start NOW to understand how a 
massively-parallel approach based on 

embedded components might play out for HPC  



Green Flash Overview 

• Research effort: study feasibility of designing an application-
targeted supercomputer and share insight with community 

•  Elements of the approach 
– Choose the science target first (climate) 
– Design systems for applications (rather than the reverse) 
– Design hardware, software, scientific algorithms together using 

hardware emulation and auto-tuning 

Target: 100x better power efficiency than business as usual 



What is NEW about this approach 
(not just the usual “custom computer”) 

–  Leverage commodity processes used to design power 
efficient embedded devices  
•  redirect the tools to benefit scientific computing! 
•  Lower power 
•  Lower design risk 
•  Lower design cost 

–  Auto-tuning to automate mapping of algorithm to complex 
hardware 

–  RAMP: Hardware-accelerated emulation of ASIC design 
•  Prototype the design before it goes to fab 
•  Less design risk 
•  Faster iteration between software & hardware 



Global Cloud System Resolving Models 
are a Transformational Change 

1km 
Cloud system resolving models 

25km 
Upper limit of climate models 
with cloud parameteriza=ons 

200km 
Typical resolu=on of 
IPCC AR4 models 



Requirements for 1km Climate Computer 

Must maintain 1000x faster than real 
time for practical climate simulation 

• ~2 million horizontal subdomains 
• 100 Terabytes of Memory 

– 5MB memory per subdomain 
• ~20 million total subdomains  

– 20 PF sustained (200PF peak) 
– Nearest-neighbor communication 

• New discretization for climate model 
– CSU Icosahedral Code 

fvCAM


Icosahedral




Processor 
Generator 
(Tensilica) Build with any 

process in any fab Tailored SW Tools: 
Compiler, debugger, 
simulators, Linux, 

other OS Ports 
(Automatically 

generated together 
with the Core) 

Application-
optimized processor 

implementation 
(RTL/Verilog) 

Base CPU 
Apps 

Datapaths 

OCD 

Timer 

FPU Extended Registers 

Cache 

Embedded Design Automation 
(Example from Existing Tensilica Design Flow) 

Processor configuration 
1.  Select from menu 
2.  Automatic instruction 

discovery (XPRES Compiler) 
3.  Explicit instruction 

description (TIE) 

Chris Rowen 
Tensilica 



Advanced Hardware Simulation (RAMP) 
Enabling Hardware/Software/Science Co-Design 

•  Research Accelerator for Multi-Processors 
(RAMP) 
–  Simulate hardware before it is built! 
–  Break slow feedback loop for system designs 
–  Enables tightly coupled hardware/software/science  
     co-design (not possible using conventional approach) 



Auto-tuning 

•  Problem: want to compare best 
potential performance of diverse 
architectures, avoiding 
–  Non-portable code 
–  Labor-intensive user 

optimizations for each specific 
architecture 

•  Our Solution: Auto-tuning 
–  Automate search across a 

complex optimization space  
–  Achieve performance far 

beyond current compilers 
–  achieve performance 

portability for diverse 
architectures! 

AMD Opteron
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Traditional New Architecture 
Hardware/Software Design 

Cycle Time

4-6+ years


Design New System  
(2 year concept phase) 

Port Application 

Build 
Hardware 
(2 years) 

Tune 
Software 
(2 years) 

AMD Opteron
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Proposed New Architecture 
Hardware/Software Co-Design 

Cycle Time

1-2 days


AMD Opteron
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What we have learned from our more 
detailed design study 

Mark Horowitz 2007: “Years of research in low-
power embedded computing have shown only one 
design technique to reduce power: reduce waste.” 

Seymour Cray 1977: “Don’t put anything in to a 
supercomputer that isn’t necessary.” 
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Design Elements 
(lets design a processor) 

•  Instruction Mix 
– Remove or extend instruction set 

• On-chip memory size and organization 
– How much cache, line-size 
– How much local store 

• Memory bandwidth requirements per core 
•  Interconnect Bandwidth/Latency Requirements 
• Hardware/software co-design 

– Optimize hardware and software iteratively 
using RAMP + synthesis + auto-tuning 



Instruction Sets 



Configurable Processor Family 

RTL 

RTL 

RTL 

Peel Back the Historical Growth of 
Instruction Sets (accretion of cruft) 

Memory 
Systems 

Processor 
Control 

System 
Interface 

Computation 
Instruction 
Set 

Gen 1 

Interrupts 

Debug 

Memory  
Protection 

Timers 

MMU Secure  
Rings 

Inst 
Cache 

Data 
Cache 

Write-back 
Cache 

Tightly 
Coupled 
Memories 

Coherent 
Caches 

Bus  
Bridges 

Block 
Data 
Bus Slave DMA  

Access 

MP Split  
Transaction Data  

Streaming 
Ports 

Input/Output 
Wires 

16b GP DSP 

24b Audio 

Image 
multimedia 

Encryption 

Superscalar 

Packet 
processing 

Special- 
Purpose 
DSP Gen 2 

Gen 3 

Gen 4 

Base 

Area = silicon cost and power 

Traditional Processor Family 

Time per variant: years Time per variant: days 

Memory 
Systems 

Processor 
Control 

System 
Interface 

Computation 
Instruction 
Set 

Interrupts 

Debug 

Memory  
Protection 

Timers 

MMU Secure  
Rings 

Inst 
Cache 

Data 
Cache 

Write-back 
Cache 

Tightly 
Coupled 
Memories 

Coherent 
Caches 

Bus  
Bridges 

Block 
Data 
Bus Slave DMA  

Access 

MP Split  
Transaction 

Data  
Streaming 
Ports 

Input/Output 
Wires 

16b GP DSP 

24b Audio 

Encryption 

Superscalar 

Packet 
processing 

Special- 
Purpose 
DSP 

Image 
multimedia 



A Short List of x86 Opcodes that 
Science Applications Don’t Need! 



More Wasted Opcodes 

• We only need 80 out of the nearly 300 ASM instructions in the x86 
instruction set! 

• Still have all of the 8087 and 8088 instructions! 
• Wide SIMD Doesn’t Make Sense with Small Cores 
• Neither does Cache Coherence 
• Neither does HW Divide or Sqrt for loops  

• Creates pipeline bubbles 
• Better to unroll it across the loops (like IBM MASS libraries) 

• Move TLB to memory interface because its still too huge (but still get 
precise exceptions from segmented protection on each core) 



Science-Optimized Processor Design 

Intel 
Core2 
(Penryn) 

Intel 
Atom 
core 

Tensilica 
core w/ 
64-bit FP 

Die area 
(mm2) 

53.5 25 5.32 

Process 45 nm 45 nm 65 nm 

Power 18W 0.625W 0.091W 

Freq 2930 
MHz 

800MHz 370MHz 

Flops / 
Watt 

162 1280 4065 



Example Uses of a Custom Instructions 

• Need for Extended Precision 
– Good for massively parallel global reductions 
– For Uncertainty Quantificaton (better than using Interval Arithmetic) 

•  Instruction Set Extensions for Extended Precision 
– Mask off mantissa or exponent bits for add, shift or multiplies on 

subset of bits 
– Externalize carry bit instead of overflow 
– Small change in logic with huge gains in efficiency of extended 

precision software emulation 

•  Extended accumulators (1024-bit accumulator) 
• Change all type widths to match x86 

– For easier application and library porting in cross-env. 

• Compiler automatically extended w/new instructions 



TIE Example 



Memory Subsystem 



Memory Subsystem 

• Cache and Software Controlled 
Memory (Local Store) 

– L/S for performance 
– Smaller cache for convenience 

• Cache provides incremental 
porting path 

– Cell was all-or-nothing 
– Can port incrementally 

•  Integrated NVRAM controller 
– Local checkpointing for fault 

resilience 
– Slower/higher-density tier of 

memory 

NVRAM 
(FLASH) for 

fault resilience 



Memory: Perhaps we don’t need  
1 Byte/FLOP (Scripted Memory Movement) 

•  Trace analysis key to memory 
requirements 

– Actually running the code gives 
realistic values for memory 
footprint, temporal reuse, DRAM 
bandwidth requirements 

•  Memory footprint: unique 
addresses accessed  size of 
local store needed 

•  Temporal reuse: maximum 
number of addresses which will 
be reused at any time  size of 
cache needed 

•  DRAM bandwidth 
–  (instruction throughput) X (memory 

footprint)/(instruction count) 
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(Instructions/Cycle=1, 500 MHz) 



Computing Interconnect Requirements 

•  Presume 50GB/s memory subsystem 
performance limit 
–  Pack cores onto chip until 50GB/s ceiling 
–  Measure message throughput requirements 

•  Assuming (pessimistically) communication only 
occurs during 10% of calculation (no-overlap) 

Communication Requirements
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Analyzing the Instruction Mix 



Auto-Tuning Can Change Hardware 
Design Requirements 

•  Memory footprint: 160 KB 
•  Cache size requirement: 160 KB 
•  < 50% instructions are floating-point  

•  Huge overhead for address 
generation 

•  Although code streams through data, 
loop ordering was bad  cachelines 
reused although addresses were not 

•  Memory footprint: 160 KB 
•  Cache size requirement: 1 KB 
•  > 85% instructions are floating-point 

•  Good ordering  simpler addressing 

160x reduction in cache size! 
2x savings in execution time 



HW/SW Co-Tuning for Energy Efficiency 

The approach: Use 
auto-tuned code 
when evaluating 
architecture design 
points 

Co-Tuning can improve power-
efficiency and area-efficiency by  ~4x  



Novel Inter-processor Communication 

Direct support for high-level language constructs 



Architectural Support for IPC 
Make hardware easier to program! 

• Logical topology is a full 
crossbar 

• Each local store mapped to 
global address space 

• To initiate a DMA transfer 
between processors: 

– Processors exchange starting 
addresses through TIE Queue interface 

•  Optimized for small transfers 
– When ready, copy done directly from 

LS to LS  
– Copy will bypass cache hierarchy 

NVRAM 
(FLASH) for 

fault resilience 



Example Timing Diagram 
For MPI-Like 2-sided Message 

Send() iRecv() 

Wait() 

…Other work…. 

Direct DMA 
Transfer between LS 

Request to send 
With recv() addr. 

DMA Complete 

…continue… 

blocked 

blocked 

…continue… 

Green is TIE queue and red is Local Store DMA Engine 



CMP Architecture - Physical View 

• Concentrated torus  
– Direct connect 
between 4 
processors on a tile 

– Packet switched 
network connecting 
tiles 

• Between 64 and 128 
processors per die 

• Silicon Photonics as 
option for NoC 



Novel Architecture Features 
(Alternative Memory Protection Model) 

• Move TLB to memory controller interface for simple cores 
– TLB is huge compared to simple cores 
– TLB coherence approaches are difficult to scale 
– Consolidation makes one-sided messaging and DMA 
easier (no pinning required) 

– More energy efficient and lower complexity 

• Problems with moving TLB 
– No “precise exceptions” for page protection violations 
– “worker” CPU’s can use segmented protection 
– Subset of “OS” CPU’s can use TLBs 



Architecture Features for 
Fault Tolerance/Resilience 

• Our Design does not expose unique risks 
– Faults proportional to # sockets (not # cores) and silicon 

surface area 
– We expose less surface area and fewer sockets with our 

approach 

• Hard Errors 
– Spare cores in design (Cisco Metro) 
– SoC design (fewer components and fewer sockets) 
– Use solder (not sockets) 

• Soft Errors 
– ECC for memory and caches 
– On-board NVRAM controller for localized checkpoint 
– Checkpoint to neighbor for rollback 
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Green Flash Hardware Demo 

• Demonstrated during SC ‘08 
• Proof of concept  

– CSU atmospheric model ported to 
Tensilica Architecture 

– Single Tensilica processor running 
atmospheric model at 50MHz 

• Emulation performance 
advantage 

– Processor running at 50MHz vs. 
Functional model at 100 kHz 

– 500x Speedup 

• Actual climate code - not 
representative benchmark 



Summary 

• Power is leading design constraint for future HPC 
– Future technology driven by handheld space 
– Notion of “commodity” moving on-chip 

• Approach for Power Efficient HPC 
– Choose the science target first (climate in this case) 
– Design systems for applications (rather than the reverse) 
– Design hardware, software, scientific algorithms together 
using hardware emulation and auto-tuning 

– This is the right way to design efficient HPC systems! 



What we would like to do in the future 

• Consider broader range of applications 
– Find out what the future vertically integrated 
systems could look like 

– Seismic modeling, Datacenters (Google) 

• Develop Hardware elements to support high-level 
language constructs 

– PGAS support-on-a-chip 
– Feed-forward pipelines / dataflow 

• Turnkey automation of the hardware/software 
codesign workflow 



Interconnects 
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Interconnects: Leading Issues 

• Cannot continue to scale fully-connected 
interconnect topologies 

• Cannot continue to scale bandwidth using 
electrical networks 

What technology be applied to address these constraints? 
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Interconnect Cost 
(Scalable Topologies) 

• Fully-connected networks scale superlinearly in cost, 
but perform the best 

• Limited-connectivity networks scale linearly in cost, 
but introduce new problems 



Interconnect Design Considerations  
for Message Passing Applications 

•  Application studies provide insight to 
requirements for Interconnects (both 
on-chip and off-chip) 
–  On-chip interconnect is 2D planar 

(crossbar won’t scale!) 
–  Sparse connectivity for most 

apps.; crossbar is overkill 
–  No single best topology 
–  Most point-to-point message 

exhibit sparse topology + often 
bandwidth bound 

–  Collectives tiny and primarily 
latency bound 

•  Ultimately, need to be aware of the 
on-chip interconnect topology in 
addition to the off-chip topology 

–  Adaptive topology interconnects (HFAST) 
–  Intelligent task migration? 
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Processor Allocation 

• Relocates communicating partners “closer” to one 
another in the network 

• Optimal remapping is NP-hard 
• Can be cast as a graph partitioning problem 

Network 



System-Scale Switch Technology 
Pure Photonic Solution is OCS 

•  Packet Switch: 
– Read each packet header and decide where it 

should go fast! 
– Decisions cannot be done all-optical (requires 

OEO conversion + CMOS ASICS) 
– OEO conversions for Optical Transceivers 

•  Circuit Switch: 
–  Establishes direct circuit from point-to-

point (telephone switchboard) 
–  Commodity MEMS optical circuit switch 

•  Common in telecomm industry 
•  Scalable to large crossbars 

–  Slow switching (~100microseconds) 
–  Blind to message boundaries 

Force10 E1200 

1260 x 1GigE 
56 x 10GigE 

400x400λ

1-40GigE 

Movaz iWSS 



HFAST 
Optimizing Use of Optical Circuit Switches 

• Hybrid Flexibly-Assignable Switch Topology (HFAST) 
– Use Layer-1 (circuit) switches to configure Layer-2 (packet) switches 

at run-time (O(10-100ms) cost of reconfiguration) 
– Hardware to do so exists (Telecom Industry) 
– Layer-1 switches cheaper per port (no dynamic decisions, like 

telephone switchboard) (only game in town for pure optical switches) 

Collective communication uses a separate low-latency, low bandwidth tree 
network (like IBM BlueGene) 



Using Optical Circuit Switches to 
Make Fat-Trees into Fit-Trees 

• A Fit-tree uses OCS to prune unused (or 
infrequently used) connections in a Fat-Tree 

• Tailor the interconnect to match application 
data flows 
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Datacenter Applications 

• Current practice depends on large CLOS or 
Fat-Tree networks of Ethernet switches 

– Photonic links, but OEO conversion required for 
packet switching 

– Much of the power is in CMOS ASICs that make the 
packet switching decisions 

– All-photonic low-power solution is a circuit switch 

• How can we exploit circuit switching for 
datacenter applications?  

– A Hybrid solution with both OCS and conventional 
packet switches 
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TL Fit-trees for Datacenters   

• Construct top-level determined fit-tree by setting # of 
top-level switches in the fit-tree 

• Uses same routing tables as fat-tree: no routing 
discovery required 

• Preserve any-to-any routing ability 



Datacenter Application Traces 
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Optical Circuit Switches Reduce Packet 
Switch Count (and hence power)  

67 



Map Reduce: Reduce switch count by 1 
order of magnitude using Photonic/

OCS 
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Datacenter Summary 

• Optical Circuit Switches (OCS) can be used to 
optimize communication topology for 
persistent high-bandwidth dataflows 

• Can result in order of magnitude reduction in 
packet switches 

– That translates directly into power savings since 
OCS is passive 

• Reduced wiring complexity by packaging OCS 
in top of each equipment rack 

69 



Research Agenda 
(what we would like to do) 

• Use Sandia scalable DES model to perform large-
scale modeling of OCS approach for datacenters 

– Combine with more accurate power models and 
cost models of OCS equipment 

– Use full traces from large-scale datacenters 

• Create demonstration platform for to demonstrate 
hybrid OCS + Packet-Switched approach 

• Further work on Fit-Tree algorithm for optimal 
provisioning of circuits on hybrid interconnects 



On-Chip Silicon Photonics for Multicore 

Collaboration with  
Keren Bergman at Columbia University 

And internally funded Green Flash project 

(Kamil, Mohiyuddin, Jain) 



The problem with Wires: Energy to move 
data proportional to distance 

• Wire cost to move a bit:  
– energy = bitrate * Length2 / cross-section area 
– On-Chip (1cm): ~1pJ/bit, 100Tb/s 
– On-Module (5cm): ~2-5pJ/bit, 10Tb/s 
– On-Board (20cm): ~10pJ/bit, 1Tb/s 
– Intra-rack (1m): ~10-15pJ/bit, 1Tb/s 
– Inter-cabinet(2-50m): 15-30pJ/bit, 5-10Tb/s aggregate 

• To move a bit with optics: target ~1-2pJ/bit 
for all distance scales 

Copper requires to signal amplification 
even for on-chip connections  

Photonics requires no redrive 
and passive switch little power 



Silicon Photonic Integration 



Embedded Computing 
Interconnects for massive manycore 

•  188+4 Xtensa general purpose processor 
cores per Silicon Packet Processor 

•  Up to 400,000 processors per system 
•  (this is not just about HPC!!!) 

16  PPE  

16 Clusters of 
12 cores each 
(192 cores!) 

CRS-1 Router 

Electronic Mesh Interconnect 



photonic switching device: 
2×2 switch composed of 2 
waveguides, 2 micro‐ring 
resonators, and a crossing 

photonic rou2ng subsystem: 
integrated photonic and 

electronic devices providing 
mul=‐wavelength, non‐blocking, 
low‐power photonic rou=ng 

CMP system vision: 
3DI stack with dedicated 
communica=ons plane 
(top layer) housing a 

photonic NoC 

On‐chip photonics enable ultrahigh‐bandwidth, low‐power communica=ons 
for both on‐ and off‐chip signaling, allowing the maximized performance for 

chip‐scale parallel processing systems 

Switches, Routers, and Networks-on-Chip 

Keren Bergman 



Silicon Photonics for Energy-
Efficient Communication 

• Silicon photonics 
enables optics to be 
integrated with 
conventional CMOS 

• Enables up to 27x 
improvement in 
communication energy 
efficiency! 

Silicon Photonic 
Ring Resonator 

Collaboration with Keren Bergman 


